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Abstract
In this paper, we first establish some new existence theorems of coincidence points
and common fixed points forMT -functions. By applying our results, we obtain some
generalizations of Mizoguchi-Takahashi’s fixed point theorem, Nadler’s fixed point
theorem and the Banach contraction principle. Some examples illustrating our results
are also given. Our results generalize and improve some main results in the literature
and references therein.
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1 Introduction
In recent years, the celebrated Banach contraction principle (see, e.g., []) always plays an
essential role in various fields of applied mathematical analysis. The Banach contraction
principle has been employed to solve the problems in Banach spaces such as the existence
of solutions for nonlinear integral equations and nonlinear differential equations. Also, it
has been applied to study the convergence of algorithms in computational mathematics.
Additionally,many generalizations of the Banach contraction principle in various different
directions have been investigated by several authors in the past; see [–]. Because of the
importance of the Banach contraction principle, we begin with the theorem as follows.

Theorem BCP (Banach []) Let (X,d) be a complete metric space and T : X → X be a
selfmap. Assume that there exists a nonnegative number γ <  such that

d(Tx,Ty) ≤ γd(x, y) for all x, y ∈ X.

Then T has a unique fixed point in X. Moreover, for each x ∈ X, the iterative sequence
{Tnx}n∈N converges to the fixed point.

In ,Nadler [] first gave a famous generalization of the Banach contraction principle
for multivalued maps, which is as important as the Banach contraction principle.
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Theorem NA (Nadler []) Let (X,d) be a complete metric space and T : X → CB(X) be a
k-contraction; that is, there exists a nonnegative number k <  such that

H(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X,

where CB(X) is the class of all nonempty closed bounded subsets of X. Then there exists
v ∈ X such that v ∈ Tv.

In , Mizoguchi and Takahashi [] proved a generalization of Nadler’s fixed point
theorem which also gave a partial answer to Problem  in Reich [–]. It is worth men-
tioning that the primitive proof of Mizoguchi-Takahashi’s fixed point theorem is difficult.
Recently, Suzuki [] gave a very simple proof of Mizoguchi-Takahashi’s fixed point theo-
rem.

Theorem MT (Mizoguchi and Takahashi []) Let (X,d) be a complete metric space and
T : X → CB(X) be a multivalued map. Assume that

H(Tx,Ty) ≤ α
(
d(x, y)

)
d(x, y) for all x, y ∈ X,

where α is a function from [,∞) into [, ) satisfying lim sups→t+ α(s) <  for all t ∈ [,∞).
Then there exists v ∈ X such that v ∈ Tv.

Subsequently, in , Berinde and Berinde [] proved the following interesting fixed
point theorem. That is a generalization of Mizoguchi-Takahashi’s fixed point theorem.

Theorem BB (Berinde and Berinde []) Let (X,d) be a complete metric space, T : X →
CB(X) be a multivalued map, and L ≥ . Assume that

H(Tx,Ty) ≤ α
(
d(x, y)

)
d(x, y) + Ld(y,Tx) for all x, y ∈ X,

where α is a function from [,∞) into [, ) satisfying lim sups→t+ α(s) <  for all t ∈ [,∞).
Then there exists v ∈ X such that v ∈ Tv.

It is obvious that if we take L =  in Berinde and Berinde’s fixed point theorem, we can
obtain Mizoguchi-Takahashi’s fixed point theorem.
Very recently, Du [] has used a τ -metric and anMT -function to establish some new

fixed point theorems for nonlinear multivalued contractive maps and generalize the Ba-
nach contraction principle, Nadler’s fixed point theorem, Mizoguchi-Takahashi’s fixed
point theorem, Berinde-Berinde’s fixed point theorem, Kannan’s fixed point theorems and
Chatterjea’s fixed point theorems for nonlinear multivalued contractive maps in complete
metric spaces; see [] for more detail.
In this paper, we first establish some new existence results of coincidence points and

common fixed points for MT -functions. By applying our results, we can obtain some
generalizations of Mizoguchi-Takahashi’s fixed point theorem, Nadler’s fixed point theo-
rem and the Banach contraction principle. Our results generalize and improve somemain
results in the literature and references therein.
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2 Preliminaries
Throughout this paper, we denote the set of positive integers by N. Let (X,d) be a metric
space. For each x ∈ X and A ⊆ X, let d(x,A) = infy∈A d(x, y). Also, we denote the class of all
nonempty subsets of X by N(X), the family of all nonempty closed subsets of X by C(X),
and the family of all nonempty closed and bounded subsets of X by CB(X). A function
H : CB(X)×CB(X)→ [,∞) defined by

