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Abstract
In this paper, we study generalized quasi-variational relation problems in locally
G-convex spaces. Using the Kakutani-Fan-Glicksberg fixed-point theorem for upper
semicontinuous set-valued mapping with nonempty closed acyclic values, we
establish an existence theorem of a solution set for these problems. Moreover, the
stability and closedness of the solution set for these problems are also obtained. The
results presented in the paper improve and extend the main results in the literature.
MSC: 47J20; 49J40

Keywords: generalized quasi-variational relation problems; G-convex spaces;
Kakutani-Fan-Glicksberg fixed-point theorem; quasiconvexity; existence; closedness;
upper semicontinuity; compactness

1 Introduction and preliminaries
The generalized quasi-variational relation problems include, as special cases, the gener-
alized variational inclusion problems, the generalized vector equilibrium problems, the
generalized vector variational inequality problems etc. In recent years, a lot of results for
the existence and stability of solutions for variational relation problems, vector equilib-
rium problems and vector variational inequality problems have been established by many
authors in different ways. For example, variational relation problems [–], vector equilib-
rium problems [–], vector variational inequality problems [, ] and the references
therein.
For a set X, we shall denote by X and 〈X〉 the families of all subsets of X and the fam-

ily of all nonempty finite subsets of X, respectively. For each A ∈ 〈X〉, |A| denotes the
cardinality of A. Let �n denote the standard n-dimensional simplex in Rn+ with vertices
{e, e, . . . , en+}, that is,

�n =

{
u ∈R

n+ : u =
n+∑
i=

λ(u)ei,λ(u)≥ ,
n+∑
i=

λ(u) = 

}
,

where ei is the ith unit vector in R
n+.

For any nonempty subset J of {, , , . . . ,n}, we denote �J by the convex hull of the
vertices {ej : j ∈ J}.
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A convex set A in a vector space is called a convex space if it is equipped with a topology
which includes the Euclidean topology on convex hulls of any nonempty finite subsets
of A.
The notion of a G-convex space was introduced by Park and Kim in []. Let X be a

topological space, A⊆ X be a nonempty subset and a function � : 〈A〉 → X \ {∅} be such
that the following conditions hold:
(a) for eachM,N ∈ 〈A〉, �(M) ⊂ �(N) ifM ⊂N ,
(b) for eachM ∈ 〈A〉 with |M| = n + , there exists a continuous mapping

φM :�n → �(M) such that, for each J ∈ 〈M〉, φM(�J )⊂ �(J), where �J denotes the
face of �n corresponding to J ∈ 〈M〉.

Then (X,A,�) is called a generalized convex space (or a G-convex space). If A = X, we
omit A simply write (X,�).
For aG-convex space (X,A,�), a subset B ofX is said to beG-convex if, for eachM ∈ 〈A〉,

M ⊆ B implies �(M) ⊆ B. A space X is said to have a G-convex structure if and only if X
is a G-convex space. A G-convex X is said to be a locally G-convex space if X is a uniform
topological space with uniformity U , which has an open base B = {Vi : i ∈ I} of symmetric
entourages such that for each v ∈ B, the set V (x) := {y ∈ X : (y,x) ∈ V } is a G-convex set
for each x ∈ X.
Now, we pass to our problem setting. Let X, Y , Z be real locally G-convex Hausdorff

topological vector spaces,A⊆ X, B⊆ Y andD⊆ Z be nonempty compact convex subsets.
Let K : A → A, K : A → A, T : A → B be multifunctions and R(x, z, y) be a relation
linking x ∈ A, z ∈ D and y ∈ B. We adopt the following notations (see []). Letters w, m
and s are used for weak, middle and strong kinds of considered problems respectively. For
subsets U and V under consideration, we adopt the following notations:

(u, v)wU ×V means ∀u ∈U ,∃v ∈ V ,

(u, v)mU ×V means ∃v ∈ V ,∀u ∈U ,

(u, v) sU ×V means ∀u ∈U ,∀v ∈ V ,

ρ(U ,V ) means U ⊂ V ,

ρ(U ,V ) means U ∩V = ∅,
ρ(U ,V ) means U ⊂ V ,

ρ(U ,V ) means U ∩V = ∅.

