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Abstract
A very interesting approach in the theory of fixed points in some general structures
was recently given by Jachymski (Proc. Amer. Math. Soc. 136:1359-1373, 2008) and
Gwóźdź-Lukawska and Jachymski (J. Math. Anal. Appl. 356:453-463, 2009) by using
the context of metric spaces endowed with a graph. The purpose of this article is to
present some new fixed point results for graphic contractions and for Ćirić-Reich-Rus
G-contractions on complete metric spaces endowed with a graph. The particular case
of almost contractions is also considered.
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1 Introduction
A very interesting approach in the theory of fixed points in some general structures was
recently given by Jachymski [] andGwóźdź-Lukawska and Jachymski [] by using the con-
text of metric spaces endowed with a graph. More precisely, let (X,d) be a metric space
and� be the diagonal of X×X. LetG be a directed graph such that the set V (G) of its ver-
tices coincides with X and � ⊆ E(G), where E(G) is the set of edges of the graph. Assume
also that G has no parallel edges, and thus, one can identify G with the pair (V (G),E(G)).
By definition, an operator f : X → X is called a BanachG-contraction (see Definition .

in Jachymski []) if and only if:
(a) for each x, y ∈ X with (x, y) ∈ E(G), we have (f (x), f (y)) ∈ E(G);
(b) there exists α ∈ ], [ such that for each x, y ∈ X , the following implication holds:

((x, y) ∈ E(G) implies d(f (x), f (y))≤ αd(x, y)).
If x and y are vertices ofG, then a path inG from x to y of length k ∈N is a finite sequence

(xn)n∈{,,,...,k} of vertices such that x = x, xk = y and (xi–,xi) ∈ E(G) for i ∈ {, , . . . ,k}.
Notice that a graph G is connected if there is a path between any two vertices, and it is
weakly connected if G̃ is connected, where G̃ denotes the undirected graph obtained from
G by ignoring the direction of edges.
Denote by G– the graph obtained from G by reversing the direction of edges. Thus,

E
(
G–) = {

(x, y) ∈ X ×X : (y,x) ∈ E(G)
}
. (∗)
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Since it is more convenient to treat G̃ as a directed graph for which the set of its edges is
symmetric, under this convention, we have that

E(G̃) = E(G)∪ E
(
G–). (∗∗)

If G is such that E(G) is symmetric, then for x ∈ V (G), the symbol [x]G denotes the
equivalence class of the relation � defined on V (G) by the rule

y�z if there is a path in G from y to z.

Recall that if f : X → X is an operator, then by

Ff :=
{
x ∈ X : x = f (x)

}

we denote the set of all fixed points of f . Denote also

Xf :=
{
x ∈ X :

(
x, f (x)

) ∈ E(G)
}
.

The operator f : X → X is called orbitally continuous if for all x,a ∈ X, for any sequence
(n(i))i∈N of positive integers,

lim
i→∞ f n(i)(x) = a implies lim

i→∞ f
(
f n(i)(x)

)
= f (a).

One of the main results in Jachymski [] is Theorem .. We present here (partially)
this result. In this theorem, as well as in other results of this type, one uses the following
property:

for any sequence (xn)n∈N ⊂ X, if xn → x as n → +∞ and (xn,xn+) ∈ E(G) (or
respectively (xn+,xn) ∈ E(G)) for each n ∈ N, then there exists a sub-sequence
(xkn )n∈N of (xn)n∈N such that (xkn ,x) ∈ E(G) (or respectively (x,xkn ) ∈ E(G)) for
each n ∈ N.

(P)

Theorem . (Jachymski []) Let (X,d) be a complete metric space, and let G be a directed
graph such that V (G) = X, � ⊆ E(G) and the triple (X,d,G) has the property (P). Let f :
X → X be a G-contraction. Then the following statements hold:
() Ff �= ∅ if and only if Xf �= ∅;
() if Xf �= ∅ and G is weakly connected, then f is a Picard operator, i.e., Ff = {x*} and

(f n(x))n∈N → x* as n→ ∞ for all x ∈ X ;
() for any x ∈ Xf , we have that f |[x]G̃ is a Picard operator;
() if f ⊆ E(G), then f is a weakly Picard operator, i.e., Ff �= ∅ and, for each x ∈ X , we

have (f n(x))n∈N → x*(x) ∈ Ff as n→ ∞.

