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1 Introduction
Throughout this paper, we assume that E is a real Banach space with the dual E*, C is a
nonempty closed convex subset of E, and J : E → E* is the normalized duality mapping
defined by

J(x) =
{
f * ∈ E* :

〈
x, f *

〉
= ‖x‖ = ∥∥f *∥∥}, x ∈ E.

Let T : C → E be a nonlinear mapping; we denote by F(T) the set of fixed points of T .
Recall that a mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

T : C → C is said to be quasi-nonexpansive if F(T) �= ∅ and

‖Tx – p‖ ≤ ‖x – p‖, ∀x ∈ C,p ∈ F(T).

T : C → C is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂
[,∞) with kn →  such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀x, y ∈ C,n ≥ .
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T : C → C is said to be quasi-asymptotically nonexpansive if F(T) �= ∅ and there exists
a sequence {kn} ⊂ [,∞) with kn →  such that

∥∥Tnx – p
∥∥ ≤ kn‖x – p‖, ∀x ∈ C,p ∈ F(T),n≥ .

A one-parameter family T := {T(t) : t ≥ } of mappings from C into C is said to be a
nonexpansive semigroup if the following conditions are satisfied:

(i) T()x = x for all x ∈ C;
(ii) T(s + t) = T(s)T(t), ∀s, t ≥ ;
(iii) for each x ∈ C, the mapping t �→ T(t)x is continuous;
(iv) ‖T(t)x – T(t)y‖ ≤ ‖x – y‖, ∀x, y ∈ C.
We use F(T ) to denote a common fixed point set of the nonexpansive semigroup T , i.e.,

F(T ) :=
⋂

t≥ F(T(t)).
A one-parameter family T := {T(t) : t ≥ } of mappings from C into C is said to be a

quasi-nonexpansive semigroup if F(T ) �= ∅ and the above conditions (i)-(iii) and the fol-
lowing condition (v) are satisfied:
(v) ‖T(t)x – p‖ ≤ ‖x – p‖, ∀x ∈ C, p ∈ F(T ), t ≥ .
A one-parameter family T := {T(t) : t ≥ } of mappings from C into C is said to be

an asymptotically nonexpansive semigroup if there exists a sequence {kn} ⊂ [,∞) with
kn →  such that the above conditions (i)-(iii) and the following condition (vi) are satisfied:
(vi) ‖Tn(t)x – Tn(t)y‖ ≤ kn‖x – y‖, ∀x, y ∈ C, n≥ , t ≥ .
A one-parameter family T := {T(t) : t ≥ } of mappings from C into C is said to be

a quasi-asymptotically nonexpansive semigroup if F(T ) �= ∅ and there exists a sequence
{kn} ⊂ [,∞) with kn →  such that the above conditions (i)-(iii) and the following condi-
tion (vii) are satisfied:
(vii) ‖Tn(t)x – p‖ ≤ kn‖x – p‖, ∀x ∈ C, p ∈ F(T ), t ≥ , n≥ .
As is well known, the construction of fixed points of nonexpansivemappings (asymptot-

ically nonexpansive mappings) and of common fixed points of nonexpansive semi-groups
(asymptotically nonexpansive semigroups) is an important problem in the theory of non-
expansivemappings and its applications; in particular, in image recovery, convex feasibility
problem, and signal processing problem (see, for example, [–]).
Iterative approximation of a fixed point for nonexpansivemappings, asymptotically non-

expansive mappings, nonexpansive semigroups, and asymptotically nonexpansive semi-
groups in Hilbert or Banach spaces has been studied extensively by many authors (see, for
example, [–] and the references therein).
The purpose of this article is to introduce the concept of total quasi-φ-asymptotically

nonexpansive semigroups; to modify the Halpern and Mann-type iteration algorithm
[, ] for total quasi-φ-asymptotically nonexpansive semigroups; and to have the strong
convergence under a limit condition only in the framework of Banach spaces. The results
presented in the paper improve and extend the corresponding results of Kim [], Suzuki
[], Xu [], Chang et al. [–, , , , ], Cho et al. [], Thong [], Buong [], Mann
[], Halpern [], Qin et al. [], Nakajo et al. [] and others.

