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Abstract
We prove that the Banacah contraction principle proved by Matthews in 1994 on
0-complete partial metric spaces can be extended to cyclical mappings. However, the
generalized contraction principle proved by (Ilić et al. in Appl. Math. Lett.
24:1326-1330, 2011) on complete partial metric spaces can not be extended for
cyclical mappings. Some examples are given to illustrate our results. Moreover, our
results generalize some of the results obtained by (Kirk et al. in Fixed Point Theory
4(1):79-89, 2003). An Edelstein type theorem is also extended when one of the sets in
the cyclic decomposition is 0-compact.
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1 Introduction and preliminaries
The Banach contraction mapping principle is considered to be the core of many extended
fixed point theorems. It has widespread applications in many branches of mathematics,
engineering, and computer science. During the last decades many authors were able to
generalize this principle [–]. After the appearance of partial metric spaces as a place for
distinct research work into flow analysis, non-symmetric topology, and domain theory
[, ], many authors started to generalize this principle to these spaces (see [–]). How-
ever, the contraction type conditions used in those generalizations do not reflect the struc-
ture of a partial metric space apparently. Later, the authors in [] proved a more reason-
able contraction principle in a partial metric space. The contraction type condition used
there should logically be called a partial contractive condition. In this work, we show that
the contraction principle obtained in [] can be generalized to cyclical mappings. In con-
trast, the principle proved in [] cannot be extended for a cyclical case. An Edelstein type
theorem is also extended when one of the sets in the cyclic decomposition is -compact.
Some examples are also given to support our claims throughout the article.
A partial metric space (PMS) (see, e.g., [, ]) is a pair X,p : X × X → R+, where R+

denotes the set of all nonnegative real numbers, such that
(P) p(x, y) = p(y,x) (symmetry)
(P) If  ≤ p(x,x) = p(x, y) = p(y, y) then x = y (equality)
(P) p(x,x)≤ p(x, y) (small self-distances)
(P) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z) (triangularity)

for all x, y, z ∈ X.
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For a partial metric p on X, the function ps : X ×X →R+ given by

ps(x, y) = p(x, y) – p(x,x) – p(y, y) ()

is a (usual) metric on X. Each partial metric p on X generates a T topology τp on X with a
base of the family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) <
p(x,x) + ε} for all x ∈ X and ε > .

Definition  (see, e.g., [, , ])
(i) A sequence {xn} in a PMS (X,p) converges to x ∈ X if and only if

p(x,x) = limn→∞ p(x,xn).
(ii) A sequence {xn} in a PMS (X,p) is called Cauchy if and only if limn,m→∞ p(xn,xm)

exists (and is finite).
(iii) A PMS (X,p) is said to be complete if every Cauchy sequence {xn} in X converges,

with respect to τp, to a point x ∈ X such that p(x,x) = limn,m→∞ p(xn,xm).
(iv) A mapping f : X → X is said to be continuous at x ∈ X , if for every ε > , there

exists δ >  such that f (Bp(x, δ))⊂ Bp(f (x), ε).

Lemma  (see, e.g., [, , ])
(A) A sequence {xn} is Cauchy in a PMS (X,p) if and only if {xn} is Cauchy in a metric

space (X,ps).
(B) A PMS (X,p) is complete if and only if the metric space (X,ps) is complete. Moreover,

lim
n→∞ps(x,xn) =  ⇔ p(x,x) = lim

n→∞p(x,xn) = lim
n,m→∞p(xn,xm). ()

Lemma  Let (X,p) be a partial metric space, and let T : X → X be a continuous self-
mapping. Assume {xn} ∈ X such that xn → z as n→ ∞. Then

lim
n→∞p(Txn,Tz) = p(Tz,Tz).

Proof Let ε >  be given. Since T is continuous at z, find δ >  such that T(Bp(z, δ)) ⊆
Bp(Tz, ε). Since xn → z, then limn→∞ p(xn, z) = p(z, z), and hence find n ∈ N such that
p(z, z) ≤ p(xn, z) < p(z, z) + δ for all n≥ n. That is xn ∈ Bp(z, δ) for all n≥ n. Thus T(xn) ∈
Bp(Tz, ε) and so p(Tz,Tz) ≤ p(Txn,Tz) < p(Tz,Tz) + ε for all n≥ n. This shows our claim.

�

A sequence {xn} is called -Cauchy [] if limm,n→∞ p(xn,xm) = . The partial metric
space (X,p) is called -complete if every -Cauchy sequence in x converges to a point
x ∈ X with respect to p and p(x,x) = . Clearly, every complete partial metric space is
-complete. The converse need not be true.

Example  (see []) Let X =Q ∩ [,∞) with the partial metric p(x, y) =max{x, y}. Then
(X,p) is a -complete partial metric space which is not complete.