Let α ∈ {w,m, s} and ρ ∈ {ρ,ρ,ρ,ρ}. We consider the following for a generalized quasi-
variational relation problem (in short, (QVRα)):
(QVRα): Find x̄ ∈ A such that x̄ ∈ K(x̄) and (y, z)αK(x̄)× T(x̄) satisfying

R(x̄, z, y) holds.

Let �α(R) be the solution set of (QVRα).
Special cases of the problem (QVRα) are as follows:
(I) If we let A, D, B, X, Y , Z, K, K, T be as in (QVRα) and F : A × D × B → Z be a

multifunction, the relation R is defined as follows:

R(x, z, y) holds iff  ∈ F(x, z, y).

http://www.fixedpointtheoryandapplications.com/content/2012/1/158


Hung Fixed Point Theory and Applications 2012, 2012:158 Page 3 of 13
http://www.fixedpointtheoryandapplications.com/content/2012/1/158

Then (QVRα) becomes the generalized quasi-variational inclusion problem:
Find x̄ ∈ A such that x̄ ∈ K(x̄) and (y, z)αK(x̄)× T(x̄) satisfying

 ∈ F(x̄, z, y).

(II) If we let A, D, B, X, Y , Z, K, K, T , R be as in (QVRα) and F : A×D× B → Z and
G : A×D→ Z be multifunctions, the relation R is defined as follows:

R(x, z, y) holds iff ρ
(
F(x, z, y),G(x, z)

)
.

Then (QVRα) becomes the generalized quasi-variational inclusion problem:
Find x̄ ∈ A such that x̄ ∈ K(x̄) and (y, z)αK(x̄)× T(x̄) satisfying

ρ
(
F(x̄, z, y),G(x̄, z)

)
.

(III) If we let A, D, B, X, Y , Z, K, K, T be as in (QVRα) and F : A × D × B → Z ,
C : A → Z be multifunctions such that C(x) is a closed convex cone with intC(x) = ∅, the
relation R is defined as follows:

R(x, z, y) holds iff ρ
(
F(x, z, y),C(x)

)
.

Then (QVRα) becomes the generalized vector quasi-equilibrium problem:
Find x̄ ∈ A such that x̄ ∈ K(x̄) and (y, z)αK(x̄)× T(x̄) satisfying

ρ
(
F(x̄, z, y),C(x̄)

)
.

(IV) If we let A, D, B, X, Y , Z, K, K be as in (QVRα), f : A × D × B → Z be a vector
function, and C : A → Z be a multifunction such that C(x) is a closed convex cone with
intC(x) = ∅, the relation R is defined as follows:

R(x, z, y) holds iff f (x, z, y) ∈ C(x).

Then (QVRα) becomes the vector quasi-equilibrium problem:
Find x̄ ∈ A such that x̄ ∈ K(x̄) and (y, z)αK(x̄)× T(x̄) satisfying

f (x̄, z, y) ∈ C(x̄).

(V) If we let D, A = B, X = Y , Z, K, K, T be as in (QVRα), L(X,Z) be the space of
all linear continuous operators from X to Z and H : L(X,Z) → L(X,Z), Q : A × A → X,
F : A×A→ Z be continuous single-valuedmappings, C : A→ Z be amultifunction such
that C(x) is a closed convex cone with intC(x) = ∅, the relation R is defined as follows:

R(x, z, y) holds iff
〈
H(z),Q(y,x)

〉
+ F(y,x) ∈ C(x).

Then (QVRα) becomes the generalizedmixed vector quasi-variational inequality problem:
Find x̄ ∈ A such that x̄ ∈ K(x̄) and (y, z)αK(x̄)× T(x̄) satisfying

〈
H(z),Q(y, x̄)

〉
+ F(y, x̄) ∈ C(x̄).
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Definition  ([, ]) Let X,Y be two topological vector spaces, A be a nonempty subset
of X and F : A → Z be a multifunction.

(i) F is said to be lower semicontinuous (lsc) at x ∈ A if F(x)∩U = ∅ for some open
set U ⊆ Y implies the existence of a neighborhood N of x such that F(x)∩U = ∅,
∀x ∈N . F is said to be lower semicontinuous in A if it is lower semicontinuous at all
x ∈ A.

