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1 Introduction
Throughout this paper, we assume that E is a real Banach space with the dual E*, C is a

nonempty closed convex subset of E, and / : E — 2F is the normalized duality mapping
defined by

@) ={f €E:(uf)=InlP=|f |’} x<E.

Let T': C — E be a nonlinear mapping; we denote by F(T) the set of fixed points of T.

Recall that a mapping 7 : C — C is said to be nonexpansive if
ITx - Tyl < llx—-yll, Vx,yeC.

T : C — C is said to be quasi-nonexpansive if F(T) # ¢ and
ITx—pll < llx—pl, VxeC,peF().

T :C — C is said to be asymptotically nonexpansive if there exists a sequence {k,} C
(1, 00) with k, — 1 such that

|T7% - T"y|| < kullx=yll, Vx,yeCn>1.
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T : C — C is said to be quasi-asymptotically nonexpansive if F(T) # ) and there exists
a sequence {k,} C [1, 00) with k,, — 1 such that

|77 - p|| <kullx-pl, VxeC,peF(T),n>1

A one-parameter family 7 := {T'(¢) : t > 0} of mappings from C into C is said to be a

nonexpansive semigroup if the following conditions are satisfied:
(i) T(0)x =x forallx € C;
(ii) T(s+t)=T(s)T(t), Vs, t>0;

(iii) for each x € C, the mapping ¢ — T'(¢)x is continuous;

(iv) IT@x - T@)yl < x—yl, Vx,y € C.

We use F(77) to denote a common fixed point set of the nonexpansive semigroup 7, i.e.,
F(T) =20 F(T@)).

A one-parameter family 7 := {T'(¢) : t > 0} of mappings from C into C is said to be a
quasi-nonexpansive semigroup if F(T) # ) and the above conditions (i)-(iii) and the fol-
lowing condition (v) are satisfied:

W) IT@x-pll < Ix—pl, Vx € C, p € F(T), £ = 0.

A one-parameter family 7 := {T'(¢) : ¢ > 0} of mappings from C into C is said to be
an asymptotically nonexpansive semigroup if there exists a sequence {k,} C [1,00) with
k, — 1such that the above conditions (i)-(iii) and the following condition (vi) are satisfied:

Vi) IT"(@0x - T"@)ll < kullx—yll, Y,y € Cn= 1, £ 2 0.

A one-parameter family 7 := {T(¢) : t > 0} of mappings from C into C is said to be
a quasi-asymptotically nonexpansive semigroup if F(T) # ¢ and there exists a sequence
{k,} C [1, 00) with k,, — 1 such that the above conditions (i)-(iii) and the following condi-
tion (vii) are satisfied:

(vii) IT"(O)x—pll <kellx—pll,Vx€ C,p € F(T),t=0,n = 1.

As is well known, the construction of fixed points of nonexpansive mappings (asymptot-
ically nonexpansive mappings) and of common fixed points of nonexpansive semi-groups
(asymptotically nonexpansive semigroups) is an important problem in the theory of non-
expansive mappings and its applications; in particular, in image recovery, convex feasibility
problem, and signal processing problem (see, for example, [1-3]).

Iterative approximation of a fixed point for nonexpansive mappings, asymptotically non-
expansive mappings, nonexpansive semigroups, and asymptotically nonexpansive semi-
groups in Hilbert or Banach spaces has been studied extensively by many authors (see, for
example, [4—31] and the references therein).

The purpose of this article is to introduce the concept of total quasi-¢-asymptotically
nonexpansive semigroups; to modify the Halpern and Mann-type iteration algorithm
[13, 14] for total quasi-¢-asymptotically nonexpansive semigroups; and to have the strong
convergence under a limit condition only in the framework of Banach spaces. The results
presented in the paper improve and extend the corresponding results of Kim [32], Suzuki
[4], Xu [5], Chang et al. [6-8, 22, 23, 30, 33], Cho et al. [10], Thong [11], Buong [12], Mann
[13], Halpern [14], Qin et al. [15], Nakajo et al. [18] and others.