The purpose of this paper is to extend the above result to the case of some generalized
contractions.More precisely, the cases of Ćirić-Reich-RusG-contractions,G-graphic con-
tractions and of G-almost contractions in the sense of Berinde will be considered. As one
can see from the recent literature (see [–]), these classes of operators are important
extensions of the classical contraction mapping.
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Our results also generalize and extend some fixed point theorems in partially ordered
complete metric spaces given in Harjani and Sadarangani [], Nicolae, O’Regan and
Petruşel [], Nieto and Rodríguez-López [] and [], Agarwal, El-Gebeily and O’Regan
[], Nieto, Pouso and Rodríguez-López [], O’Regan and Petruşel [], Petruşel and Rus
[], and Ran and Reurings [].

2 Main results
Let G be a directed graph. Throughout this section, we will suppose that the graph G
satisfies the following standard conditions: the set V (G) of its vertices coincides with X,
E(G) is the set of edges of the graph, and � (the diagonal of X ×X) is a subset of E(G). We
also denote

Xf :=
{
x ∈ X :

(
x, f (x)

) ∈ E(G) or
(
f (x),x

) ∈ E(G)
}
.

Definition . The mapping f : X → X is a G-graphic contraction if:
() f is edge preserving, i.e., (x, y) ∈ E(G) implies (f (x), f (y)) ∈ E(G);
() there exists a ∈ [, [ such that

d
(
f (x), f (x)

) ≤ ad
(
x, f (x)

)
for all x ∈ Xf .

Lemma . Let (X,d) be ametric space endowed with a graph G satisfying the above stan-
dard conditions. Let f : X → X be a G-graphic contraction. Then f is a G–-graphic con-
traction too.

Proof Suppose that f : X → X is aG-graphic contraction.We have to prove that f : X → X
is a G–-graphic contraction, i.e.,
() (x, y) ∈ E(G–) implies (f (x), f (y)) ∈ E(G–);

(indeed, (x, y) ∈ E(G–) implies (y,x) ∈ E(G). Thus, (f (y), f (x)) ∈ E(G) and hence (f (x),
f (y)) ∈ E(G–).
() there exists a ∈ [, [ such that d(f (x), f (x))≤ ad(x, f (x)) for all x ∈ X with

(x, f (x)) ∈ E(G–) or (f (x),x) ∈ E(G–).
(indeed, let x ∈ X such that (x, f (x)) ∈ E(G–) or (f (x),x) ∈ E(G–). Then (f (x),x) ∈ E(G) or
(x, f (x)) ∈ E(G). In both cases, we get, by the G-graphic contraction condition, that there
exists a ∈ [, [ such that d(f (x), f (x))≤ ad(x, f (x)). �

Notice now the fact that a G-graphic contraction is also a G̃-graphic contraction. This
follows by (∗), (∗∗), the symmetry of the metric d and the above lemma.

Definition . The operator f : X → X is called a Ćirić-Reich-Rus G-contraction if and
only if:
(a) f is edge preserving, i.e. for each x, y ∈ X with (x, y) ∈ E(G) we have that

(f (x), f (y)) ∈ E(G);
(b) there exists α,β ,γ ∈R+ with α + β + γ ∈ ], [ such that for each x, y ∈ X , we have

((x, y) ∈ E(G) implies d(f (x), f (y))≤ αd(x, y) + βd(x, f (x)) + γd(y, f (y))).

In particular, if β = γ = , then we get the concept of Banach G-contraction presented
in the first section.
A similar result to the above one (see Lemma .) is the following.
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Chifu and Petruşel Fixed Point Theory and Applications 2012, 2012:161 Page 4 of 9
http://www.fixedpointtheoryandapplications.com/content/2012/1/161

Lemma . Let (X,d) be a metric space endowed with a graph G satisfying the standard
conditions mentioned at the beginning of this section. Let f : X → X be a Ćirić-Reich-Rus
G-contraction. Then f is a Ćirić-Reich-Rus G–-contraction too.

Notice also that a Ćirić-Reich-Rus G-contraction is a Ćirić-Reich-Rus G̃-contraction.
Now, we can prove themain results of this paper.We first present some auxiliary results.