(ii) F is said to be upper semicontinuous (usc) at x ∈ A if for each open set U ⊇ F(x),
there is a neighborhood N of x such that U ⊇ F(x), ∀x ∈N . F is said to be upper
semicontinuous in A if it is upper semicontinuous at all x ∈ A.

(iii) F is said to be continuous in A if it is both lsc and usc in A.
(iv) F is said to be closed if Graph(F) = {(x, y) : x ∈ A, y ∈ F(x)} is a closed subset in

A× Y .

Definition  ([]) Let X, Y be two topological vector spaces, A be a nonempty subset of
X, F : A→ Z be a multifunction and C ⊂ Y be a nonempty closed convex cone.

(i) F is called upper C-continuous at x ∈ A if for any neighborhood U of the origin in
Y , there is a neighborhood V of x such that

F(x)⊂ F(x) +U +C, ∀x ∈ V .

(ii) F is called lower C-continuous at x ∈ A if for any neighborhood U of the origin in
Y , there is a neighborhood V of x such that

F(x) ⊂ F(x) +U –C, ∀x ∈ V .

Definition  ([]) Let X and Y be two topological vector spaces and A be a nonempty
convex subset ofX. A set-valuedmapping F : A→ Y is said to be properlyC-quasiconvex
if for any x, y ∈ A and t ∈ [, ], we have

either F(x)⊂ F
(
tx + ( – t)y

)
+C

or F(y) ⊂ F
(
tx + ( – t)y

)
+C.

Lemma  ([]) Let X, Y be two topological vector spaces, A be a nonempty convex subset
of X and F : A → Y be a multifunction.

(i) If F is upper semicontinuous at x ∈ A with closed values, then F is closed at x ∈ A.
(ii) If F is closed at x ∈ A and Y is compact, then F is upper semicontinuous at x ∈ A.
(iii) If F has compact values, then F is usc at x ∈ A if and only if, for each net {xα} ⊆ A

which converges to x ∈ A and for each net {yα} with yα ⊆ F(xα), there are y ∈ F(x)
and a subnet {yβ} of {yα} such that yβ → y.

Definition  ([]) Let X be a topological space. A subset A of X is called contractible
at x ∈ A, if there is a continuous F : A× [, ] → A such that F(z, ) = z for all z ∈ A and
F(z, ) = x for all z ∈ A.

A topological space X is said to be acyclic if all of its reduced Čech homology groups
over the rationals vanish. In particular, each contractible space is acyclic, and thus any
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nonempty convex or star-shaped set is acyclic.Moreover, by the definition of a contractible
set, we see that each convex space is contractible.
We now have the following fixed-point theorem in locally G-convex spaces given by

Yuan [] which is a generalization of the Fan-Glickberg-type fixed-point theorem for an
upper semicontinuous set-valued mapping with nonempty closed acyclic values.

Theorem  ([], Theorem .) Let X be a compact locally G-convex space and F : X →
X be an upper semicontinuous set-valued mapping with nonempty closed acyclic values.
Then F has a fixed-point; that is, there exists an x* ∈ X such that x* ∈ F(x*).

2 Existence of solutions
In this section,we apply theKakutani-Fan-Glicksberg fixed-point theorem for upper semi-
continuous set-valuedmappingwith nonempty closed acyclic values to establish sufficient
conditions for the existence of a solution set of generalized quasi-variational relation prob-
lems. Moreover, the closedness of the solution set for these problems is obtained.

Definition  Let X be a topological vector space, A be a nonempty convex subset of X
and R(x) be a relation linking x ∈ A. We say that R is quasiconvex at x ∈ A if ∀x,x ∈ A,
∀λ ∈ [, ] such that R(x) holds and R(x) holds, we have

R
(
λx + ( – λ)x

)
holds.

R is said to be quasiconvex in A if it is quasiconvex at all x ∈ A.

Remark  In the Definition , if we let X = A = R, and let mapping F : R → R, then the
relation R defined by R(x) holds iff F(x)⊆R–. We have ∀x,x ∈ A, ∀λ ∈ [, ], if F(x) ≤ ,
F(x) ≤ , then F(( – λ)x + λx)≤ . This means that R is modified -level quasiconvex,
since the classical quasiconvexity says that ∀x,x ∈ A, ∀λ ∈ [, ],

F
(
( – λ)x + λx

) ≤ max
{
F(x,F(x)

}
.