2 Preliminaries
In the sequel, we assume that E is a smooth, strictly convex, and reflexive Banach space and
C is a nonempty closed convex subset of E. In what follows, we always use ¢ : E X E — R*
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to denote the Lyapunov functional defined by
¢(9) = lxl® = 206 Jy) + I91°,  Vxy €E. 21

It is obvious from the definition of ¢ that

(Il = Iy1)* < o@9) < (Ill + 1), ¥x,y € E; (2.2)

qb(x,]’l (Uy +(1- )»)fz)) <Ap(xy) + (1 -N)p(x,2), VYx,yeE (2.3)
and

o, y) = px,2) + P(z,y) + 2{(x —z,Jz - Jy), Vx,y,z€E. (2.4)

Following Alber [34], the generalized projection Tl¢ : E — C is defined by
[Mc(x) = arginf ¢(y,x), Vx€E.
yeC

Lemma 2.1 ([34]) Let E be a smooth, strictly convex, and reflexive Banach space and C be
a nonempty closed convex subset of E. Then the following conclusions hold.:

(@) ¢, Icy) + p(lcy,y) < Pplx,y) forallx € C and y € E;

(b) IfxeEandze C,thenz=Tlcx < (z—y,Jx—Jz) > 0,V¥y € C;

(c) Forx,y €E, ¢(x,y) =0 ifand only ifx = y.

Remark 2.2 If E is a real Hilbert space H, then ¢(x,7) = ||x — y||*> and I1¢ = P¢ (the metric
projection of H onto C).

Definition 2.3 A mapping T : C — C is said to be closed if, for any sequence {x,} C C
with x,, - x and Tx, — y, Tx = y.

Definition 2.4 (1) A mapping T : C — C is said to be quasi-¢-nonexpansive, if F(T) # ()
and

é(p, Tx) < ¢p(p,x), Vxe C,pecF(T).

(2) A mapping T : C — C is said to be ({k,})-quasi-¢-asymptotically nonexpansive, if
F(T) # ¥ and there exists a real sequence {k,} C [1,00), k,, = 1 such that

¢(p, T”x) <k,p(p,x), Vn>1lxeC,peF(T).

(3) A mapping T': C — C is said to be ({v,}, {itn}, ¢)-total quasi-¢-asymptotically non-
expansive if F(T) # () and there exist nonnegative real sequences {v,}, {i,} with v, — 0,
iy — 0 (as m — 00) and a strictly increasing continuous function ¢ : [0, 00) — [0, 00) such
that

d)(p, T”x) < o(p,x) + v,,{(qﬁ(p,x)) + WUy VYn>1lxeC,peF(T). (2.5)

Remark 2.5 ([22]) From the definitions, it is obvious that a quasi-¢-nonexpansive map-
ping is a ({k, = 1})-quasi-¢-asymptotically nonexpansive mapping and a ({k,})-quasi-
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¢-asymptotically nonexpansive mapping is a ({v,}, {t,}, {)-total quasi-¢-asymptotically
nonexpansive mapping with v, =k, -1, i, = 0, ¢ (¢t) = ¢, V¢ > 0. However, the converse is

not true.

Example 2.6 ([23]) Let E be a uniformly smooth and strictly convex Banach space and
A :E — E be a maximal monotone mapping such that A710 # @, then J, = (J + rA)7YJ is
closed and quasi-¢-nonexpansive from E onto D(A).

Example 2.7 ([30]) (1) Let C be a unit ball in a real Hilbert space /2 and let T: C — C be
a mapping defined by

T: (x1,%,...) =~ (0,47, asxs, azxs,...), (x1,%2,...) € 1%, (2.6)

where {4} is a sequence in (0,1) such that T1%,a; = % It is proved in [30] that T is (single-
valued) total quasi-¢-asymptotically nonexpansive.

(2) Let I = [0,1], X = C(I) (the Banach space of continuous functions defined on I with
the uniform convergence norm |f|lc = sup,; If(®)), D={f € X: f(x) >0,Yx €I} and a, b
be two constants in (0,1) with a < b. Let T : D — 2P be a multi-valued mapping defined

by

T(f) = {geD:a<f(x)-glx)<bVxel}, iff(x)>1Vxel (2.7)
{0}, otherwise.

