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Abstract
The purpose of this paper is to propose an algorithm for solving the split feasibility
problems for total quasi-asymptotically nonexpansive mappings in infinite-dimensional
Hilbert spaces. The results presented in the paper not only improve and extend some
recent results of Moudafi [Nonlinear Anal. 74:4083-4087, 2011; Inverse Problem
26:055007, 2010], but also improve and extend some recent results of Xu [Inverse
Problems 26:105018, 2010; 22:2021-2034, 2006], Censor and Segal [J. Convex Anal.
16:587-600, 2009], Censor et al. [Inverse Problems 21:2071-2084, 2005], Masad and
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327:1244-1256, 2007], Yang [Inverse Problem 20:1261-1266, 2004] and others.
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1 Introduction
Throughout this paper, we always assume that H, H are real Hilbert spaces, ‘→’, ‘⇀’
denote strong and weak convergence, respectively, and F(T) is a fixed point set of a map-
ping T .
The split feasibility problem (SFP) in finite-dimensional spaces was first introduced by

Censor and Elfving [] for modeling inverse problems which arise from phase retrievals
and in medical image reconstruction []. Recently, it has been found that the SFP can
also be used in various disciplines such as image restoration, computer tomograph and
radiation therapy treatment planning [–]. The split feasibility problem in an infinite-
dimensional real Hilbert space can be found in [, , –].
The purpose of this paper is to introduce and study the following split feasibility prob-

lem for total quasi-asymptotically nonexpansive mappings in the framework of infinite-
dimensional real Hilbert spaces:

find x* ∈ C such that Ax* ∈ Q, (.)

where A : H → H is a bounded linear operator, S : H → H and T : H → H are map-
pings; C := F(S) and Q := F(T). In the sequel, we use � to denote the set of solutions of
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(SFP)-(.), i.e.,

� = {x ∈ C,Ax ∈Q}. (.)

2 Preliminaries
Wefirst recall somedefinitions, notations and conclusionswhichwill be needed in proving
our main results.
Let E be a Banach space. A mapping T : E → E is said to be demi-closed at origin if for

any sequence {xn} ⊂ E with xn ⇀ x* and ‖(I – T)xn‖ → , x* = Tx*.
A Banach space E is said to have theOpial property, if for any sequence {xn}with xn ⇀ x*,

lim inf
n→∞

∥∥xn – x*
∥∥ < lim inf

n→∞ ‖xn – y‖, ∀y ∈ E with y �= x*.

Remark . It is well known that each Hilbert space possesses the Opial property.

Definition . Let H be a real Hilbert space.
() A mapping G : H → H is said to be a ({νn}, {μn}, ζ )-total quasi-asymptotically non-

expansive mapping if F(G) �= ∅; and there exist nonnegative real sequences {νn}, {μn} with
νn →  and μn →  and a strictly increasing continuous function ζ : R+ → R+ with
ζ () =  such that for each n≥ ,

∥∥p –Gnx
∥∥ ≤ ‖p – x‖ + νnζ

(‖p – x‖) +μn, ∀p ∈ F(G),x ∈H . (.)

Now, we give an example of total quasi-asymptotically nonexpansive mapping.
Let C be a unit ball in a real Hilbert space l, and let T : C → C be a mapping defined by

T : (x,x, . . . , ) →
(
,x ,ax,ax, . . .

)
, (x,x, . . . , ) ∈ l,

where {ai} is a sequence in (, ) such that
∏∞

i= ai =

 .

It is proved in Goebal and Kirk [] that
(i) ‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;
(ii) ‖Tnx – Tny‖ ≤ 

∏n
j= aj‖x – y‖, ∀x, y ∈ C, ∀n≥ .

Denote by k


 = , k



n = 

∏n
j= aj, n≥ , then

lim
n→∞ kn = lim

n→∞

(


n∏
j=

aj

)

= .

Letting νn = (kn – ), ∀n≥ , ζ (t) = t, ∀t ≥  and {μn} be a nonnegative real sequence with
μn → , from (i) and (ii), ∀x, y ∈ C, n≥ , we have

∥∥Tnx – Tny
∥∥ ≤ ‖x – y‖ + νnζ

(‖x – y‖) +μn. (.)

Again, since  ∈ C and  ∈ F(T), this implies that F(T) �= ∅. From (.), we have

∥∥p – Tny
∥∥ ≤ ‖p – y‖ + νnζ

(‖p – y‖) +μn ∀p ∈ F(T), y ∈ C. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/151
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This shows that themapping T defined as above is a total quasi-asymptotically nonexpan-
sive mapping.
() A mapping G : H → H is said to be ({kn})-quasi-asymptotically nonexpansive if

F(G) �= ∅; and there exists a sequence {kn} ⊂ [,∞) with kn →  such that for all n≥ ,

∥∥p –Gnx
∥∥ ≤ kn‖p – x‖, ∀p ∈ F(G),x ∈H . (.)

