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Abstract
A Banach space X is said to have the fixed point property if for each nonexpansive
mapping T : E → E on a bounded closed convex subset E of X has a fixed point. We
show that each infinite dimensional Abelian complex Banach algebra X satisfying:
(i) property (A) defined in (Fupinwong and Dhompongsa in Fixed Point Theory Appl.
2010:Article ID 34959, 2010), (ii) ‖x‖ ≤ ‖y‖ for each x, y ∈ X such that |τ (x)| ≤ |τ (y)| for
each τ ∈ �(X), (iii) inf{r(x) : x ∈ X ,‖x‖ = 1} > 0 does not have the fixed point property.
This result is a generalization of Theorem 4.3 in (Fupinwong and Dhompongsa in
Fixed Point Theory Appl. 2010:Article ID 34959, 2010).
MSC: 46B20; 46J99
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1 Introduction
A Banach space X is said to have the fixed point property (or weak fixed point property) if
for each nonexpansive mapping T : E → E on a bounded closed convex (or weakly com-
pact convex, resp.) subset E of X has a fixed point.
For the weak fixed point property of certain Banach algebras, Lau et al. [] showed that

the space C(G), where G is a locally compact group, has the weak fixed point property if
and only if G is discrete, and a von Neumann algebra has the weak fixed point property
if and only if it is finite dimensional. Benavides and Pineda [] proved that each ω-almost
weakly orthogonal closed subspace of C(K), where K is a metrizable compact space, has
the weak fixed point property and C(K), where K is a compact set with K (ω)

 = ∅, has the
weak fixed point property.
As for the fixed point property, Dhompongsa et al. [] showed that a C*-algebra has the

fixed point property if and only if it is finite dimensional. Fupinwong and Dhompongsa
[] proved that each infinite dimensional unital Abelian Banach algebra X with �(X) �= ∅
satisfying: (i) (A) defined in [], (ii) ‖x‖ ≤ ‖y‖ for each x, y ∈ X with |τ (x)| ≤ |τ (y)| for
each τ ∈ �(X), (iii) inf{r(x) : x ∈ X,‖x‖ = } >  does not have the fixed point property.
Alimohammadi and Moradi [] used the above result to obtain sufficient conditions to
show that some unital uniformly closed subalgebras of C(X), where X is a compact space,
do not have the fixed point property.
In this paper, we show that the unitality in the result proved in [] can be omitted.

2 Preliminaries and lemmas
We assume that the field of each vector space in this paper is complex.
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Let X be a Banach algebra. Define X̃ = X ⊕C and a multiplication on X̃ by

(a,λ)(b,μ) = (ab + λb +μa,λμ).

We have X̃ is a unital Banach algebra with the unit (, ) and called the unitization of X. X̃
is also Abelian if X is Abelian.
If X̃ is the unitization of a Banach algebra X and �(X) is the set of characters on X, then

the set �(X̃) of characters on X̃ is equal to

{
τ̃ : τ ∈ �(X)

} ∪ {τ∞},

where τ̃ is defined from τ ∈ �(X) by

τ̃
(
(a,λ)

)
= τ (a) + λ,

for each (a,λ) ∈ X̃ , and τ∞ is the canonical homomorphism defined by

τ∞
(
(a,λ)

)
= λ,

for each (a,λ) ∈ X̃ .
If X is an Abelian Banach algebra, condition (A) is defined by:

(A) For each x ∈ X, there exists an element y ∈ X such that τ (y) = τ (x), for each τ ∈ �(X).

It can be seen that if X satisfies (A), then so does the unitization X̃ of X.
Let X be an Abelian Banach algebra. The Gelfand representation ϕ : X → C(�(X)) is

defined by x �→ x̂, where x̂ is defined by

x̂(τ ) = τ (x),

for each τ ∈ C(�(X)).
The following lemma was proved in [].

Lemma . Let X be a unital Abelian Banach algebra satisfying (A) and

inf
{
r(x) : x ∈ X,‖x‖ = 

}
> .

Then:
(i) the Gelfand representation ϕ is a bounded isomorphism,
(ii) the inverse ϕ– is also a bounded isomorphism.

Let X be an Abelian Banach algebra satisfying (A) and inf{r(x) : x ∈ X,‖x‖ = } > . It
can be seen that X is embedded in C(�(X̃)) as the closed subalgebra Y = {̂x ∈ C(�(X̃)) :
x̂(τ∞) = }. Moreover, for each x ∈ X̃, x is in X if and only if τ∞(x) = .