It is proved that 7': C — 2C is a multi-valued total quasi-¢-asymptotically nonexpansive
mapping.

Example 2.8 Let I1¢ be the generalized projection from a smooth, reflexive, and strictly
convex Banach space E onto a nonempty closed convex subset C of E, then Il is a closed
and quasi-¢-nonexpansive from E onto C.

Lemma 2.9 Let E be a smooth, reflexive, and strictly convex real Banach space such that
both E and E have the Kadec-Klee property, and let C be a nonempty closed and con-
vex subset of E. Let T : C — C be a closed and ({v,}, {un}, ¢)-total quasi-p-asymptotically
nonexpansive mapping, then F(T) is a closed convex subset of C.

Proof Let {x,} be any sequence in F(T) such that x, — x. Now, we prove that x* € F(T).
In fact, since Tx, = x, — x and T is closed, we have x" = Tx', i.e., F(T) is a closed subset
in C.

Next, we prove that F(T) is convex. In fact, let x,y € F(T) and p = tx + (1 — £)y, where
t € (0,1). Now, we prove that p = Tp. Indeed, since T is ({v,},{u,}, ¢)-total quasi-¢-
asymptotically nonexpansive, for any n > 1, we have

d’(xr Tnp) = ¢(x:19) + VnC(‘P(x:P)) + Un (2.8)

and

¢ (5 T"p) < ¢, p) + vul (PO D)) + it (2.9)
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On the other hand, it follows from (2.4) that

¢(x, T"p) = ¢(x,p) + ¢(p, T"p) + 2{x ~ plp ~JT"p) (2.10)

and

(1, T"p) = ¢, p) + (p, T"p) + 2y — plp —JT"p). (2.11)
It follows from (2.8)-(2.11) that
¢(p, T"p) = 2{p-2Jp —JT"p) + ¢(x, T"p) — $(x, p)
<2{p-aJp - JT"p) + vu¢ ((x,p)) + 11 (2.12)

and

o(p, T"p) = 2p - ylp —JT"p) + $(y, T"p) — (%, p)
<2{p-yp—JT"p) + vl (6 P)) + tin- (2.13)

Multiplying ¢ and (1 — ) on both sides of (2.12) and (2.13), respectively and then adding
up these two inequalities, we have that

¢(p, T"p) < tva (d(x,p)) + 1= ), (6, D)) + -
Letting n — 00, we have that ¢(p, T"p) — 0. Hence, it follows from (2.2) that
| 7P| — lipll, (2.14)

and so

17(T"p)| = Wpll. (2.15)

E is reflexive and so is E. Without loss of generality, we can assume that J(T"p) — x’
(some point in E). In view of the reflexivity of E, we have J(E) = E". This shows that there
exists an element x € E such that Jx = x". Hence, we have

¢(p. ") = IpI> = 2{p, ) (T"P)) + | T"p |’
= Ipl® = 2{p,J(T"p)) + |1(T"P) |

Taking lim,_,« on both sides of the equality above, we obtain that

0= lpl* - 2(p, Jx) + IpII?
= llpll* - 2(p, Jx) + |pII”
=2{lIpl* - (p.J%)}
=2(p,Jp - Jx).
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This implies that Jp — Jx = 0. Therefore, we have J(T"p) — Jp. Since E  has the Kadec-
Klee property, this together with (2.15) shows that J(T”p) — Jp. Since E is reflexive and
strictly convex, /™! is norm-weak-continuous, 7"p — p. Again, since E has the Kadec-
Klee property, this together with (2.14) shows that 7”p — p (as n — 00). Therefore,
TT"p = T"*'p — p. By virtue of the closeness of 7T, it follows that p = Tp, i.e., p € F(T).
The convexity of F(T) is proved.

This completes the proof of Lemma 2.9. d

Definition 2.10 (I) Let E be a real Banach space, C be a nonempty closed convex subset
of E. 7 := {T(¢) : t > 0} be a one-parameter family of mappings from C into C. 7 is said
to be

(1) a quasi-¢-nonexpansive semigroup if ¥ = ("), F(T(t)) # ¥ and the following condi-
tions are satisfied:

(i) T(0)x =x forallx € C;
(ii) T(s+t)=T(s)T(¢) foralls, t > 0;

(iii) for each x € C, the mapping ¢ — T'(¢)x is continuous;

(iv) ¢(p, T(t)x) < p(p,x),Vt=>0,pec F,xcC.