() A mapping G :H →H is said to be quasi-nonexpansive if F(G) �= ∅ such that

‖p –Gx‖ ≤ ‖p – x‖, ∀p ∈ F(G),x ∈H . (.)

Remark . It is easy to see that every quasi-nonexpansive mapping is a ({})-quasi-
asymptotically nonexpansive mapping and every {kn}-quasi-asymptotically nonexpan-
sive mapping is a ({νn}, {μn}, ζ )-total quasi-asymptotically nonexpansive mapping with
{νn = kn – }, {μn = } and ζ (t) = t, t ≥ .

Definition .
() AmappingG :H →H is said to be uniformly L-Lipschitzian if there exists a constant

L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, ∀x, y ∈H and n≥ .

() A mapping G : H → H is said to be semi-compact if for any bounded sequence
{xn} ⊂ H with limn→∞ ‖xn – Gxn‖ = , there exists a subsequence {xni} ⊂ {xn} such that
xni converges strongly to some point x* ∈H .

Proposition . Let G :H →H be a ({νn}, {μn}, ζ )-total quasi-asymptotically nonexpan-
sive mapping. Then for each q ∈ F(G) and for each x ∈ H, the following inequalities are
equivalent: for each n≥ 

∥∥q –Gnx
∥∥ ≤ ‖q – x‖ + νnζ

(‖q – x‖) +μn, ∀q ∈ F(G),x ∈H ; (.)


〈
x –Gnx,x – q

〉 ≥ ∥∥x –Gnx
∥∥ – νnζ

(‖q – x‖) –μn; (.)


〈
x –Gnx,q –Gnx

〉 ≤ ∥∥x –Gnx
∥∥ + νnζ

(‖q – x‖) +μn. (.)

Proof
(I) (.) ⇔ (.) In fact, since

∥∥Gnx – q
∥∥ =

∥∥Gnx – x + x – q
∥∥

=
∥∥Gnx – x

∥∥ + ‖x – q‖ + 
〈
Gnx – x,x – q

〉
, ∀x ∈H ,q ∈ F(G),

from (.) we have that

∥∥Gnx – x
∥∥ + ‖x – q‖ + 

〈
Gnx – x,x – q

〉
≤ ‖x – q‖ + νnζ

(‖q – x‖) +μn.
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Simplifying it, inequality (.) is obtained.
Conversely, from (.) the inequality (.) can be obtained immediately.
(II) (.) ⇔ (.) In fact, since

〈
x –Gnx,x – q

〉
=

〈
x –Gnx,x –Gnx +Gnx – q

〉
=

∥∥x –Gnx
∥∥ +

〈
x –Gnx,Gnx – q

〉
it follows from (.) that


(∥∥x –Gnx

∥∥ +
〈
x –Gnx,Gnx – q

〉) ≥ ∥∥x –Gnx
∥∥ – νnζ

(‖q – x‖) –μn.

Simplifying it, the inequality (.) is obtained.
Conversely, from (.) the inequality (.) can be obtained immediately.
This completes the proof of Proposition .. �

Lemma. [] Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfying

an+ ≤ ( + δn)an + bn, ∀n≥ .

If
∑∞

i= δn <∞ and
∑∞

i= bn <∞, then the limit limn→∞ an exists.

3 Split feasibility problem
For solving the split feasibility problem (.), let us assume that the following conditions
are satisfied:
. H and H are two real Hilbert spaces, A :H →H is a bounded linear operator;
. S :H →H and T :H →H are two uniformly L-Lipschitzian and

({νn}, {μn}, ζ )-total quasi-asymptotically nonexpansive mappings satisfying the
following conditions:
(i) T and S both are demi-closed at origin;
(ii)

∑∞
n=(μn + νn) < ∞;

(iii) there exist positive constantsM andM* such that ζ (t)≤ ζ (M) +M*t, ∀t ≥ .
We are now in a position to give the following result.