H(A,B) =max
{
sup
x∈B

d(x,A), sup
x∈A

d(x,B)
}

is said to be the Hausdorff metric on CB(X) induced by the metric d on X.
Let f : X → X be a selfmap and T : X → N(X) be a multivalued map. A point v ∈ X is

called
(i) a fixed point of f if f (v) = v;
(ii) a fixed point of T if v ∈ T(v);
(iii) a coincidence point of f and T in X if f (v) ∈ T(v);
(iv) a common fixed point of f and T if v = f (v) ∈ T(v).
In [], Sajath and Vijayaraju proved the following theorem.

Theorem . [] Let (X,d) be a metric space, and α : (,∞) → [, ) be a function such
that lim supr→t+ α(r) <  for every t ∈ [,∞). If f : X → X and T : X → CB(X) satisfy
(a) H(T(x),T(y))≤ α(d(fx, fy))d(fx, fy) ∀x, y ∈ X ;
(b) T(X) =

⋃
x∈X T(x) ⊆ f (X);

(c) f (X) is a complete subspace of X ,
then T and f have a coincidence point in X.

Remark . In fact, the condition (a) in Theorem . should be corrected as
(a) H(T(x),T(y))≤ α(d(fx, fy))d(fx, fy) ∀x, y ∈ X with x 	= y.
Moreover, it is worth mentioning that the proof of Theorem . is not correct.
The following is the definition of a τ -function which was introduced and studied by Lin

and Du.

Definition . [, –] Let (X,d) be a metric space. A function p : X × X → [,∞) is
said to be a τ -function if the following conditions hold:

(τ) p(x, z)≤ p(x, y) + p(y, z) for all x, y, z ∈ X ;
(τ) If x ∈ X and {yn} in X with limn→∞ yn = y such that p(x, yn) ≤ M for someM =M(x) >

, then p(x, y) ≤ M;
(τ) For any sequence {xn} in X with limn→∞ sup{p(xn,xm) : m > n} = , if there exists a

sequence {yn} in X such that limn→∞ p(xn, yn) = , then limn→∞ d(xn, yn) = ;
(τ) For x, y, z ∈ X , p(x, y) =  and p(x, z) =  imply y = z.

Let p : X ×X → [,∞) be a τ -function. Define p(x,A) = infy∈A p(x, y).

The following results are crucial and useful in this paper.

Lemma . [, , , –] Let (X,d) be a metric space and p : X × X → [,∞) be any
function satisfying (τ). If {xn} is a sequence in X with limn→∞ sup{p(xn,xm) :m > n} = ,
then {xn} is a Cauchy sequence in X.

http://www.fixedpointtheoryandapplications.com/content/2012/1/156
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Recently, Du [, ] first introduced the concepts of τ -functions and τ -metrics as fol-
lows.

Definition . [, ] Let (X,d) be a metric space. A function p : X×X → [,∞) is called
a τ -function if it is a τ -function on X with p(x,x) =  for all x ∈ X.

Remark . From (τ), if p is a τ -function, then p(x, y) =  if and only if x = y.

Definition . [, ] Let (X,d) be a metric space and p be a τ -function. For any A,B ∈
CB(X), define a function Dp : CB(X)×CB(X)→ [,∞) by

Dp(A,B) =max
{
δp(A,B), δp(B,A)

}
,

where δp(A,B) = supx∈A p(x,B); then Dp is said to be a τ -metric on CB(X) induced by p.