(2) T is said to be a ({k,})-quasi-p-asymptotically nonexpansive semigroup if the set
F =(\=0 F(T(#)) is nonempty, and there exists a sequence {k,} C [1, 00) with k, — 1such
that the conditions (i)-(iii) and the following condition (v) are satisfied:

V) o(p, T"(t)x) < k,¢p(p,x),VE>0,pe F,n>1,x€C.

(3) T is said to be a ({v,,}, {in}, ¢)-total quasi-p-asymptotically nonexpansive semigroup
if the set ¥ = ﬂtZO F(T'(¢)) is nonempty, and there exists nonnegative real sequences {v,},
{un,} with v, — 0, u, — 0 (as n — 00) and a strictly increasing continuous function ¢ :
[0,00) — [0, 00) with £(0) = 0 such that the conditions (i)-(iii) and the following condition
(vi) are satisfied:

Vi) ¢(p, T"(t)x) < ¢(p, %) + vul (PP, %)) + tn, V> 1,x€ C, p € F(T).

(IT) A total quasi-¢-asymptotically nonexpansive semigroup 7 is said to be uniformly
Lipschitzian if there exists a bounded measurable function L : [0,00) — (0, 00) such that

|7 @)% - T"@)y| <L@lx-yll, Vx,yeC,Vn>1,t>0.

3 Main results
Theorem 3.1 Let E be a reflexive, strictly convex, and smooth Banach space such that both
E and E" have the Kadec-Klee property, and let C be a nonempty closed convex subset of
E.Let T :={T(t): t > 0} be a closed, uniformly L-Lipschitz and ({v,}, {144}, )-total quasi-
¢-asymptotically nonexpansive semigroup. Let {o,} be a sequence in [0,1] and {B,} be a
sequence in (0,1) satisfying the following conditions:

(i) lim,— e @y = 0;

(ii) 0<liminf, , B, <limsup,_, . B <1.

Let {x,} be a sequence generated by

x1 € E chosen arbitrarily; C =C,
Ve =T ey + (1= ) (BuJren + (1= B)JT"(D)x4)], t>0,
Crl+1 = {Z € Cn : Suptzo ¢(z’yn,t) = an(p(z:xl) + (1 - an)d’(zrxn) + Sn}:

Xntl = HC,H.lxlv Vn > ]-y

(3.1)
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where F := ﬂf;o F(T(t),&, = vy, SUP,cx & (d(,%4)) + o, T, is the generalized projection
of E onto Cyy1. If F is bounded in C, then {x,} converges strongly to I1¢x;.

Proof (1) First, we prove that ¥ and C,, n > 1 all are closed and convex subsets in C.
In fact, it follows from Lemma 2.9 that F(7T'(¢)), ¢ > 0 is a closed and convex subset of C.

Therefore, ¥ is closed and convex in C.
Again, by the assumption that C; = C is closed and convex, suppose that C, is closed
and convex for some 7 > 2. In view of the definition of ¢, we have that

Cus1 = {z eCy: sugtb(z,yn,t) < oud(z, 1) + (1 - 0,)P(z, %) + En]
t>

= m{z eC: ¢(z’yn,t) < an¢(zrxl) + (1 - an)d)(zfxn) + én} N Cn

t>0

=z € C:2aniz 1) + 201 — 0,) (2, Jo6u) — 2(2, Jyns)

t>0

< aullxi )l + (1 = ) 1%ull® = 1ynell® + &5} N Co

This shows that C,,; is closed and convex. The conclusion is proved.
(II) Now, we prove that ¥ C C,,, Vn > 1.
In fact, it is obvious that # C C; = C. Suppose that ¥ C C, for some n > 2. Letting

Wie =] (Buftn + (1= BT (%), £ 0,
it follows from (2.3) that for any u € ¥ C C,, we have