2 Preliminaries
In the sequel, we assume that E is a smooth, strictly convex, and reflexive Banach space and
C is a nonempty closed convex subset of E. In what follows, we always use φ : E×E → R+
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to denote the Lyapunov functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E. (.)

It is obvious from the definition of φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖), ∀x, y ∈ E; (.)

φ
(
x, J–

(
λJy + ( – λ)Jz

)) ≤ λφ(x, y) + ( – λ)φ(x, z), ∀x, y ∈ E (.)

and

φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉, ∀x, y, z ∈ E. (.)

Following Alber [], the generalized projection �C : E → C is defined by

�C(x) = arg inf
y∈C φ(y,x), ∀x ∈ E.

Lemma . ([]) Let E be a smooth, strictly convex, and reflexive Banach space and C be
a nonempty closed convex subset of E. Then the following conclusions hold:
(a) φ(x,�Cy) + φ(�Cy, y) ≤ φ(x, y) for all x ∈ C and y ∈ E;
(b) If x ∈ E and z ∈ C, then z = �Cx⇔ 〈z – y, Jx – Jz〉 ≥ , ∀y ∈ C;
(c) For x, y ∈ E, φ(x, y) =  if and only if x = y.

Remark . If E is a real Hilbert spaceH , then φ(x, y) = ‖x– y‖ and �C = PC (the metric
projection of H onto C).

Definition . A mapping T : C → C is said to be closed if, for any sequence {xn} ⊂ C
with xn → x and Txn → y, Tx = y.

Definition . () A mapping T : C → C is said to be quasi-φ-nonexpansive, if F(T) �= ∅
and

φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,p ∈ F(T).

() A mapping T : C → C is said to be ({kn})-quasi-φ-asymptotically nonexpansive, if
F(T) �= ∅ and there exists a real sequence {kn} ⊂ [,∞), kn →  such that

φ
(
p,Tnx

) ≤ knφ(p,x), ∀n≥ ,x ∈ C,p ∈ F(T).

() A mapping T : C → C is said to be ({νn}, {μn}, ζ )-total quasi-φ-asymptotically non-
expansive if F(T) �= ∅ and there exist nonnegative real sequences {νn}, {μn} with νn → ,
μn →  (as n→ ∞) and a strictly increasing continuous function ζ : [,∞)→ [,∞) such
that

φ
(
p,Tnx

) ≤ φ(p,x) + νnζ
(
φ(p,x)

)
+μn, ∀n≥ ,x ∈ C,p ∈ F(T). (.)

Remark . ([]) From the definitions, it is obvious that a quasi-φ-nonexpansive map-
ping is a ({kn = })-quasi-φ-asymptotically nonexpansive mapping and a ({kn})-quasi-
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φ-asymptotically nonexpansive mapping is a ({νn}, {μn}, ζ )-total quasi-φ-asymptotically
nonexpansive mapping with νn = kn – , μn = , ζ (t) = t, ∀t ≥ . However, the converse is
not true.

Example . ([]) Let E be a uniformly smooth and strictly convex Banach space and
A : E → E* be a maximal monotone mapping such that A– �= ∅, then Jr = (J + rA)–J is
closed and quasi-φ-nonexpansive from E onto D(A).

Example . ([]) () Let C be a unit ball in a real Hilbert space l and let T : C → C be
a mapping defined by

T : (x,x, . . .) →
(
,x ,ax,ax, . . .