Theorem . Let H, H, A, S, T, L, {μn}, {νn}, ζ be the same as above. Let {xn} be the
sequence generated by:

⎧⎪⎪⎨
⎪⎪⎩
x ∈H chosen arbitrarily,

xn+ = ( – αn)un + αnSn(un),

un = xn + γA*(Tn – I)Axn, ∀n≥ ,

(.)

where {αn} is a sequence in [, ], and γ >  is a constant satisfying the following conditions:
(iv)  < lim infn→∞ αn ≤ lim supn→∞ αn < ; and γ ∈ (, 

‖A‖ ),
(I) If � �= ∅ (where � is the set of solutions to ((SFP)-(.)), then {xn} converges weakly to

a point x* ∈ �.
(II) In addition, if S is also semi-compact, then {xn} and {un} both converge strongly to

x* ∈ �.

http://www.fixedpointtheoryandapplications.com/content/2012/1/151
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The proof of conclusion (I)
() First, we prove that for each p ∈ �, the following limits exist:

lim
n→∞‖xn – p‖ = lim

n→∞‖un – p‖. (.)

In fact, since p ∈ �, we have p ∈ C := F(S) and Ap ∈ Q := F(T). It follows from (.) and
(.) that

‖xn+ – p‖ =
∥∥un – p – αn

(
un – Snun

)∥∥

= ‖un – p‖ – αn
〈
un – p,un – Snun

〉
+ α

n
∥∥un – Snun

∥∥

≤ ‖un – p‖ – αn
{∥∥un – Snun

∥∥ – νnζ
(‖un – p‖) –μn

}
+ α

n
∥∥un – Snun

∥∥ (
by (.)

)
= ‖un – p‖ – αn( – αn)

∥∥un – Snun
∥∥ + αn

(
νnζ

(‖un – p‖) +μn
)
. (.)

On the other hand, by condition (iii), we have

ζ
(‖un – p‖) ≤ ζ (M) +M*‖un – p‖. (.)

Substituting (.) into (.) and simplifying, we have

‖xn+ – p‖ ≤ (
 + αnνnM*)‖un – p‖ – αn( – αn)

∥∥un – Snun
∥∥

+ αn
(
νnζ (M) +μn

)
≤ (

 + νnM*)‖un – p‖ – αn( – αn)
∥∥un – Snun

∥∥ + νnζ (M) +μn. (.)

On the other hand,

‖un – p‖ = ∥∥xn – p + γA*(Tn – I
)
Axn

∥∥

= ‖xn – p‖ + γ ∥∥A*(Tn – I
)
Axn

∥∥ + γ
〈
xn – p,A*(Tn – I

)
Axn

〉
, (.)

and

γ ∥∥A*(Tn – I
)
Axn

∥∥ = γ 〈A*(Tn – I
)
Axn,A*(Tn – I

)
Axn

〉
= γ 〈AA*(Tn – I

)
Axn,

(
Tn – I

)
Axn

〉
≤ γ ‖A‖∥∥TnAxn –Axn

∥∥, (.)

and

γ
〈
xn – p,A*(Tn – I

)
Axn

〉
= γ

〈
Axn –Ap,

(
Tn – I

)
Axn

〉
= γ

〈
Axn –Ap +

(
Tn – I

)
Axn –

(
Tn – I

)
Axn,

(
Tn – I

)
Axn

〉
= γ

{〈
TnAxn –Ap,TnAxn –Axn

〉
–

∥∥(
Tn – I

)
Axn

∥∥}. (.)
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In (.), taking x = Axn, Gn = Tn, q = Ap, and noting Ap ∈ F(T), from (.) and condi-
tion (iii), we have

〈
TnAxn –Ap,TnAxn –Axn

〉
≤ 


{∥∥(

Tn – I
)
Axn

∥∥ + νnζ
(‖Axn –Ap‖) +μn

}
≤ 


{∥∥(

Tn – I
)
Axn

∥∥ + νn
(
ζ (M) +M*‖A‖‖xn – p‖) +μn

}
. (.)

Substituting (.) into (.) and simplifying it, we have

γ
〈
xn – p,A*(Tn – I

)
Axn

〉
≤ γ

{
νn

(
ζ (M) +M*‖A‖‖xn – p‖) +μn –

∥∥(
Tn – I

)
Axn

∥∥}. (.)

Substituting (.) and (.) into (.) after simplifying, we have

‖un – p‖ ≤ (
 + γ νnM*‖A‖)‖xn – p‖ + γ

(
νnζ (M) +μn

)
– γ

(
 – γ ‖A‖)∥∥(

Tn – I
)
Axn

∥∥. (.)