¢(u1yn,t) = ¢(ur]71 (an]xl + (1 - Oln)]Wn,t))
< o, p(u,x1) + (1 - 0,)p(u, Wit)s (3.2)

and

Dt Wng) = ¢ (1] (BuJoen + (L= B T"(£)%1))
< Bup(, %) + (1= ) (s, T"(£)x,1)
< Bud (%) + (1= B) [ @t %) + V1l (D11, %)) + fn ]
< @1, %) + vl (D1, X)) + fn- (3.3)

Therefore, we have

iugrb(u,yn,t) < u @t 1) + (1= ) { (1, %) + V8 (1, 1)) + pin )

< Pt x1) + (1 - )Pt ) + vy sup £ (PP, %n)) +
pe

= 0[,,(]5(14,961) + (1 - an)(p(u’xn) + gn,

where &, = v, SUP,c C(¢p(p,x,)) + py. This shows that u € C,yq, and so F C Cyyq. The

conclusion is proved.
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(III) Next, we prove that {x,} is bounded and {¢(x,,x1)} is convergent.

In fact, since x,, = I1¢, %1, from Lemma 2.1(b), we have
n =y, Jx1 = Jy) 20, VyeCy.
Again, since ¥ C C,,, Vn > 1, we have
(% —u, Jx1 — Jx,) >0, VYueF.
It follows from Lemma 2.1(a) that for each # € ¥ and for each n > 1,

O X, 1) = d(T 1, %1) < P, 1) — P (1, %) < P24, %1). (3.4)

Therefore, {¢(x,,x1)} is bounded. By virtue of (2.2), {x,} is also bounded.
Again, since x,, = TI¢, %1, %441 = [¢,,, %1, and %41 € Cyy1 C Cy, Vi > 1, we have

¢(xmxl) = d)(anrl:xl)r Vn = 1.

This implies that {¢(x,, x1)} is nondecreasing and bounded. Hence, lim,,_, o ¢ (x,,, x1) exists.
The conclusions are proved.

(IV) Next, we prove that x,, — p* (some point in C).

In fact, since {x,} is bounded and the space E is reflexive, we may assume that there
exists a subsequence of {x,,} such that x,, — p". Since C,, V1 > 1 is closed and convex, we
see that p’ € C,,, Vi > 1. This implies that ¢ (x,,,%1) < ¢(p’,x1), Vn;. On the other hand, it

follows from the weakly lower semicontinuity of the norm that

o) = | |* -2 Jm) + )

< iminf{ o, 1> = 2, Jo1) + ]|}
n;j— 00
= liminf ¢(x,,, x1)

n;— 00

< limsup ¢(x,,;, x1)

n;— 00

<o(p,m),

which implies that ¢(x,,,x1) = ¢(p",%1) (as n; — 00). Hence, ||x,, || — llp’|| (as n; — 00).
In view of the Kadec-Klee property of E, we see that x,, — p (as n; > 00).

If there exists another subsequence {%;} C {0} such that Xy — q € C,we have

¢(p*’q*) = lim ¢(xn,"xnj)

ni,njﬁoo

= lim (]5(36,,[., 1_[C,,}.xl)

1j,1j—> 00

=< limw¢(x”i’xl) - ¢(HC”/x1’x1)

n,',n/%

= lim ¢(x,,i,x1)—¢(xnj;x1)=0,

1j,1j—> 00

Page 8 of 14
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i.e., p' =q . This shows that x, — p". Therefore, we have

lim &, = lim v, sup ¢ (¢(pr5) + 1} = 0. (3.5)

n—00 peF

(V) Now, we prove that p" € F.
In fact, since x,,,1 € Cy41, %, — p and &, — 0, it follows from (3.1) and (3.5) that

Sug¢(xn+1,yn,t) < oK1, %1) + (1 — )41, %) + &, — 0 (as m — 00). (3.6)
t>

This implies that for each ¢ > 0,

1im (Ilynell = 1% l])” = 0. (37)
Therefore,

lynel = |p7]|, uniformlyin¢>o0, (3.8)
and so

7G| = "], uniformly in ¢ > 0. (3.9)