)
, (x,x, . . .) ∈ l, (.)

where {ai} is a sequence in (, ) such that �∞
i=ai =


 . It is proved in [] that T is (single-

valued) total quasi-φ-asymptotically nonexpansive.
() Let I = [, ], X = C(I) (the Banach space of continuous functions defined on I with

the uniform convergence norm ‖f ‖C = supt∈I |f (t)|), D = {f ∈ X : f (x) ≥ ,∀x ∈ I} and a, b
be two constants in (, ) with a < b. Let T : D → D be a multi-valued mapping defined
by

T(f ) =

⎧⎨
⎩

{g ∈D : a≤ f (x) – g(x)≤ b,∀x ∈ I}, if f (x) > ,∀x ∈ I;

{}, otherwise.
(.)

It is proved that T : C → C is a multi-valued total quasi-φ-asymptotically nonexpansive
mapping.

Example . Let �C be the generalized projection from a smooth, reflexive, and strictly
convex Banach space E onto a nonempty closed convex subset C of E, then �C is a closed
and quasi-φ-nonexpansive from E onto C.

Lemma . Let E be a smooth, reflexive, and strictly convex real Banach space such that
both E and E* have the Kadec-Klee property, and let C be a nonempty closed and con-
vex subset of E. Let T : C → C be a closed and ({νn}, {μn}, ζ )-total quasi-φ-asymptotically
nonexpansive mapping, then F(T) is a closed convex subset of C.

Proof Let {xn} be any sequence in F(T) such that xn → x*. Now, we prove that x* ∈ F(T).
In fact, since Txn = xn → x* and T is closed, we have x* = Tx*, i.e., F(T) is a closed subset
in C.
Next, we prove that F(T) is convex. In fact, let x, y ∈ F(T) and p = tx + ( – t)y, where

t ∈ (, ). Now, we prove that p = Tp. Indeed, since T is ({νn}, {μn}, ζ )-total quasi-φ-
asymptotically nonexpansive, for any n≥ , we have

φ
(
x,Tnp

) ≤ φ(x,p) + νnζ
(
φ(x,p)

)
+μn (.)

and

φ
(
y,Tnp

) ≤ φ(y,p) + νnζ
(
φ(y,p)

)
+μn. (.)
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On the other hand, it follows from (.) that

φ
(
x,Tnp

)
= φ(x,p) + φ

(
p,Tnp

)
+ 

〈
x – pJp – JTnp

〉
(.)

and

φ
(
y,Tnp

)
= φ(y,p) + φ

(
p,Tnp

)
+ 

〈
y – pJp – JTnp

〉
. (.)

It follows from (.)-(.) that

φ
(
p,Tnp

)
= 

〈
p – xJp – JTnp

〉
+ φ

(
x,Tnp

)
– φ(x,p)

≤ 
〈
p – xJp – JTnp

〉
+ νnζ

(
φ(x,p)

)
+μn (.)

and

φ
(
p,Tnp

)
= 

〈
p – yJp – JTnp

〉
+ φ

(
y,Tnp

)
– φ(y,p)

≤ 
〈
p – yJp – JTnp

〉
+ νnζ

(
φ(y,p)

)
+μn. (.)

Multiplying t and ( – t) on both sides of (.) and (.), respectively and then adding
up these two inequalities, we have that

φ
(
p,Tnp

) ≤ tνnζ
(
φ(x,p)

)
+ ( – t)νnζ

(
φ(y,p)

)
+μn.

Letting n → ∞, we have that φ(p,Tnp) → . Hence, it follows from (.) that

∥∥Tnp
∥∥ → ‖p‖, (.)

and so

∥∥J(Tnp
)∥∥ → ‖Jp‖. (.)

E is reflexive and so is E*. Without loss of generality, we can assume that J(Tnp) ⇀ x*

(some point in E*). In view of the reflexivity of E, we have J(E) = E*. This shows that there
exists an element x ∈ E such that Jx = x*. Hence, we have

φ
(
p,Tnp

)
= ‖p‖ – 

〈
p, J

(
Tnp

)〉
+

∥∥Tnp
∥∥

= ‖p‖ – 
〈
p, J

(
Tnp

)〉
+

∥∥J(Tnp
)∥∥.