Theorem  Assume for the problem (QVRα) that
(i) K is upper semicontinuous in A with nonempty closed contractible values, and K is

lower semicontinuous A with nonempty closed values;
(ii) T is upper semicontinuous in A with nonempty closed acyclic values if α = w (or

α =m) and lower semicontinuous in A with nonempty acyclic values if α = s;
(iii) for all (x, z) ∈ A×D, R(x, z,K(x)) holds;
(iv) for all (z, y) ∈D× B, R(·, z, y) is quasiconvex in A;
(v) the set {(x, z, y) ∈ A×D× B : R(x, z, y) holds} is closed.

Then, the (QVRα) has a solution, i.e., there exist x̄ ∈ A such that x̄ ∈ K(x̄) and (y, z)αK(x̄)×
T(x̄) satisfying

R(x̄, z, y) holds.

Moreover, the solution set of the (QVRα) is closed.

http://www.fixedpointtheoryandapplications.com/content/2012/1/158
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Proof Since α = {w,m, s}, we have in fact three cases. However, the proof techniques are
similar. We present only the proof for the case where α =m.
Indeed, for all (x, z) ∈ A×D, define a set-valued mapping: 
m : A×D → A by


m(x, z) =
{
a ∈ K(x) : R(a, z, y) holds,∀y ∈ K(x)

}
.

Since for any x ∈ A, K(x), K(x) are nonempty. Thus, by assumption (iii), we have

m(x, z) = ∅.
(I) We show that 
m(x, z) is acyclic.
Since every contractible set is acyclic, it is enough to show that 
m(x, z) is contractible.

Let a ∈ 
m(x, z), thus a ∈ K(x) and R(a, z, y) holds,∀y ∈ K(x). Since K(x) is contractible,
there exists a continuous mapping f : K(x) × [, ] → K(x) such that f (b, ) = b for all
b ∈ K(x) and f (b, ) = a for all b ∈ K(x). Now, we set F(b,λ) = λa + ( – λ)h(b,λ) for all
(b,λ) ∈ 
m(x, z) × [, ]. Then F is a continuous mapping, and we see that F(b, ) = b for
all b ∈ 
m(x, z) and F(b, ) = a for all b ∈ 
m(x, z). Let (b,λ) ∈ 
m(x, z) × [, ], we need
to prove that F(b,λ) ∈ 
m(x, z). Since a, f (b,λ) ∈ K(x), and K(x) is contractible, thus, for
a, f (b,λ) ∈ 
m(x, z), it follows that

R(a, z, y) holds, ∀y ∈ K(x)

and

R
(
f (b,λ), z, y

)
holds, ∀y ∈ K(x).

By (iv), R(·, z, y) is quasiconvex in A, we have

R
(
λa + ( – λ)f (b,λ), z, y

)
holds, ∀y ∈ K(x),

i.e., F(b,λ) ∈ 
m(x, z). Therefore, 
m(x, z) is contractible.
(II) We will prove 
m is upper semicontinuous in A×D with nonempty closed values.
Since A is a compact set and 
m(x, z) ⊂ A. Hence 
(x, z) is compact. We need to show

that
m is a closedmapping. Indeed, let a net {(xn, zn)} ⊆ A×D such that (xn, zn) → (x, z) ∈
A × D, and let an ∈ 
m(xn, zn) such that an → a. Now, we need only prove that a ∈

m(x, z). Since an ∈ K(xn) and K is upper semicontinuous at x ∈ Awith nonempty closed
values, by Lemma (i), we have K is closed at x ∈ A, thus a ∈ K(x). Suppose, to the
contrary, a /∈ 
m(x, z). Then ∃y ∈ K(x) such that

R(a, z, y) does not hold. ()

By the lower semicontinuity of K, there is a net {yn} with yn ∈ K(xn) such that yn → y.
Since an ∈ 
m(xn, zn), we have

R(an, zn, yn) holds. ()

By the condition (v) and (), we have

R(a, z, y) holds. ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/158
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There is a contradiction between () and (). Thus, a ∈ 
m(x, z). Hence, 
m is upper
semicontinuous in A×D with nonempty closed values.
(III) Now, we shall show that the solution set �m(R) = ∅.
Define the set-valued mapping Hm : A×D → A×D by

Hm(x, z) =
(

m(x, z),T(x)

)
, ∀(x, z) ∈ A×D.