Substituting (.) into (.) and simplifying it, we have

‖xn+ – p‖ ≤ (
 + νnM*){( + γ νnM*‖A‖)‖xn – p‖

+ γ
(
νnζ (M) +μn

)
– γ

(
 – γ ‖A‖)∥∥(

Tn – I
)
Axn

∥∥}
– αn( – αn)

∥∥un – Snun
∥∥ + νnζ (M) +μn

≤ ( + ξn)‖xn – p‖ + ηn – γ
(
 – γ ‖A‖)∥∥(

Tn – I
)
Axn

∥∥

– αn( – αn)
∥∥un – Snun

∥∥, (.)

where

ξn = νn
(
M* + γM*‖A‖ + γ νnM*‖A‖),

ηn =
[(
 + νnM*)γ + 

](
νnζ (M) +μn

)
.

By condition (iii), we have

∞∑
n=

ξn < ∞, and
∞∑
n=

ηn <∞.

By condition (iv), ( – γ ‖A‖) > . Hence, from (.), we have

‖xn+ – p‖ ≤ ( + ξn)‖xn – p‖ + ηn, ∀n≥ .

By Lemma ., the following limit exists:

lim
n→∞‖xn – p‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/151
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Now, we rewrite (.) as follows:

γ
(
 – γ ‖A‖)∥∥(

Tn – I
)
Axn

∥∥ + αn( – αn)
∥∥un – Snun

∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖

+ ξn‖xn – p‖ + ηn →  (as n→ ∞).

This together with the condition (iv) implies that

lim
n→∞

∥∥un – Snun
∥∥ = ; (.)

and

lim
n→∞

∥∥(
Tn – I

)
Axn

∥∥ = . (.)

It follows from (.), (.) and (.) that the limit limn→∞ ‖un – p‖ exists and

lim
n→∞‖un – p‖ = lim

n→∞‖xn – p‖.

The conclusion (.) is proved.
() Next, we prove that

lim
n→∞‖xn+ – xn‖ =  and lim

n→∞‖un+ – un‖ = . (.)

In fact, it follows from (.) that

‖xn+ – xn‖ =
∥∥( – αn)un + αnSn(un) – xn

∥∥
=

∥∥( – αn)
(
xn + γA*(Tn – I

)
Axn

)
+ αnSn(un) – xn

∥∥
=

∥∥( – αn)γA*(Tn – I
)
Axn + αn

(
Sn(un) – xn

)∥∥
=

∥∥( – αn)γA*(Tn – I
)
Axn + αn

(
Sn(un) – un

)
+ αn(un – xn)

∥∥
=

∥∥( – αn)γA*(Tn – I
)
Axn + αn

(
Sn(un) – un

)
+ αnγA*(Tn – I

)
Axn

∥∥
=

∥∥γA*(Tn – I
)
Axn + αn

(
Sn(un) – un

)∥∥.
In view of (.) and (.), we have that

lim
n→∞‖xn+ – xn‖ = . (.)

Similarly, it follows from (.), (.) and (.) that

‖un+ – un‖ =
∥∥xn+ + γA*(Tn+ – I

)
Axn+ –

(
xn + γA*(Tn – I

)
Axn

)∥∥
≤ ‖xn+ – xn‖ + γ

∥∥A*(Tn+ – I
)
Axn+

∥∥
+ γ

∥∥A*(Tn – I
)
Axn

∥∥ →  (as n→ ∞). (.)

The conclusion (.) is proved.

http://www.fixedpointtheoryandapplications.com/content/2012/1/151
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() Next, we prove that

‖un – Sun‖ →  and ‖Axn – TAxn‖ →  (as n→ ∞). (.)

In fact, from (.), we have

ζn :=
∥∥un – Snun

∥∥ →  (as n→ ∞). (.)

Since S is uniformly L-Lipschitzian continuous, it follows from (.) and (.) that

‖un – Sun‖ ≤ ∥∥un – Snun
∥∥ +

∥∥Snun – Sun
∥∥

≤ ζn + L
∥∥Sn–un – un

∥∥
≤ ζn + L

{∥∥Sn–un – Sn–un–
∥∥

+
∥∥Sn–un– – un

∥∥}
≤ ζn + L‖un – un–‖

+ L
∥∥Sn–un– – un– + un– – un

∥∥
≤ ζn + L( + L)‖un – un–‖ + Lζn– →  (as n→ ∞).

Similarly, from (.), we have

∥∥Axn – TnAxn
∥∥ →  (as n→ ∞). (.)

Since T is uniformly L-Lipschitzian continuous, by the sameway as above, from (.) and
(.), we can also prove that

‖Axn – TAxn‖ →  (as n→ ∞). (.)

() Finally, we prove that xn ⇀ x* and un ⇀ x*, which is a solution of (SFP)-(.).
Since {un} is bounded, there exists a subsequence {uni} ⊂ {un} such that uni ⇀ x* (some

point in H). From (.), we have

‖uni – Suni‖ →  (as ni → ∞). (.)