Taking limn→∞ on both sides of the equality above, we obtain that

 = ‖p‖ – 〈p, Jx〉 + ‖Jp‖

= ‖p‖ – 〈p, Jx〉 + ‖p‖

= 
{‖p‖ – 〈p, Jx〉}

= 〈p, Jp – Jx〉.

http://www.fixedpointtheoryandapplications.com/content/2012/1/153
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This implies that Jp – Jx = . Therefore, we have J(Tnp) ⇀ Jp. Since E* has the Kadec-
Klee property, this together with (.) shows that J(Tnp) → Jp. Since E is reflexive and
strictly convex, J– is norm-weak-continuous, Tnp ⇀ p. Again, since E has the Kadec-
Klee property, this together with (.) shows that Tnp → p (as n → ∞). Therefore,
TTnp = Tn+p → p. By virtue of the closeness of T , it follows that p = Tp, i.e., p ∈ F(T).
The convexity of F(T) is proved.
This completes the proof of Lemma .. �

Definition . (I) Let E be a real Banach space, C be a nonempty closed convex subset
of E. T := {T(t) : t ≥ } be a one-parameter family of mappings from C into C. T is said
to be
() a quasi-φ-nonexpansive semigroup if F =

⋂
t≥ F(T(t)) �= ∅ and the following condi-

tions are satisfied:
(i) T()x = x for all x ∈ C;
(ii) T(s + t) = T(s)T(t) for all s, t ≥ ;
(iii) for each x ∈ C, the mapping t �→ T(t)x is continuous;
(iv) φ(p,T(t)x) ≤ φ(p,x), ∀t ≥ , p ∈ F , x ∈ C.
() T is said to be a ({kn})-quasi-φ-asymptotically nonexpansive semigroup if the set

F =
⋂

t≥ F(T(t)) is nonempty, and there exists a sequence {kn} ⊂ [,∞) with kn →  such
that the conditions (i)-(iii) and the following condition (v) are satisfied:
(v) φ(p,Tn(t)x)≤ knφ(p,x), ∀t ≥ , p ∈ F , n≥ , x ∈ C.
() T is said to be a ({νn}, {μn}, ζ )-total quasi-φ-asymptotically nonexpansive semigroup

if the set F =
⋂

t≥ F(T(t)) is nonempty, and there exists nonnegative real sequences {νn},
{μn} with νn → , μn →  (as n → ∞) and a strictly increasing continuous function ζ :
[,∞)→ [,∞) with ζ () =  such that the conditions (i)-(iii) and the following condition
(vi) are satisfied:
(vi) φ(p,Tn(t)x)≤ φ(p,x) + νnζ (φ(p,x)) +μn, ∀n≥ , x ∈ C, p ∈ F(T).
(II) A total quasi-φ-asymptotically nonexpansive semigroup T is said to be uniformly

Lipschitzian if there exists a bounded measurable function L : [,∞)→ (,∞) such that

∥∥Tn(t)x – Tn(t)y
∥∥ ≤ L(t)‖x – y‖, ∀x, y ∈ C,∀n≥ , t ≥ .

3 Main results
Theorem. Let E be a reflexive, strictly convex, and smooth Banach space such that both
E and E* have the Kadec-Klee property, and let C be a nonempty closed convex subset of
E. Let T := {T(t) : t ≥ } be a closed, uniformly L-Lipschitz and ({νn}, {μn}, ζ )-total quasi-
φ-asymptotically nonexpansive semigroup. Let {αn} be a sequence in [, ] and {βn} be a
sequence in (, ) satisfying the following conditions:

(i) limn→∞ αn = ;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily; C = C,

yn,t = J–[αnJx + ( – αn)(βnJxn + ( – βn)JTn(t)xn)], t ≥ ,

Cn+ = {z ∈ Cn : supt≥ φ(z, yn,t)≤ αnφ(z,x) + ( – αn)φ(z,xn) + ξn},
xn+ = �Cn+x, ∀n≥ ,

(.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/153
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whereF :=
⋂∞

t≥ F(T(t)), ξn = νn supp∈F ζ (φ(p,xn))+μn,�Cn+ is the generalized projection
of E onto Cn+. If F is bounded in C, then {xn} converges strongly to �F x.