Then Hm is upper semicontinuous in A × D and ∀(x, z) ∈ A × D, Hm(x, z) is a nonempty
closed convex subset of A×D. By Theorem , there exists a point (x̄, z̄) ∈ A×D such that
(x̄, z̄) ∈Hm(x̄, z̄), that is,

x̄ ∈ 
m(x̄, z̄), z̄ ∈ T(x̄),

which implies that there exists x̄ ∈ A and z̄ ∈ T(x̄) such that x̄ ∈ K(x̄) and

R(x̄, z̄, y) holds,

i.e., x̄ ∈ �m(R).
(IV) Next, we prove that �m(R) is closed.
Let a net {xα ,α ∈ I} ∈ �m(R) : xα → x.We need to prove that x ∈ �m(R). Indeed, by the

lower semicontinuity of K, for any y ∈ K(x), there exists yn ∈ K(xα) such that yn → y.
As xα ∈ �m(R), there exists zα ∈ T(xα) such that

R(xα , zα , yα) holds.

Since K is upper semicontinuous with nonempty closed values, by Lemma (i), we have
K is closed. Thus, x ∈ K(x). SinceT is upper semicontinuous inA andT(x) is compact,
there exists z ∈ T(x) such that zα → z. By the condition (v), we have

R(x, z, y) holds.

This means that x ∈ �m(R). Thus �m(R) is a closed set. �

Remark  If we let A = B, D, X = Y , Z, K = K = K , T , R, α = m as in (QVRα), F : A ×
D×A → Z be amultifunction andC ⊂ Z be a nonempty closed convex cone, the relation
R is defined as follows:

R(x, z, y) holds iff F(x, z, y) ⊂ C,

and

R(x, z, y) holds iff F(x, z, y) ⊂ C.

Then, (QVRα) becomes the generalized strong vector quasi-equilibriumproblemof type
(I) and (II) (in short, (GSVQEP I) and (GSVQEP II)) studied in [].

http://www.fixedpointtheoryandapplications.com/content/2012/1/158
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(GSVQEP I): Find x̄ ∈ A and z̄ ∈ T(x̄) such that x̄ ∈ K(x̄) and

F(x̄, z̄, y) ⊂ C, for all y ∈ K(x̄);

and
(GSVQEP II): Find x̄ ∈ A and z̄ ∈ T(x̄) such that x̄ ∈ K(x̄) and

F(x̄, z̄, y) ⊂ C, for all y ∈ K(x̄).

The following example shows that all the assumptions of Theorem  are satisfied, but
Theorem . in [] does not work. The reason is that F is not lower (–C)-continuous.

Example  Let X = Y = Z =R, A = B =D = [, ], C =R+, K(x) = K(x) = [, ] and

T(x) = T(x) =

⎧⎨
⎩[, ] if x = 

 ,

[,  ] otherwise,

and

F(x, z, y) =

⎧⎨
⎩[  , ] if x = z = y = 

 ,

[, ] otherwise.

We let the relation R be defined by R(x, z, y) holds iff F(x, z, y) ⊆ R+. We can show that all
the assumptions of Theorem  are satisfied. However, F is not lower (–C)-continuous at
x = 

 . Also, Theorem . in [] does not work.

The following example shows that all the assumptions of Theorem  are satisfied, but
Theorem . in [] is not fulfilled. The reason is that F is not upper C-continuous.

Example  Let A, B, D, X, Y , Z, K , C be as in Example  and T(x) = {z} and

F(x, z, y) =

⎧⎨
⎩[,  ] if x = z = y = 

 ,

[  ,

 ] otherwise.

We let the relation R be defined by R(x, z, y) holds iff F(x, z, y) ⊆R+. It is easy to check that
all the assumptions of Theorem  are satisfied. So, (QVRα) has a solution. However, F is
not upper C-continuous at x = 

 . Also, Theorem . in [] does not work.