Lemma . Let (X,d) be ametric space endowed with a graph G satisfying the above stan-
dard conditions. Let f : X → X be a G-graphic contraction with the constant a. Then, given
x ∈ Xf , there exists r(x)≥  such that

d
(
f n(x), f n+(x)

) ≤ anr(x), for all n ∈N.

Proof Let x ∈ Xf , i.e., (x, f (x)) ∈ E(G) or (f (x),x) ∈ E(G). If (x, f (x)) ∈ E(G), then by induc-
tion, we have that (f n(x), f n+(x)) ∈ E(G) for each n ∈N. Thus

d
(
f n(x), f n+(x)

) ≤ ad
(
f n–(x), f n(x)

) ≤ · · · ≤ and
(
x, f (x)

)
:= anr(x).

If (f (x),x) ∈ E(G), again by induction, we have that (f n+(x), f n(x)) ∈ E(G) for each n ∈ N.
Thus

d
(
f n(x), f n+(x)

) ≤ ad
(
f n–(x), f n(x)

) ≤ · · · ≤ and
(
x, f (x)

)
:= anr(x). �

Lemma . Let (X,d) be a complete metric space endowed with a graph G satisfying the
above standard conditions. Suppose that f : X → X is a G-graphic contraction. Then for
each x ∈ Xf , there exists x*(x) ∈ X such that the sequence (f n(x))n∈N converges to x*(x) as
n→ +∞.

Proof Let x ∈ Xf . By Lemma ., we get that

d
(
f n(x), f n+(x)

) ≤ anr(x), for all n ∈N,

where r(x) := d(x, f (x)). Hence
∑

n≥ d(f n(x), f n+(x)) < ∞, proving by a standard argument
that the sequence (f n(x))n∈N is Cauchy. Since the space X is complete with respect to d,
we get that there exists x*(x) ∈ X such that the sequence (f n(x))n∈N converges to x*(x) as
n→ +∞. �

The next result is also important.

Lemma . Let (X,d) be ametric space endowed with a graph G satisfying the above stan-
dard conditions. Let f : X → X be a G-graphic contraction for which there exists x ∈ X
such that f (x) ∈ [x]G̃. Then the set [x]G̃ is invariant with respect to f and f |[x]G̃ is a
G̃x -graphic contraction, where G̃x is the component of G̃ containing x.

Proof Let x ∈ [x]G̃. Then there exist (x,x, . . . ,xk–,xk = x) which form a path between
x and x in G̃, i.e., (xi,xi+) ∈ E(G̃) for i ∈ {, . . . ,k – }. Since f is a G̃-graphic contraction
(thus edge preserving), we get that (f (xi), f (xi+)) ∈ E(G̃) for i ∈ {, . . . ,k – }, i.e., we have

http://www.fixedpointtheoryandapplications.com/content/2012/1/161
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a path from f (x) to f (x). Hence f (x) ∈ [f (x)]G̃ = [x]G̃ since f (x) ∈ [x]G̃. Thus, the set
[x]G̃ is invariant with respect to f .
Let (x, y) ∈ E(G̃x ). Then there is a path from x to y passing through x, i.e., (x,x, . . . ,

xk– = x,xk = y) and (xi,xi+) ∈ E(G̃) for i ∈ {, . . . ,k – }. As before, by the edge preserving
condition, we get that (f (xi), f (xi+)) ∈ E(G̃) for i ∈ {, . . . ,k – }. Let (y, y, . . . , yl–, yl) be a
path between x and fx . Thus

(
x = y, y, . . . , yl = f (x), f (x), . . . , f (xk–) = f (x), f (xk) = f (y)

)

is a path in G̃ from x to f (y) such that (f (x), f (y)) ∈ E(G̃x ). Moreover, f is a G̃x -graphic
contraction since E(G̃x ) ⊂ E(G̃), and f is a G̃-graphic contraction. �

For our next result, we need the following definition.

Definition . Let (X,d) be a metric space endowed with a graph G satisfying the above
standard conditions. The operator f : X → X is called orbitally G-continuous if, for all
x,a ∈ X and for any sequence (n(i))i∈N of positive integers,

lim
i→∞ f n(i)(x) = a,

(
f n(i)(x), f n(i)+(x)

) ∈ E(G), i ∈N ⇒ lim
i→∞ f

(
f n(i)(x)

)
= f (a).

We can now give the main result for G-graphic contractions. We will make use of the
property (P) introduced in Section .