Proof (I) First, we prove that F and Cn, n≥  all are closed and convex subsets in C.
In fact, it follows from Lemma . that F(T(t)), t ≥  is a closed and convex subset of C.

Therefore, F is closed and convex in C.
Again, by the assumption that C = C is closed and convex, suppose that Cn is closed

and convex for some n≥ . In view of the definition of φ, we have that

Cn+ =
{
z ∈ Cn : sup

t≥
φ(z, yn,t) ≤ αnφ(z,x) + ( – αn)φ(z,xn) + ξn

}

=
⋂
t≥

{
z ∈ C : φ(z, yn,t) ≤ αnφ(z,x) + ( – αn)φ(z,xn) + ξn

} ∩Cn

=
⋂
t≥

{
z ∈ C : αn〈z, Jx〉 + ( – αn)〈z, Jxn〉 – 〈z, Jyn,t〉

≤ αn‖x‖ + ( – αn)‖xn‖ – ‖yn,t‖ + ξn
} ∩Cn.

This shows that Cn+ is closed and convex. The conclusion is proved.
(II) Now, we prove that F ⊂ Cn, ∀n≥ .
In fact, it is obvious that F ⊂ C = C. Suppose that F ⊂ Cn for some n≥ . Letting

wn,t = J–
(
βnJxn + ( – βn)JTn(t)xn

)
, t ≥ ,

it follows from (.) that for any u ∈ F ⊂ Cn, we have

φ(u, yn,t) = φ
(
u, J–

(
αnJx + ( – αn)Jwn,t

))

≤ αnφ(u,x) + ( – αn)φ(u,wn,t), (.)

and

φ(u,wn,t) = φ
(
u, J–

(
βnJxn + ( – βn)JTn(t)xn

))

≤ βnφ(u,xn) + ( – βn)φ
(
u,Tn(t)xn

)

≤ βnφ(u,xn) + ( – βn)
[
φ(u,xn) + νnζ

(
φ(u,xn)

)
+μn

]

≤ φ(u,xn) + νnζ
(
φ(u,xn)

)
+μn. (.)

Therefore, we have

sup
t≥

φ(u, yn,t) ≤ αnφ(u,x) + ( – αn)
{
φ(u,xn) + νnζ

(
φ(u,xn)

)
+μn

}

≤ αnφ(u,x) + ( – αn)φ(u,xn) + νn sup
p∈F

ζ
(
φ(p,xn)

)
+μn

= αnφ(u,x) + ( – αn)φ(u,xn) + ξn,

where ξn = νn supp∈F ζ (φ(p,xn)) + μn. This shows that u ∈ Cn+, and so F ⊂ Cn+. The
conclusion is proved.

http://www.fixedpointtheoryandapplications.com/content/2012/1/153
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(III) Next, we prove that {xn} is bounded and {φ(xn,x)} is convergent.
In fact, since xn = �Cnx, from Lemma .(b), we have

〈xn – y, Jx – Jxn〉 ≥ , ∀y ∈ Cn.

Again, since F ⊂ Cn, ∀n≥ , we have

〈xn – u, Jx – Jxn〉 ≥ , ∀u ∈ F .

It follows from Lemma .(a) that for each u ∈ F and for each n ≥ ,

φ(xn,x) = φ(�Cnx,x) ≤ φ(u,x) – φ(u,xn) ≤ φ(u,x). (.)

Therefore, {φ(xn,x)} is bounded. By virtue of (.), {xn} is also bounded.
Again, since xn = �Cnx, xn+ = �Cn+x, and xn+ ∈ Cn+ ⊂ Cn, ∀n≥ , we have

φ(xn,x)≤ φ(xn+,x), ∀n≥ .