Clearly, any Hausdorff metric is a τ -metric, but the reverse is not true.

Definition . [, –] A function ϕ : [,∞)→ [, ) is said to be anMT -function (or
anR-function) if lim sups→t+ ϕ(s) <  for all t ∈ [,∞).

Lemma . [] Let ϕ : [,∞) → [, ) be an MT -function. Then κ : [,∞) → [, ) de-
fined by κ(t) = ϕ(t)+

 is also anMT -function.

Theorem D [] Let ϕ : [,∞) → [, ) be a function. Then the following statements are
equivalent.
(a) ϕ is anMT -function.
(b) For each t ∈ [,∞), there exist rt () ∈ [, ) and εt

() >  such that ϕ(s)≤ rt () for all
s ∈ (t, t + εt

()).
(c) For each t ∈ [,∞), there exist rt () ∈ [, ) and εt

() >  such that ϕ(s)≤ rt () for all
s ∈ [t, t + εt

()].
(d) For each t ∈ [,∞), there exist rt () ∈ [, ) and εt

() >  such that ϕ(s)≤ rt () for all
s ∈ (t, t + εt

()].
(e) For each t ∈ [,∞), there exist rt () ∈ [, ) and εt

() >  such that ϕ(s)≤ rt () for all
s ∈ [t, t + εt

()).
(f ) For any nonincreasing sequence {xn}n∈N in [,∞), we have  ≤ supn∈N ϕ(xn) < .
(g) ϕ is a function of a contractive factor []; that is, for any strictly decreasing sequence

{xn}n∈N in [,∞), we have  ≤ supn∈N ϕ(xn) < .

It is obvious that if a function α : [,∞)→ [, ) is nondecreasing or nonincreasing, then
it is anMT -function.

3 New coincidence point theorems and a common fixed point theorem
In this section, we generalize Theorem . which is one of the main results in []. Please
notice that our proof is quite different from the proof of Theorem . in [].

Theorem . Let (X,d) be a metric space, p : X × X → [,∞) be a τ -function, Dp be a
τ -metric on CB(X) induced by p and ϕ : [,∞) → [, ) be an MT -function. If T : X →
CB(X) and f : X → X satisfy

http://www.fixedpointtheoryandapplications.com/content/2012/1/156
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(i) Dp(T(x),T(y))≤ ϕ(p(f (x), f (y)))p(f (x), f (y)), ∀x, y ∈ X ;
(ii) T(X) =

⋃
x∈X T(x)⊆ f (X);

(iii) f (X) is a complete subspace of X ,
then T and f have a coincidence point in X.

Proof By Lemma ., we can define an MT -function κ : [,∞) → [, ) by κ(t) = ϕ(t)+
 .

Then ϕ(t) < κ(t) and  < κ(t) <  for all t ∈ [,∞). Let x ∈ X. By (ii), there exists x ∈ X
such that f (x) ∈ T(x). If f (x) = f (x), we have f (x) ∈ T(x) which means that x is a
coincidence point of T and f in X and we finish the proof. Otherwise, if f (x) 	= f (x),
since p is a τ -function, p(f (x), f (x)) > . By (i), we have

p
(
f (x),T(x)

) ≤ sup
y∈T(x)

p
(
y,T(x)

)

≤ Dp
(
T(x),T(x)

)

≤ ϕ
(
p
(
f (x), f (x)

))
p
(
f (x), f (x)

)

< κ
(
p
(
f (x), f (x)

))
p
(
f (x), f (x)

)
.

Hence there exists a ∈ T(x) such that p(f (x),a) < κ(p(f (x), f (x)))p(f (x), f (x)). By (ii)
again, there exists x ∈ X such that f (x) = a ∈ T(x). Therefore,

p
(
f (x), f (x)

)
< κ

(
p
(
f (x), f (x)

))
p
(
f (x), f (x)

)
.

By induction, we can obtain a sequence {f (xn)} in X satisfying f (xn) ∈ T(xn–) and

p
(
f (xn), f (xn+)

)
< κ

(
p
(
f (xn–), f (xn)

))
p
(
f (xn–), f (xn)

) ∀n ∈N. (.)