The following example shows that all assumptions of Theorem  are satisfied, but The-
orem . in [] is not fulfilled. The reason is that F is not C-quasiconvex.

Example  Let A, B, D, X, Y , Z, K , C, T be as in Example  and

F(x, z, y) =

⎧⎨
⎩[, ] if x = z = y = 

 ,

[  , ] otherwise.

http://www.fixedpointtheoryandapplications.com/content/2012/1/158
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We let the relation R be defined by R(x, z, y) holds iff F(x, z, y) ⊆R+. It is easy to check that
all the assumptions of Theorem  are satisfied. However, F is not C-quasiconvex at x = 

 .
Thus, it gives also cases where Theorem  can be applied but Theorem . in [] does not
work.

If we let X, Y , Z be real locally convex Hausdorff topological vector spaces, then we have
the following corollary.

Corollary  Assume for problem (QVRα) that
(i) K is upper semicontinuous in A with nonempty closed convex values, and K is

lower semicontinuous A with nonempty closed values;
(ii) T is upper semicontinuous in A with nonempty closed convex values if α = w (or

α =m) and lower semicontinuous in A with nonempty convex values if α = s;
(iii) for all (x, z) ∈ A×D, R(x, z,K(x)) holds;
(iv) for all (z, y) ∈D× B, R(·, z, y) is quasiconvex in A;
(v) the set {(x, z, y) ∈ A×D× B : R(x, z, y) holds} is closed.

Then the (QVRα) has a solution, i.e., there exist x̄ ∈ A such that x̄ ∈ K(x̄) and (y, z)αK(x̄)×
T(x̄) satisfying

R(x̄, z, y) holds.

Moreover, the solution set of the (QVRα) is closed.

Remark 
(i) If we let X , Y , Z be real locally convex Hausdorff topological vector spaces, then

(GSVQEP I) becomes the problem (GSVQEP) studied in [].
(ii) If A = B, X = Y , Z, K = K = K , R as in (QVRα) and T(x) = {z}, F : A×A→ Z is a

multifunction, C ⊂ Z is a nonempty closed convex cone, the relation R is defined as
follows:

R(x, z, y) holds iff F(x, y)⊂ C.

Then (QVRα) becomes strong vector quasi-equilibrium problem (in short,
(SVQEP)) studied in [].
Find x̄ ∈ A such that x̄ ∈ K(x̄) and

F(x̄, y) ⊂ C, for all y ∈ K(x̄).

Remark 
(i) Corollary  improves and extends Theorem . in [] and Theorem . in [].
(ii) Theorem  improves and extends Theorems . and . in [].

3 Stability
In this section, we discuss the stability of the solutions for (QVRα). Throughout this sec-
tion, let X, Y , Z be Banach spaces, N be a real locally G-convex Hausdorff topologi-
cal vector space. Let A ⊂ X, B ⊂ Y and D ⊂ Z be nonempty compact convex subsets,

http://www.fixedpointtheoryandapplications.com/content/2012/1/158
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K ≡ K ≡ K : A → A, T : A → B be multifunctions, and R(x, z, y) be a relation linking
x ∈ A, z ∈D and y ∈ B. Now, we let

� :=
{
(T ,K)|T is upper semicontinuous in A with nonempty closed acyclic values,

if α = w (or α =m), and lower semicontinuous in A with nonempty acyclic

values, if α = s, and K is continuous with nonempty closed contractible values
}
.

Let E, E be compact sets in a normed space. Recall that the Hausdorff metric is defined
by

H(E,E) :=max
{
H*(E,E),H*(E,E)

}
,

where H*(E,E) := supe∈E d(e,E) and d(e,E) := infe∈E ‖e – e‖.
For (T ,K), (T ′,K ′) ∈ �, define

ξ
(
(T ,K),

(
T ′,K ′)) := sup

x∈A
H

(
T(x),T ′(x)

)
+ sup

x∈A
H

(
K(x),K ′(x)

)
,

where H, H are the appropriate Hausdorff metrics. Obviously, (�, ξ ) is a metric space.
Assume that R satisfies the conditions of Theorem . Then for each (T ,K) ∈ �, (QVRα)

has a solution x̄, i.e., there exists x̄ ∈ A such that x̄ ∈ K(x̄) and (y, z̄)αK(x̄)×T(x̄) satisfying

R(x̄, z̄, y) holds.