Theorem . Let (X,d) be a complete metric space and G be a directed graph satisfying
the above standard conditions such that the triple (X,d,G) satisfies the property (P). Let
f : X → X be a G-graphic contraction which is G-orbitally continuous. Then the following
statements hold:
() Ff �= ∅ if and only if Xf �= ∅;
() if Xf �= ∅ and G is weakly connected, then f is a weakly Picard operator;
() for any x ∈ Xf , we have that f |[x]G̃ is a weakly Picard operator.

Proof We start by proving statement (). Let x ∈ Xf . Applying Lemma ., we have that
there exists r(x) ≥  such that

d
(
f n(x), f n+(x)

) ≤ anr(x), for all n ∈N.

This yields, as in the proof of Lemma ., that there exists x*(x) ∈ X such that
limn→∞ f n(x) = x*(x). Because x ∈ Xf , condition () in Definition . implies that f n(x) ∈ Xf

for every n ∈ N. Suppose now, for example, that (x, f (x)) ∈ E(G). (A similar deduction
can be made if (f (x),x) ∈ E(G).) Using the property (P), we can find a subsequence
(f kn (x))n∈N of (f n(x))n∈N such that (f kn (x),x*(x)) ∈ E(G) for each n ∈ N. Then the points
x, f (x), . . . , f k (x),x*(x) form a path in G, and thus x*(x) ∈ [x]G̃. Since f is G-orbitally con-
tinuous, we obtain that x*(x) is a fixed point for f |[x]G̃ .
For (), notice that from () it follows that Ff �= ∅ if Xf �= ∅. Suppose Ff �= ∅. Since we

work under the assumption that � ⊆ E(G), we immediately get that Xf �= ∅. Hence, ()
also holds.

http://www.fixedpointtheoryandapplications.com/content/2012/1/161
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To prove (), let x ∈ Xf . Because G is weakly connected, we have that X = [x]G̃ and we
only need to apply (). �

Remark . In the above result, we can remove the condition that the triple (X,d,G) sat-
isfies the property (P) and f is G-orbitally continuous if we assume that the mapping f is
orbitally continuous.

Remark . If we relax the definition of the G-graphic contraction, by replacing the con-
dition

() f is edge preserving, i.e., (x, y) ∈ E(G) implies (f (x), f (y)) ∈ E(G)

with

(′) (x, f (x)) ∈ E(G) implies (f (x), f (x)) ∈ E(G),

then part of the above results take place. More precisely, we do not know if a similar result
to Lemma . takes place.

The following example shows that our result is a non-trivial extension of the abovemen-
tioned papers.

Example . Let X = [, ] be endowed with the usual distance. Consider

E(G) =
{
(, )

} ∪ {
(,x) : x ≥ /

} ∪ {
(x, y) : x, y ∈ (, ]

}
,

and f : X → X,

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

x/, if x ∈ (, ),

/, if x = ,

, if x = .

Then G is weakly connected, Xf is nonempty and f is a G-graphic contraction which fails
to be a G-contraction. Moreover, Fix(f ) = {}.

Proof It can be easily checked thatG is weakly connected and f is edge preserving. To see
that f is not a G-contraction, notice that |f () – f (/)| = / = |– /|. A simple case-by-
case calculation shows that f is a G-graphic contraction. Moreover, Fix(f ) = {}. �

We will consider next the case of almost contractions; see Berinde []. See also Păcurar
[] for a detailed and comprehensive study of almost contractions.

Definition . The mapping f : X → X is a G-almost contraction if:
() f is edge preserving, i.e., (x, y) ∈ E(G) implies (f (x), f (y)) ∈ E(G);
() there exists α ∈], [ and L ≥  such that for each x, y ∈ X the following implication

holds:

(x, y) ∈ E(G) implies d
(
f (x), f (y)

) ≤ ad(x, y) + Ld
(
y, f (x)

)
.

http://www.fixedpointtheoryandapplications.com/content/2012/1/161
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Notice that if f is a G-almost contraction, then f is a G-graphic contraction with the
constant a ∈ [, [. Thus all the above results take place.
We will consider now the case of Ćirić-Reich-Rus G-contractions.

