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Abstract
In this paper, zero points of the sum of two monotone mappings, solutions of a
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1 Introduction and preliminaries
Throughout this paper, we always assume that H is a real Hilbert space with an inner
product 〈·, ·〉 and a norm ‖ · ‖. Let C be a nonempty, closed, and convex subset of H .
Let S : C → C be a nonlinear mapping. F(S) stands for the fixed point set of S; that is,
F(S) := {x ∈ C : x = Tx}.
Recall that S is said to be nonexpansive iff

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.

If C is a bounded, closed, and convex subset of H , then F(S) is not empty, closed, and
convex; see [].
Let A : C → H be a mapping. Recall that A is said to be inverse-strongly monotone iff

there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is also said to be α-inverse-strongly monotone.
A is said to bemonotone iff

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

Recall that the classical variational inequality is to find an x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)
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In this paper, we use VI(C,A) to denote the solution set of (.). It is known that x ∈ C is a
solution of (.) if and only if x is a fixed point of the mapping ProjC(I – rA), where r >  is
a constant, I stands for the identity mapping, and ProjC stands for the metric projection
from H onto C. If A is α-inverse-strongly monotone and r ∈ (, α], then the mapping
ProjC(I – rA) is nonexpansive; see [] for more details. It follows that VI(C,A) is closed
and convex.
Monotone variational inequality theory has emerged as a fascinating branch of math-

ematical and engineering sciences with a wide range of applications in industry, finance,
economics, ecology, social, regional, pure, and applied sciences. In recent years, much at-
tention has been given to developing efficient numerical methods for treating solution
problems of monotone variational inequality. The gradient-projection method is a pow-
erful tool for solving constrained convex optimization problems and has extensively been
studied; see [–] and the references therein. It has recently been applied to solving split
feasibility problems which find applications in image reconstructions and the intensity
modulated radiation theory; see [–] and the references therein. However, the gradient-
projection method requires the operator to be strongly monotone and Lipschitz con-
tinuous. These strong conditions rule out many applications. Extra gradient-projection
method which was first introduce by Korpelevich [] in the finite dimensional Euclidean
space has been studied recently for relaxing the strongmonotonicity of operators; see [–
] and the references therein.
Recall that a set-valued mapping M : H ⇒ H is said to be monotone iff, for all x, y ∈ H ,

f ∈ Mx and g ∈ My imply 〈x – y, f – g〉 > . A monotone mapping M :H ⇒H is maximal
iff the graph Graph(M) of R is not properly contained in the graph of any other monotone
mapping. It is known that amonotonemappingM is maximal if and only if, for any (x, f ) ∈
H ×H , 〈x – y, f – g〉 ≥ , for all (y, g) ∈Graph(M) implies f ∈ Rx.
For a maximal monotone operator M on H and r > , we may define the single-valued

resolvent Jr : H → D(M), where D(M) denotes the domain of M. It is known that Jr is
firmly nonexpansive, and M–() = F(Jr), where F(Jr) := {x ∈ D(M) : x = Jrx} and M–() :
{x ∈H :  ∈Mx}.
Recently, variational inequalities, fixed point problems, and zero point problems have

been investigated by many authors based on iterative methods; see, for example, [–]
and the references therein. In this paper, zero point problems of the sum of a maximal
monotone operator and an inverse-strongly monotone mapping, solution problems of a
monotone variational inequality, and fixed point problems of a nonexpansive mapping are
investigated. A hybrid iterative algorithm is considered for analyzing the convergence of
iterative sequences. Strong convergence theorems are established in the framework of real
Hilbert spaces without any compact assumptions.
In order to prove our main results, we also need the following definitions and lemmas.

Lemma . Let C be a nonempty, closed, and convex subset of H . Then the following in-
equality holds:

‖x – ProjC x‖ + ‖y – ProjC ‖ ≤ ‖x – y‖, ∀x ∈H , y ∈ C.

Lemma . [] Let C be a nonempty, closed, and convex subset of H . Let S : C → C be a
nonexpansive mapping. Then the mapping I – S is demiclosed at zero, that is, if {xn} is a
sequence in C such that xn ⇀ x̄ and xn – Sxn → , then x̄ ∈ F(S).
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Lemma . Let C be a nonempty, closed, and convex subset of H , B : C →H be amapping,
and M :H ⇒H be a maximal monotone operator. Then F(Jr(I – sB)) = (B +M)–().

Proof Notice that

p ∈ F
(
Jr(I – sB)

) ⇐⇒ p = Jr(I – sB)p ⇐⇒ p – sBp ∈ p + sMp

⇐⇒  ∈ (B +M)–() ⇐⇒ p ∈ (B +M)–().

This completes the proof. �

Lemma . [] Let C be a nonempty, closed, and convex subset of H , A : C → H be a
Lipschitz monotone mapping, and NCx be the normal cone to C at x ∈ C; that is, NCx =
{y ∈H : 〈x – u, y〉,∀u ∈ C}. Define

Wx =

⎧⎨
⎩
Ax +NCx, x ∈ C,

∅, x /∈ C.