This implies that {φ(xn,x)} is nondecreasing and bounded.Hence, limn→∞ φ(xn,x) exists.
The conclusions are proved.
(IV) Next, we prove that xn → p* (some point in C).
In fact, since {xn} is bounded and the space E is reflexive, we may assume that there

exists a subsequence of {xni} such that xni ⇀ p*. Since Cn, ∀n≥  is closed and convex, we
see that p* ∈ Cn, ∀n ≥ . This implies that φ(xni ,x) ≤ φ(p*,x), ∀ni. On the other hand, it
follows from the weakly lower semicontinuity of the norm that

φ
(
p*,x

)
=

∥∥p*∥∥ – 
〈
p*, Jx

〉
+ ‖x‖

≤ lim inf
ni→∞

{‖xni‖ – 〈xni , Jx〉 + ‖x‖
}

= lim inf
ni→∞ φ(xni ,x)

≤ lim sup
ni→∞

φ(xni ,x)

≤ φ
(
p*,x

)
,

which implies that φ(xni ,x) → φ(p*,x) (as ni → ∞). Hence, ‖xni‖ → ‖p*‖ (as ni → ∞).
In view of the Kadec-Klee property of E, we see that xni → p* (as ni → ∞).
If there exists another subsequence {xnj} ⊂ {xn} such that xnj → q* ∈ C, we have

φ
(
p*,q*

)
= lim

ni ,nj→∞φ(xni ,xnj )

= lim
ni ,nj→∞φ(xni ,�Cnj

x)

≤ lim
ni ,nj→∞φ(xni ,x) – φ(�Cnj

x,x)

= lim
ni ,nj→∞φ(xni ,x) – φ(xnj ,x) = ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/153
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i.e., p* = q*. This shows that xn → p*. Therefore, we have

lim
n→∞ ξn = lim

n→∞

{
νn sup

p∈F
ζ
(
φ(p,xn)

)
+μn

}
= . (.)

(V) Now, we prove that p* ∈ F .
In fact, since xn+ ∈ Cn+, xn → p* and αn → , it follows from (.) and (.) that

sup
t≥

φ(xn+, yn,t) ≤ αnφ(xn+,x) + ( – αn)φ(xn+,xn) + ξn →  (as n → ∞). (.)

This implies that for each t ≥ ,

lim
n→∞

(‖yn,t‖ – ‖xn+‖
) = . (.)

Therefore,

‖yn,t‖ → ∥∥p*∥∥, uniformly in t ≥ , (.)

and so

∥∥J(yn,t)
∥∥ → ∥∥Jp*∥∥, uniformly in t ≥ . (.)

This shows that {J(yn,t)} is uniformly bounded. E is reflexive and so is E*. Without loss of
generality, we can assume that J(yn,t) ⇀ y* (some point in E*). Since E is reflexive, J(E) = E*.
Hence, there exists y ∈ E such that Jy = y*. This implies that J(yn,t)⇀ Jy. Since

φ(xn+, yn,t) = ‖xn+‖ – 〈xn+, Jyn,t〉 + ‖yn,t‖

= ‖xn+‖ – 〈xn+, Jyn,t〉 + ‖Jyn,t‖.

Letting n → ∞, from (.), we have

 =
∥∥p*∥∥ – 

〈
p*, Jy

〉
+

∥∥Jp*∥∥

=
∥∥p*∥∥ – 

〈
p*, Jy

〉
+

∥∥p*∥∥

= 
〈
p*, Jp* – Jy

〉
,

which shows that Jp* = Jy, and so

J(yn,t) ⇀ Jp*. (.)

This together with (.) and the Kadec-Klee property of E* shows that J(yn,t) → Jp*. Since
J– is norm-weak-continuous, we have

yn,t ⇀ p*. (.)