Since κ(t) <  for all t ∈ [,∞), the inequality (.) implies the sequence {p(f (xn–),
f (xn))}n∈N is strictly decreasing in [,∞). Since κ is an MT -function, by Theorem D,
we have

 < sup
n∈N

κ
(
p
(
f (xn–), f (xn)

))
< .

Let λ := supn∈N κ(p(f (xn–), f (xn))). Then  < λ <  and κ(p(f (xn–), f (xn)))≤ λ for all n ∈N.
For any n ∈N, we have from (.) that

p
(
f (xn), f (xn+)

)
< κ

(
p
(
f (xn–), f (xn)

))
p
(
f (xn–), f (xn)

)

≤ λp
(
f (xn–), f (xn)

)

< λp
(
f (xn–), f (xn–)

)

< · · ·
< λnp

(
f (x), f (x)

)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/156
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Let vn = f (xn) for all n ∈ N ∪ {}. We claim that limn→∞ sup{p(vn, vm) : m > n} = . Put
αn = λn

–λ
p(v, v), n ∈N. Form,n ∈N withm > n, by (.), we have

p(vn, vm) ≤
m–∑
j=n

p(vj, vj+) < αn. (.)

Since  < λ < , limn→∞ αn =  and hence

lim
n→∞ sup

{
p(vn, vm) :m > n

}
= .

By Lemma ., {vn} is a Cauchy sequence in f (X). By the completeness of f (X), there exists
v̂ ∈ X such that vn → f (v̂) as n→ ∞. From (τ) and (.), we have

p
(
vn, f (v̂)

) ≤ αn for all n ∈N. (.)

So, for each n ∈N, we have

p
(
vn+,T(v̂)

)
= p

(
f (xn+),T(v̂)

)

≤ sup
y∈T(xn)

p
(
y,T(v̂)

)

≤ Dp
(
T(xn),T(v̂)

)

≤ ϕ
(
p
(
vn, f (v̂)

))
p
(
vn, f (v̂)

)

< κ
(
p
(
vn, f (v̂)

))
p
(
vn, f (v̂)

)

< p
(
vn, f (v̂)

)

≤ αn. (.)

Therefore, there exists yn+ ∈ T(v̂) such that p(vn+, yn+) < αn for each n ∈N, which implies
limn→∞ p(vn, yn) = . Then, by (τ), we have limn→∞ d(vn, yn) = . Moreover, since vn →
f (v̂) as n→ ∞ and

 ≤ d
(
f (v̂), yn+

) ≤ d
(
f (v̂), vn+

)
+ d(vn+, yn+) for all n ∈N,

we get

lim
n→∞d

(
f (v̂), yn+

)
= ,

which means that yn → f (v̂) as n → ∞. Since yn+ ∈ T(v̂) for all n ∈ N and T(v̂) is closed,
f (v̂) ∈ T(v̂), i.e., v̂ is a coincidence point of f and T . The proof is completed. �

Remark . In Theorem ., if f = id (the identity map), then we obtain Mizoguchi-
Takahashi’s fixed point theorem. So Theorem . is a generalization of Mizoguchi-
Takahashi’s fixed point theorem, Nadler’s fixed point theorem and the Banach contraction
principle.

Here, we give a simple example illustrating Theorem ..

http://www.fixedpointtheoryandapplications.com/content/2012/1/156
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Example . Let X = [,∞) with the metric d(x, y) = |x– y|, x, y ∈ X. Let f (x) = x, T(x) =
[,x] and ϕ(x) = 

 , ∀x ∈ X. Let p : X ×X → [,∞) be defined by

p(x, y) =max
{
a(x – y),b(y – x)

}

for all x, y ∈ X and  < a < b. It is easy to see that p is a τ -function and ϕ is an MT -
function.
Clearly, T(X) =

⋃
x∈X T(x) ⊆ f (X) and f (X) is a complete subspace of X. We claim that

Dp(T(x),T(y))≤ ϕ(p(fx, fy))p(fx, fy), ∀x, y ∈ X. Indeed, we consider the following two pos-
sible cases:
Case . If  ≤ x < y, we have Tx = [,x] and Ty = [, y], then

p(fx, fy) =max
{
a(x – y),b(y – x)

}
= b(y – x);

and

Dp(Tx,Ty) = max
{
sup
z∈Tx

p(z,Ty), sup
z∈Ty

p(z,Tx)
}

= a(y – x)

< b(y – x)

<


p(fx, fy)

= ϕ
(
p(fx, fy)

)
p(fx, fy).