Then W is maximal monotone and  ∈Wx if and only if x ∈VI(C,A).

2 Main results
Now, we are in a position to give our main results.

Theorem . Let C be a nonempty, closed, and convex subset of H . Let S : C → C be a
nonexpansive mapping with a nonempty fixed point set, A : C →H be an α-Lipschitz con-
tinuous and monotone mapping, and B : C → H be a β-inverse-strongly monotone map-
ping. Let M :H ⇒H be a maximal monotone operator such that D(M) ⊂ C. Assume that
F := F(S) ∩ (B +M)–() ∩ VI(C,A) is not empty. Let {xn} be a sequence generated by the
following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

zn = ProjC(Jsn (xn – snBxn) – rnAJsn (xn – snBxn)),

yn = αnxn + ( – αn)SProjC(Jsn (xn – snBxn) – rnAzn),

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = ProjCn+ x, n≥ ,

(.)

where Jsn = (I + snM)–, {rn} is a sequence in (, 
α
), {sn} is a sequence in (, β), and {αn} is

a sequence in (, ). Assume that the following restrictions are satisfied:
(a)  < a≤ rn ≤ b < 

α
;

(b)  < c≤ sn ≤ d < β ;
(c)  ≤ αn ≤ e < ,

where a, b, c, d, and e are real constants. Then the sequence {xn} converges strongly to
ProjF x.

Proof First, we show that Cn is closed and convex for each n ≥ . From the assumption,
we see that C = C is closed and convex. Suppose that Cm is closed and convex for some

http://www.fixedpointtheoryandapplications.com/content/2012/1/162


Gu and Lu Fixed Point Theory and Applications 2012, 2012:162 Page 4 of 15
http://www.fixedpointtheoryandapplications.com/content/2012/1/162

m ≥ . We show that Cm+ is closed and convex for the same m. Let v, v ∈ Cm+ and
v = tv + ( – t)v, where t ∈ (, ). Notice that

‖ym – v‖ ≤ ‖xm – v‖

is equivalent to

‖ym‖ – ‖xm‖ – 〈v, ym – xm〉 ≥ .

It is clear that v ∈ Cm+. This shows that Cn is closed and convex for each n≥ .
Next, we show thatF ⊂ Cn for each n≥ . Put un = ProjC(vn– rnAzn), where vn = Jsn (xn–

snBxn). From the assumption, we see that F ⊂ C = C. Suppose that F ⊂ Cm for some
m ≥ . For any p ∈F ⊂ Cm, we see from Lemma . that

‖um – p‖ ≤ ‖vm – rmAzm – p‖ – ‖vm – rmAzm – um‖

= ‖vm – p‖ – ‖vm – um‖ + rm〈Azm,p – um〉
= ‖vm – p‖ – ‖vm – um‖ + rm

(〈Azm –Ap,p – zm〉 + 〈Ap,p – zm〉
+ 〈Azm, zm – um〉)

≤ ‖vm – p‖ – ‖vm – zm + zm – um‖ + rm〈Azm, zm – um〉
= ‖vm – p‖ – ‖vm – zm‖ – ‖zm – um‖

+ 〈vm – zm – rmAzm,um – zm〉. (.)

Notice that A is Lipschitz continuous. In view of zm = ProjC(vm – rmAvm), we find that

〈vm – zm – rmAzm,um – zm〉
= 〈vm – zm – rmAvm,um – zm〉 + 〈rmAvm – rmAzm,um – zm〉
≤ rmα‖vm – zm‖‖um – zm‖. (.)

Substituting (.) into (.), we obtain that

‖um – p‖ ≤ ‖vm – p‖ – ‖vm – zm‖ – ‖zm – um‖ + rmα‖vm – zm‖‖um – zm‖
≤ ‖vm – p‖ – (

 – rmα)‖vm – zm‖. (.)

This in turn implies from restriction (a) that

‖ym – p‖ ≤ αm‖xm – p‖ + ( – αm)‖Sum – p‖

≤ αm‖xm – p‖ + ( – αm)‖um – p‖

≤ αm‖xm – p‖ + ( – αm)
(‖vm – p‖ – (

 – rmα)‖vm – zm‖)
≤ ‖xm – p‖ – ( – αm)

(
 – rmα)‖vm – zm‖

≤ ‖xm – p‖. (.)
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This shows that p ∈ Cm+. This proves that F ⊂ Cn for each n≥ . Note xn = ProjCn x. For
each p ∈ F ⊂ Cn, we have ‖x – xn‖ ≤ ‖x – p‖. Since B is inverse-strongly monotone, we
see from Lemma . that (B +M)–() is closed and convex. Since A is Lipschitz continu-
ous, we find that VI(C,A) is close and convex. This proves that F is closed and convex. It
follows that

‖x – xn‖ ≤ ‖x – ProjF x‖. (.)

This implies that {xn} is bounded. Since xn = ProjCn x and xn+ = ProjCn+ x ∈ Cn+ ⊂ Cn,
we have

 ≤ 〈x – xn,xn – xn+〉
= 〈x – xn,xn – x + x – xn+〉
≤ –‖x – xn‖ + ‖x – xn‖‖x – xn+‖.