It follows from (.), (.) and the Kadec-Klee property of E, we have

yn,t → p*, uniformly in t ≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/153
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On the other hand, since {xn} is bounded and T := {T(t) : t ≥ } is a ({νn}, {μn}, ζ )-total
quasi-φ-asymptotically nonexpansive semigroup, for any given p ∈ F , we have

φ
(
p,Tn(t)xn

) ≤ φ(p,xn) + νnζ
(
φ(p,xn)

)
+μn, ∀t ≥ ,n≥ .

This implies that {Tn(t)xn}t≥ is uniformly bounded. Again, since

‖wn,t‖ =
∥∥J–(βnJxn + ( – βn)JTn(t)xn

)∥∥
≤ βn‖xn‖ + ( – βn)

∥∥Tn(t)xn
∥∥

≤ max
{‖xn‖,

∥∥Tn(t)xn
∥∥}

, t ≥ ,

it implies that {wn,t}t≥ is also uniformly bounded.
Since αn → , from (.), we have

lim
n→∞‖Jyn,t – Jwn,t‖ = lim

n→∞αn‖Jx – Jwn,t‖ = , for t ≥ . (.)

It follows from (.) that Jwn,t → Jp* (as n→ ∞), uniformly in t ≥ . Therefore, we have

wn,t ⇀ p*. (.)

Since

lim
n→∞

∣∣∥∥wn,t
∥∥ –

∥∥p*∥∥∣∣ = lim
n→∞

∣∣∥∥J(wn,t)
∥∥ –

∥∥J(p*)∥∥∣∣

≤ lim
n→∞

∥∥J(wn,t) – J
(
p*

)∥∥ = .

This together with (.) shows that

wn,t → p* (as n→ ∞), uniformly in t ≥ . (.)

Since xn → p*, we have Jxn → Jp*, and so for each t ≥ ,

 = lim
n→∞

∥∥Jwn,t – Jp*
∥∥ = lim

n→∞
∥∥βnJxn + ( – βn)JTn(t)xn – Jp*

∥∥

= lim
n→∞

∥∥βn
(
Jxn – Jp*

)
+ ( – βn)

(
JTn(t)xn – Jp*

)∥∥

= lim
n→∞( – βn)

∥∥JTn(t)xn – Jp*
∥∥.

By condition (ii), we have that

lim
n→∞

∥∥(
JTn(t)xn – Jp*

)∥∥ = , uniformly in t ≥ . (.)

Since J– is norm-weakly-continuous, this implies that

Tn(t)xn ⇀ p*, for each t ≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/153
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It follows from (.) that for each t ≥ ,

lim
n→∞

∣∣∥∥Tn(t)xn
∥∥ –

∥∥p*∥∥∣∣ = lim
n→∞

∣∣∥∥J(Tn(t)xn
)∥∥ –

∥∥J(p*)∥∥∣∣

≤ ∥∥J(Tn(t)xn
)
– J

(
p*

)∥∥ = .

This together with (.) and the Kadec-Klee property of E shows that

Tn(t)xn → p* (as n→ ∞) uniformly in t ≥ .

Again, by the assumptions that the semigroup T := {T(t) : t ≥ } is closed and uniformly
L-Lipschitzian, we have

∥∥Tn+(t)xn – Tn(t)xn
∥∥ ≤ ∥∥Tn+(t)xn – Tn+(t)xn+

∥∥ +
∥∥Tn+(t)xn+ – xn+

∥∥

+ ‖xn+ – xn‖ +
∥∥xn – Tn(t)xn

∥∥

≤ (
L(t) + 

)‖xn+ – xn‖ +
∥∥Tn+(t)xn+ – xn+

∥∥

+
∥∥xn – Tn(t)xn

∥∥. (.)

Since limn→∞ Tn(t)xn = p* uniformly in t ≥ , xn → p* and L(t) : [,∞) → [,∞) is a
bounded and measurable function, these together with (.) imply that

lim
n→∞

∥∥Tn+(t)xn – Tn(t)xn
∥∥ = , uniformly in t ≥ ,

and so

lim
n→∞Tn+(t)xn = p*, uniformly in t ≥ ,

i.e.,

lim
n→∞T(t)Tn(t)xn = p*, uniformly in t ≥ .