Lemma . Let X be an infinite dimensional Abelian Banach algebra satisfying (A) and

inf
{
r(x) : x ∈ X,‖x‖ = 

}
> .
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Then we have:
(i) �(X) is an infinite set.
(ii) If there exists a bounded sequence {xn} in X which contains no convergent

subsequences and such that {τ (xn) : τ ∈ �(X)} is finite for each n ∈N, then there is
an element x ∈ X such that {ω(x) : ω ∈ �(X̃)} is equal to {, ,  ,  ,  , . . .} or
{, ,  ,  ,  , . . .}.

(iii) There is an element x ∈ X such that {ω(x) : ω ∈ �(X̃)} is an infinite set.
(iv) There exists a sequence {xn} in X such that {ω(xn) : ω ∈ �(X̃)} ⊂ [, ], for each

n ∈N, and {(x̂n)–{}} is a sequence of nonempty pairwise disjoint subsets of �(X̃).

Proof (i) From Lemma .(i) in [], we have �(X̃) is infinite. Since

�(X̃) =
{
τ̃ : τ ∈ �(X)

} ∪ {τ∞},

where τ̃ is defined from τ ∈ �(X) by τ̃ ((a,λ)) = τ (a) + λ, for each (a,λ) ∈ X̃, and τ∞ is the
canonical homomorphism, so �(X) is also infinite.
(ii) Let {xn} be a bounded sequence in X which has no convergent subsequences and the

set {τ (xn) : τ ∈ �(X)} be finite for each n ∈ N. Consider {xn} a sequence in X̃, so {ω(xn) :
ω ∈ �(X̃)} is finite for each n ∈N. It follows from the proof of Lemma .(ii) in [] that

�(X̃) =
(⋃
n∈N

Gn

)
∪ F ,

where F is a closed set in�(X̃),Gn is closed and open for each n ∈N, and {F ,G,G, . . .} is a
partition of�(X̃). There are two cases to be considered. If τ∞ is in F , definedψ :�(X̃) →R

by

ψ(τ ) =

⎧⎪⎪⎨
⎪⎪⎩
, if τ ∈G,

n , if τ ∈Gn,n≥ ,

, if τ ∈ F .

If τ∞ is in Gn , for some n ∈N, we may assume that n = , defined ψ :�(X̃) →R by

ψ(τ ) =

⎧⎪⎪⎨
⎪⎪⎩
, if τ ∈ G,
n–
n , if τ ∈ Gn,n≥ ,

, if τ ∈ F .

For each case, we have the inverse image of each closed set in ψ(�(X̃)) is closed, so
ψ ∈ C(�(X̃)). Let ϕ : X̃ → C(�(X̃)) be the Gelfand representation. Therefore, ϕ–(ψ)
is an element in X̃, say x, such that {ω(x) : ω ∈ �(X̃)} is equal to {, ,  ,  ,  , . . .} or
{, ,  ,  ,  , . . .}. We have x ∈ X since τ∞(x) = ψ(τ∞) = .
(iii) Assume to the contrary that {ω(x) : ω ∈ �(X̃)} is finite for each x ∈ X. Since X is

infinite dimensional, so there is a bounded sequence {xn} in X which has no convergent
subsequences. Thus {ω(xn) : ω ∈ �(X̃)} is finite for each n ∈ N. It follows from (ii) that
there exists x ∈ X such that {ω(x) : ω ∈ �(X̃)} is infinite. This leads to a contradiction.
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(iv) It follows from (iii) that there exists an element x ∈ X such that {ω(x) : ω ∈ �(X̃)}
is infinite. Wemay assume that there exists a strictly decreasing sequence of real numbers
{an} such that

{an} ⊂ x̂
(
�(X̃)

) ⊂ [, ], a < ,

and ω(x) =  for some ω ∈ �(X̃). Define g : [, ]→ [, ] by

g(t) =

⎧⎨
⎩

t
a
, if t ∈ [,a],

 + (g(a)–)(t–a)
(–a)

, if t ∈ [a, ].