Case . If  ≤ y < x, similarly, we have

p(fx, fy) =max
{
a(x – y),b(y – x)

}
= a(x – y);

and

Dp(Tx,Ty) = max
{
sup
z∈Tx

p(z,Ty), sup
z∈Ty

p(z,Tx)
}

= a(x – y)

<


p(fx, fy)

= ϕ
(
p(fx, fy)

)
p(fx, fy).

By Cases  and , we verify thatDp(T(x),T(y))≤ ϕ(p(fx, fy))p(fx, fy), ∀x, y ∈ X. Therefore,
all the assumptions of Theorem . are satisfied. So, we can apply Theorem . to show
that f and T have a coincidence point in X. Actually,  is a coincidence point of f and T
since f () ∈ T().

The following result follows immediately from Theorem ..

Corollary . Let (X,d) be ametric space, p : X×X → [,∞) be a τ -function, Dp be a τ -
metric on CB(X) induced by p and α : [,∞)→ [, ) be a nondecreasing or nonincreasing
function. If T : X → CB(X) and f : X → X satisfy

http://www.fixedpointtheoryandapplications.com/content/2012/1/156
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(i) Dp(T(x),T(y))≤ α(p(f (x), f (y)))p(f (x), f (y)) ∀x, y ∈ X ;
(ii) T(X) =

⋃
x∈X T(x)⊆ f (X);

(iii) f (X) is a complete subspace of X ,
then T and f have a coincidence point in X.

In Theorem ., if p≡ d, then Dp ≡H and we have the following corollary.

Corollary . Let (X,d) be a metric space and ϕ : [,∞) → [, ) be an MT -function. If
T : X → CB(X) and f : X → X satisfy

(i) H(T(x),T(y))≤ ϕ(d(f (x), f (y)))d(f (x), f (y)) ∀x, y ∈ X ;
(ii) T(X) =

⋃
x∈X T(x)⊆ f (X);

(iii) f (X) is a complete subspace of X ,
then T and f have a coincidence point in X.

Corollary . Let (X,d) be a metric space and α : [,∞) → [, ) be a nondecreasing or
nonincreasing function. If T : X → CB(X) and f : X → X satisfy

(i) H(T(x),T(y))≤ α(d(f (x), f (y)))d(f (x), f (y)) ∀x, y ∈ X ;
(ii) T(X) =

⋃
x∈X T(x)⊆ f (X);

(iii) f (X) is a complete subspace of X ,
then T and f have a coincidence point in X.

Theorem . Let (X,d) be a metric space, p : X × X → [,∞) be a τ -function, Dp be a
τ -metric on CB(X) induced by p and ϕ : [,∞) → [, ) be an MT -function. If T : X →
CB(X) and f : X → X satisfy

(i) Dp(T(x),T(y))≤ ϕ(p(fx, fy))p(fx, fy) ∀x, y ∈ X ;
(ii) T(X) =

⋃
x∈X T(x)⊆ f (X);

(iii) f (X) is a complete subspace of X ;
(iv) fv = ffv if v is a coincidence point of f and T ,

then T and f have a common fixed point in X.

Proof Following the same argument as in the proof of Theorem ., we can construct two
sequences {xn} and {vn} satisfying
(a) vn = f (xn) ∈ T(xn–) for all n ∈ N;
(b) vn is a Cauchy sequence in X and limn→∞ sup{p(vn, vm) :m > n} = ;
(c) there exist v̂ ∈ X such that

• vn → f (v̂) as n→ ∞;
• f (v̂) ∈ T(v̂);
• p(vn, f (v̂))≤ αn, where αn = λn

–λ
p(v, v), n ∈ N.