Lemma . Let (X,d) be ametric space endowed with a graph G satisfying the above stan-
dard conditions. Let f : X → X be a Ćirić-Reich-Rus G-contraction with constants α, β , γ .
Then, given x ∈ Xf , there exists r(x)≥  such that

d
(
f n(x), f n+(x)

) ≤ anr(x), for all n ∈N,

where a := α+β

–γ
.

Proof Let x ∈ Xf , i.e., (x, f (x)) ∈ E(G) or (f (x),x) ∈ E(G). If (x, f (x)) ∈ E(G), then by induc-
tion, we have that (f n(x), f n+(x)) ∈ E(G) for each n ∈N. Hence

d
(
f n(x), f n+(x)

) ≤ αd
(
f n–(x), f n(x)

)
+ βd

(
f n–(x), f n(x)

)
+ γd

(
f n(x), f n+(x)

)
.

Thus, we get that

d
(
f n(x), f n+(x)

) ≤ α + β

 – γ
d
(
f n–(x), f n(x)

) ≤ · · · ≤ and
(
x, f (x)

)
:= anr(x).

If (f (x),x) ∈ E(G), again by induction, we have that (f n+(x), f n(x)) ∈ E(G) for each n ∈ N.
Thus we get the same relation as before. This completes the proof. �

Lemma . Let (X,d) be a complete metric space endowed with a graph G satisfying the
above standard conditions. Suppose that f : X → X is a Ćirić-Reich-Rus G-contraction
with constants α, β , γ . Then for each x ∈ Xf , there exists x*(x) ∈ X such that the sequence
(f n(x))n∈N converges to x*(x) as n → +∞.

Proof Let x ∈ Xf . By Lemma ., we get that

d
(
f n(x), f n+(x)

) ≤ anr(x), for all n ∈N,

where r(x) := d(x, f (x)). Hence
∑

n≥ d(f n(x), f n+(x)) < ∞, proving by a standard argument
that the sequence (f n(x))n∈N is Cauchy. Since the space X is complete with respect to d,
we get that there exists x*(x) ∈ X such that the sequence (f n(x))n∈N converges to x*(x) as
n→ +∞. �

We can now give the main result for Ćirić-Reich-Rus G-contractions. We will make use
again of the property (P) introduced in Section .

Theorem . Let (X,d) be a complete metric space and G be a directed graph satisfying
the above standard conditions such that the triple (X,d,G) satisfies the property (P). Let f :
X → X be Ćirić-Reich-Rus G-contraction with constants α, β , γ such that it is G-orbitally
continuous. Then the following statements hold:
() Ff �= ∅ if and only if Xf �= ∅;
() if Xf �= ∅ and G is weakly connected, then f is a weakly Picard operator;
() for any x ∈ Xf , we have that f |[x]G̃ is a weakly Picard operator.

http://www.fixedpointtheoryandapplications.com/content/2012/1/161
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Proof We start by proving statement (). Let x ∈ Xf . Applying Lemma ., we have that
there exists r(x) ≥  such that

d
(
f n(x), f n+(x)

) ≤ anr(x), for all n ∈N.

This yields, as in the proof of Lemma ., that there exists x*(x) ∈ X such that
limn→∞ f n(x) = x*(x). Because x ∈ Xf , condition () inDefinition . implies that f n(x) ∈ Xf

for every n ∈ N. Suppose now, for example, that (x, f (x)) ∈ E(G). (A similar deduction
can be made if (f (x),x) ∈ E(G).) Using the property (P), we can find a subsequence
(f kn (x))n∈N of (f n(x))n∈N such that (f kn (x),x*(x)) ∈ E(G) for each n ∈ N. Then the points
x, f (x), . . . , f k (x),x*(x) form a path in G, and thus x*(x) ∈ [x]G̃. Since f is G-orbitally con-
tinuous, we obtain that x*(x) is a fixed point for f |[x]G̃ .
For (), notice that from () it follows that Ff �= ∅ if Xf �= ∅. Suppose Ff �= ∅. Since we

work under the assumption that � ⊆ E(G), we immediately get that Xf �= ∅. Hence, ()
also holds.
To prove (), let x ∈ Xf . Because G is weakly connected, we have that X = [x]G̃, and we

only need to apply (). �

Remark . If in the above result we put β = γ = , then we get the results given in
Jachymski [].

Remark . It is an open problem if in some appropriate assumptions, one can prove that
a Ćirić-Reich-Rus G-contraction is a Picard operator.
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