By the assumption that S is demi-closed at zero, we get that x* ∈ F(S).
Moreover, from (.) and (.), we have

xni = uni – γA*(Tni – I
)
Axni ⇀ x*.

Since A is a linear bounded operator, we get Axni ⇀ Ax*. In view of (.), we have

‖Axni – TAxni‖ →  (as ni → ∞).

Since T is demi-closed at zero, we have Ax* ∈ F(T). Summing up the above argument, it
is clear that x* ∈ �, i.e., x* is a solution to the (SFP)-(.).

http://www.fixedpointtheoryandapplications.com/content/2012/1/151
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Now, we prove that xn ⇀ x* and un ⇀ x*.
Suppose, to the contrary, that if there exists another subsequence {unj} ⊂ {un} such that

unj ⇀ y* ∈ � with y* �= x*, then by virtue of (.) and the Opial property of Hilbert space,
we have

lim inf
ni→∞

∥∥uni – x*
∥∥ < lim inf

ni→∞
∥∥uni – y*

∥∥ = lim
n→∞

∥∥un – y*
∥∥

= lim
nj→∞

∥∥unj – y*
∥∥ < lim inf

nj→∞
∥∥unj – x*

∥∥
= lim

n→∞
∥∥un – x*

∥∥ = lim inf
ni→∞

∥∥uni – x*
∥∥.

This is a contradiction. Therefore, un ⇀ x*. By using (.) and (.), we have

xn = un – γA*(Tn
n – I

)
Axn ⇀ x*. �

The proof of conclusion (II) By the assumption that S is semi-compact, it follows from
(.) that there exists a subsequence of {uni} (without loss of generality, we still denote
it by {uni}) such that uni → u* ∈ H (some point in H). Since uni ⇀ x*. This implies that
x* = u*, and so uni → x* ∈ �. By virtue of (.), we know that limn→∞ ‖un – x*‖ =  and
limn→∞ ‖xn – x*‖ = , i.e., {un} and {xn} both converge strongly to x* ∈ �.
This completes the proof of Theorem .. �

Theorem . Let H, H and A be the same as in Theorem .. Let S : H → H and T :
H → H be two ({kn})-quasi-asymptotically nonexpansive mappings with {kn} ⊂ [,∞),
kn →  satisfying the following conditions:

(i) T and S both are demi-closed at origin;
(ii)

∑∞
n=(kn – ) <∞.

Let {xn} be the sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈H chosen arbitrarily,

xn+ = ( – αn)un + αnSn(un),

un = xn + γA*(Tn – I)Axn, ∀n≥ ,

(.)

where {αn} is a sequence in [, ] and γ >  is a constant satisfying the condition (iv) in
Theorem .. Then the conclusions in Theorem . still hold.

Proof By assumptions, S :H →H and T :H →H both are ({kn})-quasi-asymptotically
nonexpansive mappings with {kn} ⊂ [,∞), kn → ; by Remark ., S and T both are uni-
formly L-Lipschitzian (where L = supn≥ kn) and ({νn}, {μn}, ζ )-total quasi-asymptotically
nonexpansive mapping with {νn = kn – }, {μn = } and ζ (t) = t, t ≥ . Therefore, all con-
ditions in Theorem . are satisfied. The conclusions of Theorem . can be obtained from
Theorem . immediately. �

Theorem . Let H, H and A be the same as in Theorem .. Let S : H → H and T :
H → H be two quasi-nonexpansive mappings and demi-closed at origin. Let {xn} be the

http://www.fixedpointtheoryandapplications.com/content/2012/1/151
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sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈H chosen arbitrarily,

xn+ = ( – αn)un + αnSn(un),

un = xn + γA*(Tn – I)Axn, ∀n≥ ,

(.)

where {αn} is a sequence in [, ] and γ >  is a constant satisfying the condition (iv) in
Theorem .. Then the conclusions in Theorem . still hold.

Proof By the assumptions, S : H → H and T : H → H are quasi-nonexpansive map-
pings. By Remark ., S and T both are uniformly L-Lipschitzian (where L = ) and ({})-
quasi-asymptotically nonexpansive mappings. Therefore, all conditions in Theorem .
are satisfied. The conclusions of Theorem . can be obtained from Theorem . imme-
diately. �

Remark . Theorems ., . and . not only improve and extend the corresponding
results of Moudafi [, ], but also improve and extend the corresponding results of Cen-
sor et al. [, ], Yang [], Xu [], Censor and Segal [], Masad and Reich [] and others.
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