By (c) and (iv), we have f v̂ = ff v̂. Then

p
(
vn,T

(
f (v̂)

)) ≤ sup
z∈T(xn–)

p
(
z,T

(
f (v̂)

))

≤ Dp
(
T(xn–),T

(
f (v̂)

))

≤ ϕ
(
p
(
f (xn–), f

(
f (v̂)

)))
p
(
f (xn–), f

(
f (v̂)

))

< p
(
f (xn–), f

(
f (v̂)

))
.

http://www.fixedpointtheoryandapplications.com/content/2012/1/156
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Therefore, there exists zn ∈ T(f (v̂)) such that

p(vn, zn) < p
(
f (xn–), f

(
f (v̂)

))
for all n ∈N. (.)

Since

p
(
f (xn–), f

(
f (v̂)

)) ≤ p
(
f (xn–), f (v̂)

)
+ p

(
f (v̂), f

(
f (v̂)

))

≤ αn–,

we have limn→∞ p(f (xn–), f (f (v̂))) = . By (.), limn→∞ p(vn, zn) = . By (τ), we have
limn→∞ d(vn, zn) = . Since vn → f (v̂) as n→ ∞ and

d
(
f (v̂), zn

) ≤ d
(
f (v̂), vn

)
+ d(vn, zn),

we have limn→∞ d(f (v̂), zn) = , which implies limn→∞ zn = f (v̂). Since T(f (v̂)) is closed and
zn ∈ T(f (v̂)) for all n ∈N, we get f (v̂) ∈ T(f (v̂)). Therefore, f v̂ = ff v̂ ∈ Tf v̂, whichmeans that
f (v̂) is a common fixed point of f and T in X. The proof is completed. �

Remark . Theorem . also generalizes and improves Mizoguchi-Takahashi’s fixed
point theorem.

Example . In Example ., we have shown that  is a coincidence point of f and T .
Clearly,  = f () = f (f ()). So, all the assumptions of Theorem . are satisfied. By Theo-
rem ., we know that f and T have a common fixed point in X. Actually,  is a common
fixed point of f and T since  = f () ∈ T().

Similarly, we have the following corollary.

Corollary . Let (X,d) be ametric space, p : X×X → [,∞) be a τ -function, Dp be a τ -
metric on CB(X) induced by p and α : [,∞)→ [, ) be a nondecreasing or nonincreasing
function. If T : X → CB(X) and f : X → X satisfy

(i) Dp(T(x),T(y))≤ α(p(fx, fy))p(fx, fy) ∀x, y ∈ X ;
(ii) T(X) =

⋃
x∈X T(x)⊆ f (X);

(iii) f (X) is a complete subspace of X ;
(iv) fv = ffv if v is a coincidence point of f and T ,

then T and f have a common fixed point in X.

Corollary . Let (X,d) be a metric space and ϕ : [,∞) → [, ) be an MT -function. If
T : X → CB(X) and f : X → X satisfy

(i) H(T(x),T(y))≤ ϕ(d(fx, fy))d(fx, fy) ∀x, y ∈ X ;
(ii) T(X) =

⋃
x∈X T(x)⊆ f (X);

(iii) f (X) is a complete subspace of X ;
(iv) fv = ffv if v is a coincidence point of f and T ,

then T and f have a common fixed point in X.

Corollary . Let (X,d) be a metric space and α : [,∞) → [, ) be a nondecreasing or
nonincreasing function. If T : X → CB(X) and f : X → X satisfy
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(i) H(T(x),T(y))≤ α(d(fx, fy))d(fx, fy) ∀x, y ∈ X ;
(ii) T(X) =

⋃
x∈X T(x)⊆ f (X);

(iii) f (X) is a complete subspace of X ;
(iv) fv = ffv if v is a coincidence point of f and T ,

then T and f have a common fixed point in X.
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