This shows that {/(y,,)} is uniformly bounded. E is reflexive and so is E". Without loss of
generality, we can assume that /(y,,;) — ¥ (some pointin E”). Since E is reflexive, J(E) = E .
Hence, there exists y € E such that Jy = y. This implies that J(y, ;) — Jy. Since

¢(xn+1:yn,t) = ”an”2 = 2{%u11, JYne) + ||yn,t||2

= ”xml”2 = 2{%u11, JYne) + ”]yn,tHZ'

Letting n — oo, from (3.6), we have
0=|p|"-2(p" 1)+ |’

= &' I* - 2{p" 1) + |
=2(p.Jp - h),

p*

which shows that Jp" = Jy, and so

JOne) = Jp - (3.10)

This together with (3.9) and the Kadec-Klee property of E* shows that J(y,,;) — Jp". Since

J1 is norm-weak-continuous, we have
VYt =P - (3.11)
It follows from (3.8), (3.11) and the Kadec-Klee property of E, we have

Ypi — p, uniformlyin ¢ > 0. (3.12)
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On the other hand, since {x,} is bounded and 7 := {T'(¢) : t > 0} is a ({v,}, {in}, ¢)-total
quasi-¢-asymptotically nonexpansive semigroup, for any given p € ¥, we have

¢(P: Tn(t)xn) =< ¢(prxn) + vn§(¢(p;xn)) + Uy, YE=0,m>1
This implies that {T"(t)x,}:>0 is uniformly bounded. Again, since

Wl = |77 (Bafxn + 1= BT (0)x) |
= ,Bn”xn” + (l - ﬁn) ” Tn(t)xn H

T"(£)x,

S maX{”xﬂ”’ }1 t Z O’

it implies that {w,,;};>¢ is also uniformly bounded.

Since «;, — 0, from (3.1), we have
Lim ||Jy, —Whell = im o, || Jx; — Jwy|| =0, fort>0. (3.13)
n=00 n>00
It follows from (3.12) that jw,,; — ]p* (as n — 00), uniformly in ¢ > 0. Therefore, we have
Was =P . (3.14)

Since

Jim el = 271 = Jim 17000 = 76
< lim |[7(wy,) =7 ()| = 0.

This together with (3.14) shows that
Wn:— p  (as n— oo), uniformly in £ > 0. (3.15)

Since x,, — p’, we have Jx,, — Jp , and so for each ¢ > 0,

(=]
1l

Jim [[Jw, —Jp'| = lim | Bl + (1= BT (00~ Jp'|

Jim |8, (e = Jp") + A= B) (U T" s~ Jp ) |

Tim (1= B,) [T (0% - Jp' .
By condition (ii), we have that

nh»nolo” (]T”(t)xn —]p*) || =0, uniformlyint> 0. (3.16)
Since J ! is norm-weakly-continuous, this implies that

T"(t)x, — p’, foreacht>0. (3.17)
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It follows from (3.16) that for each ¢t > 0,

lim ||| 7" ()% || - |

n—00

= 1im | |[J(T" )| - |7 (2)

n—00

p*

= (") -1 ()| = 0.
This together with (3.17) and the Kadec-Klee property of E shows that
T"(t)x, — p  (as n — oo) uniformly in ¢ > 0.

Again, by the assumptions that the semigroup 7 := {T'(¢) : t > 0} is closed and uniformly
L-Lipschitzian, we have

| T @xn = T" @ | < [ T O = T O | + [ T O%001 = 51|
+ [[%n41 — %]l + ”xn - T"(t)xn ”
= (L(t) + 1) %41 = %01l + ” Tnﬂ(t)xnﬂ —Xn+l ”

o = T (0 (318)

Since lim,,_, o T"(t)x, = p" uniformly in ¢ > 0, x, — p" and L(¢) : [0,00) — [0,00) is a

bounded and measurable function, these together with (3.9) imply that
lim || T Y (t)x, — T"(t)x, H =0, uniformlyint>0,
n— 00
and so
lim 7" (t)x, =p’, uniformly in ¢ > 0,
n— 00
lim T(t)T"(t)x, =p, uniformlyin¢> 0.
n— o0
In view of the closeness of the semigroup 77, it yields that T(¢t)p" = p’, i.e., p € F(T(t)). By
the arbitrariness of t > 0, we have p” € F := M=o F(T(@)).
(VI) Finally, we prove that x,, — p" = Tlgx1.