Theorem  ([]) Let(X,p) be a -complete partial metric space and f : X → X be such
that

p
(
f (x), f (y)

) ≤ αp(x, y) ∀x, y ∈ X and α ∈ [, ).
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There exists a unique u ∈ X such that u = f (u) and p(u,u) = .

Let ρp = inf{p(x, y) : x, y ∈ X} and define Xp = {x ∈ X : p(x,x) = ρp}.

Theorem  ([]) Let (X,p) be a complete metric space, α ∈ [, ), and let T : X → X be a
given mapping. Suppose that for each x, y ∈ X, the following condition holds:

p(x, y) ≤ max
{
αp(x, y),p(x,x),p(y, y)

}
.

Then
() the set Xp is nonempty;
() there is a unique u ∈ Xp such that Tu = u;
() for each x ∈ Xp, the sequence {Tnx}n≥ converges, with respect to the metric ps, to u.

Definition  Let A and B be two nonempty closed subsets of a complete partial metric
space (X,p) such that X = A∪B. A mapping T : X → X is called a cyclical contraction if it
satisfies:
(C): T(A) ⊆ B and T(B) ⊆ A.
(C): There exists  < α <  : p(Tx,Ty) ≤ αp(x, y), ∀x ∈ A and ∀y ∈ B.

If (C) in Definition  is replaced by the condition
(PC): there exists  < α <  : p(Tx,Ty) ≤ max{αp(x, y),p(x,x),p(y, y)} ∀x ∈ A and ∀y ∈ B,

then T is called a partial cyclical contraction. Note that partial cyclical contractions reflect
the structure of a partial metric space better. The proof of the following lemma can be
easily done by using the partial metric topology.

Lemma  A subset A of a partial metric space is closed if and only if x ∈ Awhenever xn ∈ A
satisfies xn → x.

Definition  A subset A of a partial metric space (X,p) is called -compact if, for any
sequence {xn} inA, there exists a subsequence {xkn} and x ∈ A such that limn→∞ p(xkn ,x) =
p(x,x) = .

Clearly, a closed subset of a -compact set is -compact.

Lemma  (see also [] and []) Assume xn → z as n → ∞ in a PMS (X,p) such that
p(z, z) = . Then limn→∞ p(xn, y) = p(z, y) for every y ∈ X.

2 Main results
We start this section with a theorem that will motivate us to obtain our main result for
cyclic contraction mappings.

Theorem  Let (X,p) be a -complete partial metric space and T : X → X be continuous
such that

p
(
Tx,Tx

) ≤ αp(x,Tx) ∀x ∈ X, where α ∈ (, ). ()

Then there exists z ∈ X such that p(z, z) =  and p(Tz, z) = p(Tz,Tz).
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Proof The condition () implies that the sequence Tn(x) is -Cauchy for all x ∈ X. Hence,
there exists z ∈ X such that xn = Txn– converges to z and p(z, z) = . The conclusion that
p(Tz, z) = p(Tz,Tz) follows by Lemma , (P), and the inequality

p(Tz, z) ≤ p(Tz,xn+) + p(xn+, z). �

Observe that if the partialmetric inTheorem  is replaced by ametric, thenwe conclude
that z is a fixed point. The following theorem is an extension of Theorem . in [].

Theorem  Let A and B be two nonempty closed subsets of a -complete partial metric
space (X,p) such that X = A ∪ B, and suppose T : X → X is a cyclical contraction self-
mapping of X. Then T has a unique fixed point in A∩ B.

Proof The condition (C) implies that for any x ∈ A∪ B,

p
(
Tx,Tx

) ≤ αp(x,Tx)

and this by (P) implies that the sequence {Tn(x)} is -Cauchy for any x ∈ X. Consequently,
{Tn(x)} converges to some point z ∈ X such that p(z, z) = . However, in view of (C), an
infinite number of terms of the sequence {Tn(x)} lie inA and an infinite number of terms lie
in B. Then by Lemma , we conclude that z ∈ A∩B, so A∩B = ∅. Now (C) and (C) imply
that the map T restricted to A∩B is a contraction. Then the result follows by Theorem .

�

We next give an example showing that the generalization to a partial metric space in
Theorem  is proper.

Example  Let X = [, ], A = [,  ] and B = [  , ]. Then X = A∪B and A∩ B = { 
 }. Pro-

vide X with the partial metric p(x, y) = |x – y| if both x, y ∈ [, ) and p(x, y) = max{x, y}
otherwise. Then, clearly, (X,p) is a complete partial metric space. Define T : X → X by
T(x) = 

 if  ≤ x <  and T() = . Then it can be easily checked that T is a cyclical con-
traction with α = 

 . Notice that the cyclical contractive condition of Theorem  is not
satisfied when the partial metric p is replaced by the usual absolute value metric.

The following example shows that Theorem  cannot be extended for cyclical mappings
when the cyclical contraction is replaced by a partial cyclical contraction.