In view of the closeness of the semigroup T , it yields that T(t)p* = p*, i.e., p* ∈ F(T(t)). By
the arbitrariness of t ≥ , we have p* ∈ F :=

⋂
t≥ F(T(t)).

(VI) Finally, we prove that xn → p* = �F x.
Let w = �F x. Since w ∈ F ⊂ Cn and xn = �Cnx, we have φ(xn,x) ≤ φ(w,x), ∀n ≥ .

This implies that

φ
(
p*,x

)
= lim

n→∞φ(xn,x) ≤ φ(w,x). (.)

In view of the definition of �F x, from (.) we have p* = w. Therefore, xn → p* = �F x.
This completes the proof of Theorem .. �

From Theorem ., we can obtain the following.

http://www.fixedpointtheoryandapplications.com/content/2012/1/153
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Theorem. Let E,C, {αn}, {βn} be the same as in Theorem .. Let T := {T(t) : t ≥ } be a
closed, uniformly L-Lipschitz and ({kn})-quasi-φ-asymptotically nonexpansive semigroup
with {kn} ⊂ [,∞), kn → . Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily; C = C,

yn,t = J–[αnJx + ( – αn)(βnJxn + ( – βn)JTn(t)xn)], t ≥ ,

Cn+ = {z ∈ Cn : supt≥ φ(z, yn,t)≤ αnφ(z,x) + ( – αn)φ(z,xn) + ξn},
xn+ = �Cn+x, ∀n≥ ,

(.)

where F :=
⋂∞

t≥ F(T(t)), ξn = (kn –) supp∈F φ(p,xn), �Cn+ is the generalized projection of
E onto Cn+. If F is bounded in C, then {xn} converges strongly to �F x.

Proof It follows from Definition . that if T := {T(t) : t ≥ } is a closed, uniformly
L-Lipschitz and ({kn})-quasi-φ-asymptotically nonexpansive semigroup, then it must be
a closed, uniformly L-Lipschitz ({νn}, {μn}, ζ )-total quasi-φ-asymptotically nonexpansive
semigroup with νn = kn – , μn = , ∀n ≥  and ζ (t) = t, t ≥ . Therefore, all the condi-
tions in Theorem . are satisfied. The conclusion of Theorem . can be obtained from
Theorem . immediately. �

Theorem. Let E,C, {αn}, {βn} be the same as in Theorem .. Let T := {T(t) : t ≥ } be a
closed, quasi-φ-nonexpansive semigroup such that the set F :=

⋂
t≥ F(T(t)) is nonempty.

Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily; C = C,

yn,t = J–[αnJx + ( – αn)(βnJxn + ( – βn)JT(t)xn)], t ≥ ,

Cn+ = {z ∈ Cn : supt≥ φ(z, yn,t)≤ αnφ(z,x) + ( – αn)φ(z,xn)},
xn+ = �Cn+x, ∀n≥ .

(.)

Then the sequence {xn} converges strongly to �F x.

Proof Since T := {T(t) : t ≥ } is a closed, quasi-φ-nonexpansive semigroup, by Re-
mark ., it is a closed, uniformly Lipschitzian and quasi-φ-asymptotically nonexpansive
semigroup with the sequence {kn = }. Hence, ξn = (kn – ) supu∈F φ(u,xn) = . Therefore,
the conditions appearing in Theorem .: ‘F is a bounded subset in C’ and ‘T := {T(t) :
t ≥ } is uniformly Lipschitzian’ are of no use here. Therefore, all conditions in Theo-
rem . are satisfied. The conclusion of Theorem . can be obtained from Theorem .
immediately. �

Remark . Theorems ., . and . improve and extend the corresponding results of
Suzuki [], Xu [], Chang et al. [–, , , ], Cho et al. [], Thong [], Buong [],
Mann [], Halpern [], Qin et al. [], Nakajo et al. [] and others.
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