Let w = [1#x;. Since w € ¥ C C, and %, = I1¢, %1, we have ¢(x,,x1) < dp(w,x1), Vi > 1.
This implies that

¢(Pix1) = nlinczo ¢(xn’x1) = ¢(W’x1)' (319)

In view of the definition of I1#x;, from (3.10) we have p” = w. Therefore, x, — p" = [15x;.
This completes the proof of Theorem 3.1. O

From Theorem 3.1, we can obtain the following.
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Theorem 3.2 LetE, C, {a,}, {B,} be the same as in Theorem 3.1. Let T := {T(t):t > 0} bea
closed, uniformly L-Lipschitz and ({k,})-quasi-¢-asymptotically nonexpansive semigroup

with {k,} C [1,00), k, — 1. Let {x,} be a sequence generated by

x1 € E chosen arbitrarily; C=C,
yn,t =]_1 [an]xl + (1 - an)(ﬁn]xn + (1 - IBn)]Tn(t)xn)]’ t 2 Or
Cu1=1{zeCy: Sup;~q ¢)(Zryn,t) <a,dp(z,x1) + (1 — )Pz, %) + £},

Xn+l = Hcmxb Vn=>1,

(3.20)

where £ := ﬂzo F(T()), é, = (ky —1) sup,c s ¢, %), lc,,, is the generalized projection of
E onto Cyy1. If F is bounded in C, then {x,} converges strongly to I1#x;.

Proof 1t follows from Definition 2.10 that if 7 := {T(¢) : ¢ > 0} is a closed, uniformly
L-Lipschitz and ({k,})-quasi-¢-asymptotically nonexpansive semigroup, then it must be
a closed, uniformly L-Lipschitz ({v,}, {i,}, ¢)-total quasi-¢-asymptotically nonexpansive
semigroup with v, =k, -1, i, =0, Vun > 1and ¢(¢) = ¢, t > 0. Therefore, all the condi-
tions in Theorem 3.1 are satisfied. The conclusion of Theorem 3.2 can be obtained from

Theorem 3.1 immediately. 0

Theorem 3.3 LetE, C, {a,}, {B,} be the same as in Theorem 3.1. Let T := {T(t):t > 0} bea
closed, quasi-¢-nonexpansive semigroup such that the set F := (., F(T(t)) is nonempty.
Let {x,} be a sequence generated by

x1 € E chosen arbitrarily; C=C,
yn,t =]_1 [an]xl + (1 - an)(ﬁn]xn + (1 - ,Bn)]T(t)xn)]: t Z Ox
Cu1=1{zeCy: Sup;~g ¢)(Zryn,t) <andp(z,x1) + (1 — )Pz, %)},

(3.21)
Xnil = l'Ichl, Vn>1.
Then the sequence {x,} converges strongly to T1¢x;.

Proof Since T := {T(t) : t > 0} is a closed, quasi-¢-nonexpansive semigroup, by Re-
mark 2.5, it is a closed, uniformly Lipschitzian and quasi-¢-asymptotically nonexpansive
semigroup with the sequence {k, = 1}. Hence, &, = (k, — 1) sup,. # ¢(u4,%,) = 0. Therefore,
the conditions appearing in Theorem 3.1: ‘¥ is a bounded subset in C’ and ‘T := {T(¢) :
t > 0} is uniformly Lipschitzian’ are of no use here. Therefore, all conditions in Theo-
rem 3.1 are satisfied. The conclusion of Theorem 3.3 can be obtained from Theorem 3.2

immediately. O

Remark 3.4 Theorems 3.1, 3.2 and 3.3 improve and extend the corresponding results of
Suzuki [4], Xu [5], Chang et al. [6-8, 22, 23, 30], Cho et al. [10], Thong [11], Buong [12],
Mann [13], Halpern [14], Qin et al. [15], Nakajo et al. [18] and others.
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