Example  Let A = [, ], B = [, ] ∪ {  } and X = A ∪ B. Define p : X × X → [,∞) by
p(x, y) =max{x, y}. Then (X,p) is a complete partial metric space. Define T : X → X by

T(x) =

⎧⎪⎪⎨
⎪⎪⎩


 , ≤ x ≤ ,

 , x = 

 ,
x–
 , ≤ x≤ .

It can be easily seen that

p(Tx,Ty) =max

{


,
y – 


}
=



≤ max
{
αp(x, y),p(x,x),p(y, y)

}
= y,

for any x ∈ A, y ∈ B and any α ∈ (, ). However, A∩ B = ∅.
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Corollary  Let A and B be two nonempty closed subsets of a complete partial metric
space (X,p) such that X = A ∪ B. Let f : A → B and g : B → A be two functions such that
f (x) = g(x) for all x ∈ A∩ B and

p
(
f (x), g(y)

) ≤ αp(x, y) ∀x ∈ A and y ∈ B, ()

where  < α < . Then there exists a unique x ∈ A∩ B such that

f (x) = g(x) = x.

Proof Apply Theorem  to the mapping T : A∪ B → A∪ B defined by the setting

T(x) =

⎧⎨
⎩
f (x), x ∈ A,

g(x), x ∈ B.

Observe that the assumption that f (x) = g(x) for all x ∈ A ∩ B implies that T is well de-
fined. �

Note that in the metric space case, the condition () implies that the map T is well
defined.
Obviously Theorem  can be extended to the following version.

Theorem  Let {Ai}ki= be nonempty closed subsets of a -complete partial metric space,
and suppose that T :

⋃k
i=Ai → ⋃k

i=Ai satisfies the following conditions (where Ak+ = A):
() T(Ai) ⊆ Ai+ for  ≤ i≤ k;
() there exists α ∈ (, ) such that p(T(x),T(y))≤ αp(x, y) ∀x ∈ Ai, y ∈ Ai+ for  ≤ i≤ k.

Then T has a unique fixed point.

Proof One only needs to observe that given x ∈ ⋃k
i=Ai, infinitely many terms of the

Cauchy sequence {Tn(x)} lie in each Ai. Thus
⋂k

i=Ai = ∅, and the restriction of T to this
intersection is a contraction mapping. �

Remark  It is our belief that Theorem  can be extended to more general cyclical con-
tractionmappings. However, it would be ofmore interest if the contractive type conditions
are considered with control functions.

The following theorem is an extension of an Edelstein type theorem to partial metric
spaces.

Theorem Let {Ai}ki= be nonempty closed subsets of a partial metric space (X,p), at least
one of which is -compact, and suppose that T :

⋃k
i=Ai → ⋃k

i=Ai satisfies the following
conditions (where Ak+ = A):
() T(Ai) ⊆ Ai+ for  ≤ i≤ k;
() p(T(x),T(y)) < p(x, y) ∀x ∈ Ai, y ∈ Ai+ for  ≤ i ≤ k.

Then T has a unique fixed point.

http://www.fixedpointtheoryandapplications.com/content/2012/1/154


Abdeljawad et al. Fixed Point Theory and Applications 2012, 2012:154 Page 6 of 7
http://www.fixedpointtheoryandapplications.com/content/2012/1/154

Proof Assume A is -compact, and let δ = p(Aa,Ak) = inf{p(x, y) : x ∈ A, y ∈ Ak}. From
the definition of δ there exist sequences {xn} ⊂ A and {un} ⊂ Ak such that

p(xn,un) ≤ δ +

n
.

By -compactness ofA, wemay assume that there exists x ∈ A such that limn→∞ p(xn,
x) = p(x,x) = . Then by the triangle inequality it follows that limn→∞ p(x,un) = δ. As-
sume δ > . Then

p
(
Tk+(x),Tk+(un)

)
< · · · < p(x,un). ()

Since the sequence {Tk+(un)} is in A and A is -compact, we may assume that there
exists z ∈ A such that limn→∞ p(Tk+(un), z) = p(z, z) = . By () and Lemma , we con-
clude that

p
(
z,Tk+(x)

) ≤ δ.

However, this implies

p
(
Tk–(z),Tk(x)

)
< δ,

and since Tk–(z) ∈ Ak and Fk(x) ∈ A, we have a contradiction. Therefore, we conclude
that δ =  and A ∩Ak = ∅. Thus, by the assumption (), A ∩A = ∅.
We now consider the sets B = A ∩ A,B = A ∩ A, . . . ,Bk = Ak ∩ A. In view of the

condition () these sets are all nonempty (and closed) and B is -compact. Thus the as-
sumptions () and () of the theorem hold for T and the family {Bi}ki=. By repeating the
argument just given, we arrive at

B ∩ Bk = ∅.

This, in turn, implies that A ∩A ∩A = ∅. Continuing step-by-step, we conclude that
A :=

⋂k
i= = ∅.

Uniqueness follows from the fact that any fixed point of T necessarily lies in A :=
⋂k

i=

by the assumption (). �
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