So g is a continuous function joining the points (, ) and (a, ), and g() ∈ (g(a), ). Let
x̂ = g ◦ x̂, and define a continuous function g : [, ]→ [, ] by

g(t) =

⎧⎨
⎩

t
g(a)

, if t ∈ [, g(a)],

 + (g(g(a))–)(t–g(a))
(–g(a))

, if t ∈ [g(a), ].

g is joining the point (, ) and (g(a), ) and g() ∈ (g(g(a)), ). Let x̂ = g ◦ x̂. Con-
tinuing in this process, we obtain a sequence of points {xn} in X̃ with {ω(xn) : ω ∈ �(X)} ⊂
[, ], for each n ∈ N, and {(x̂n)–{}} is a sequence of nonempty pairwise disjoint subsets
of �(X̃). Since gn() = , for each n ∈N, so

x̂i+(τ∞) = (gi ◦ · · · ◦ g ◦ x̂)(τ∞) = (gi ◦ · · · ◦ g)() = ,

for each i ∈N. Then τ∞(xn) = , for each n ∈N. Thus {xn} is a sequence in X. �

3 Main theorem
Theorem . Let X be an infinite dimensional Abelian Banach algebra satisfying (A) and
each of the following:

(i) If x, y ∈ X is such that |τ (x)| ≤ |τ (y)|, for each τ ∈ �(X), then ‖x‖ ≤ ‖y‖,
(ii) inf{r(x) : x ∈ X,‖x‖ = } > .

Then X does not have the fixed point property.

Proof Assume to the contrary that X has the fixed point property. From Lemma .(iv),
there exists a sequence {xn} in X such that {ω(xn) : ω ∈ �(X̃)} ⊂ [, ] for each n ∈ N, and
{(x̂n)–{}} is a sequence of nonempty pairwise disjoint subsets of �(X̃). Let An = (x̂n)–{},
and define Tn : En → En by

x �→ xnx,

where

En =
{
x ∈ X :  ≤ ω(x) ≤  for each ω ∈ �(X̃), and ω(x) =  if ω ∈ An

}
.

From (i) and (ii), Tn : En → En is a nonexpansive mapping on the bounded closed convex
set En for each n ∈ N. Indeed, En is bounded since

inf
{
r(x) : x ∈ X,‖x‖ = 

} ≤ r
(

x
‖x‖

)
= sup

ω∈�(X̃)

∣∣∣∣ω
(

x
‖x‖

)∣∣∣∣ = 
‖x‖ sup

ω∈�(X̃)

∣∣ω(x)∣∣
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for each x ∈ X. So Tn has a fixed point, say yn, for each n ∈ N. We have yn = xnyn, hence
ŷn = x̂nŷn, and then

ŷn(ω) =

⎧⎨
⎩, if ω is not in An,

, if ω is in An,

for each n ∈ N. We have ‖ŷm – ŷn‖ = , if m �= n, since A,A,A, . . . are pairwise dis-
joint. Therefore, {ŷn} has no convergent subsequences. From Lemma ., X̃ and C(�(X̃))
are homeomorphic. So {yn} has no convergent subsequences. From Lemma .(ii), there
exists an element x in X such that {ω(x) : ω ∈ �(X̃)} is equal to {, ,  ,  ,  , . . .} or
{, ,  ,  ,  , . . .}. Let A = (x̂)–{}. Define T : E → E by

x �→ xx,

where

E =
{
x ∈ X :  ≤ ω(x)≤  for each ω ∈ �(X̃), and ω(x) =  if ω ∈ A

}
.

From (i) and (ii), T is a nonexpansive mapping on the bounded closed convex set E.
Hence T has a fixed point, say y, i.e., y = xy. Therefore, ŷ = x̂ŷ. Then

ŷ(ω) =

⎧⎨
⎩, if ω is not in A,

, if ω is in A.

Since ŷ = x̂ŷ, so we haveA = (ŷ)–{} and�(X̃)\A = (ŷ)–{}. Then�(X̃) is a disjoint
union of two compact sets A and �(X̃)\A. If

{
ω(x) : ω ∈ �(X̃)

}
=

{
, ,



,


,


, . . .

}
,

then {(x̂)–{ n
n+ } : n ∈N} ∪ {(x̂)–{}} is a pairwise disjoint open covering of the compact

set �(X̃)\A. This leads to a contradiction. Similarly, if

{
ω(x) : ω ∈ �(X̃)

}
=

{
, ,



,


,


, . . .

}
,

then A has a pairwise disjoint open covering, which is a contradiction. So we conclude
that X does not have the fixed point property. �

The following question is interesting.

Question . Does the Fourier algebra A(G) or the Fourier-Stieltjes algebra B(G) of a
locally compact group G have property (A) when G is an infinite group?

Note thatA(G) or B(G) are both commutative semigroup Banach algebras with the fixed
point property if and only ifG is finite (see Theorem . and Corollary . of []). It is well
known that A(G) is norm dense in C(G) with spectrum G.
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