For (T ,K) ∈ �, let

α(T ,K) :=
{
x̄ ∈ A such that x̄ ∈ K(x̄)

and (y, z̄)αK(x̄)× T(x̄) satisfying R(x̄, z̄, y) holds
}
.

Then α(T ,K) = ∅, and so α(T ,K) defines a set-valued mapping from � into A.

Lemma  ([]) Let Z be a metric space and let M, Mn (n = , , . . .) be compact sets in Z.
Suppose that for any open set O ⊃M, there exists n such that Mn ⊂O, ∀n≥ n. Then any
sequence {xn} satisfying xn ∈Mn has a convergent subsequence with limit in M.

Theorem  α : � → A is upper semicontinuous with compact values.

Proof Similar arguments can be applied to three cases. We present only the proof for the
cases where α = m. Indeed, since A is compact, we need only show that m is a closed
mapping. Let a sequence {(Tn,Kn,xn)} ⊂ Graph(m) be given such that (Tn,Kn,xn) →
(T ,K ,x). We now show that {(T ,K ,x)} ⊂Graph(m).
For any n, since xn ∈ m(Tn,Kn), we have that xn ∈ Kn(xn) and ∃zn ∈ Tn(xn), ∀yn ∈ Kn(xn)

such that

R(xn, zn, yn) holds. ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/158
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For any open set O ⊃ T(x), since T(x) is a compact set, there exists ε >  such that

{
z ∈ Y : d

(
z,T(x)

)
< ε

} ⊂O, ()

where d(z,T(x)) = infz′∈T(x) ‖z – z′‖.
Since ξ ((Tn,Kn), (T ,K)) → , xn → x and T is upper semicontinuous at x, ∃n such

that

sup
x∈A

H
(
Tn(x),T(x)

)
<

ε


, ()

T(xn) ⊂
{
z ∈ Y : d

(
z,T(x)

)
<

ε



}
, ∀n≥ n. ()

From (), () and (), we have

T(xn) ⊂
{
z ∈ Y : d

(
z,T(x)

)
<

ε



}
⊂ {

z ∈ Y : d
(
z,T(x)

)
< ε

} ⊂ O, ∀n≥ n. ()

Since T(x) ⊂ O and zn ∈ Tn(xn), we can apply Lemma . There exists a subsequence
{znk } of {zn} such that {znk } convergent to z, it follows that z ∈ T(x). By using the same
argument as above, we can show that x ∈ K(x).
Next, we need only show that R(x, z, y) holds. Since xn → x and K is upper semicon-

tinuous at x, K(x) is closed, there exists y ∈ K(x) such that yn → y (taking a subse-
quence if necessary).
Since ξ ((Tn,Kn), (T ,K)) → , we can chose a subsequence {Knk } of {Kn} such that

sup
x∈A

H
(
Knk (x),K(x)

)
<

k
. ()

Thus,

H
(
Knk (xnk ),K(xnk )

)
<

k
.

This implies that there exist t′nk ∈ Knk (xnk ), k = , , . . . such that

∥∥t′nk – tnk
∥∥ <


k
.

As

∥∥t′nk – y
∥∥ ≤ ∥∥t′nk – tnk

∥∥ + ‖tnk – y‖ < 
k
+ ‖tnk – y‖ → ,

and so we have t′nk → y. Since xnk ∈ Knk (xnk ), znk ∈ Tnk (xnk ) and t′nk ∈ Knk (xnk ), applying
(), we have

R
(
xnk , znk , t

′
nk

)
holds.

Assumption (v) yields that

R(x, z, y) holds. ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/158


Hung Fixed Point Theory and Applications 2012, 2012:158 Page 12 of 13
http://www.fixedpointtheoryandapplications.com/content/2012/1/158

Since x ∈ K(x) and z ∈ T(x) and () yields that (T ,K ,x) ∈ Graph(m) and so
Graph(m) is closed. Therefore, m is closed. Since A is a compact set and m(T ,K) ⊂ A.
Hence m has a compact valued mapping. �

Remark  Theorem  improves and extends Theorems . and . in [], Theorem .
in [].
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