It follows that

‖xn – x‖ ≤ ‖xn+ – x‖.

This proves that limn→∞ ‖xn – x‖ exists. Notice that

‖xn – xn+‖

= ‖xn – x‖ + 〈xn – x,x – xn+〉 + ‖x – xn+‖

= ‖xn – x‖ – ‖xn – x‖ + 〈xn – x,xn – xn+〉 + ‖x – xn+‖

≤ ‖x – xn+‖ – ‖xn – x‖.

It follows that

lim
n→∞‖xn – xn+‖ = . (.)

In view of xn+ = ProjCn+ x ∈ Cn+, we see that

‖yn – xn+‖ ≤ ‖xn – xn+‖.

This implies that

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn – xn+‖ ≤ ‖xn – xn+‖.

From (.), we find that

lim
n→∞‖xn – yn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/162
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Since B is β-inverse-strongly monotone, we see from restriction (b) that

∥∥(I – snB)x – (I – snB)y
∥∥ = ‖x – y‖ – sn〈x – y,Bx – By〉 + sn‖Bx – By‖

≤ ‖x – y‖ – sn(β – sn)‖Bx – By‖

≤ ‖x – y‖, ∀x, y ∈ C.

This implies from (.) that

‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)‖vn – p‖

= αn‖xn – p‖ + ( – αn)
∥∥Jsn (xn – snBxn) – Jsn (p – snBp)

∥∥

≤ ‖xn – p‖ – ( – αn)sn(β – sn)‖Bxn – Bp‖.

It follows that

( – αn)sn(β – sn)‖Bxn – Bp‖ ≤ ‖xn – p‖ – ‖yn – p‖

≤ ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖).

In view of restrictions (b) and (c), we find from (.) that

lim
n→∞‖Bxn – Bp‖ = . (.)

Since Jsn is firmly nonexpansive, we find that

‖vn – p‖ = ∥∥Jsn (xn – snBxn) – Jsn (p – snBp)
∥∥

≤ 〈
vn – p, (xn – snBxn) – (p – snBp)

〉

=


(‖vn – p‖ + ∥∥(xn – snBxn) – (p – snBp)

∥∥

–
∥∥(vn – p) –

(
(xn – snBxn) – (p – snBp)

)∥∥)

≤ 

(‖vn – p‖ + ‖xn – p‖ – ∥∥vn – xn + sn(Bxn – Bp)

∥∥)

=


(‖vn – p‖ + ‖xn – p‖ – ‖vn – xn‖ – sn‖Bxn – Bp‖

– sn〈vn – xn,Bxn – Bp〉)

≤ 

(‖vn – p‖ + ‖xn – p‖ – ‖vn – xn‖ + sn‖vn – xn‖‖Bxn – Bp‖).

This in turn implies that

‖vn – p‖ ≤ ‖xn – p‖ – ‖vn – xn‖ + sn‖vn – xn‖‖Bxn – Bp‖. (.)

Combining (.) with (.), we arrive at

‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)‖vn – p‖

≤ ‖xn – p‖ – ( – αn)‖vn – xn‖ + sn‖vn – xn‖‖Bxn – Bp‖.

http://www.fixedpointtheoryandapplications.com/content/2012/1/162
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It follows that

( – αn)‖vn – xn‖ ≤ ‖xn – p‖ – ‖yn – p‖ + sn‖vn – xn‖‖Bxn – Bp‖
≤ ‖xn – yn‖

(‖xn – p‖ + ‖yn – p‖) + sn‖vn – xn‖‖Bxn – Bp‖.

In view of (.) and (.), we see from restriction (c) that

lim
n→∞‖vn – xn‖ = . (.)

On the other hand, we find from (.) that

( – αn)
(
 – rnα

)‖vn – zn‖ ≤ ‖xn – p‖ – ‖yn – p‖

≤ ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖).

In view of restrictions (a) and (c), we obtain from (.) that

lim
n→∞‖vn – zn‖ = . (.)

Notice that

‖un – zn‖ =
∥∥PC(vn – rnAzn) – PC(vn – rnAvn)

∥∥

≤ ∥∥(vn – rnAzn) – (vn – rnAvn)
∥∥

≤ rnα
‖zn – vn‖.

Thanks to (.), we arrive at

lim
n→∞‖un – zn‖ = . (.)

Notice that

‖xn – Sxn‖ ≤ ‖xn – Sun‖ + ‖Sun – Sxn‖

≤ ‖xn – yn‖
 – αn

+ ‖un – xn‖

≤ ‖xn – yn‖
 – αn

+ ‖un – zn‖ + ‖zn – vn‖ + ‖vn – xn‖.

In view of (.), (.), (.), and (.), we find from restriction (c) that

lim
n→∞‖xn – Sxn‖ = .

Since {xn} is bounded, we find that there exists a subsequence {xni} of {xn} such that xni ⇀
q ∈ C. From Lemma ., we easily conclude that q ∈ F(S).
Now, we are in a position to show that x ∈VI(C,A). Define

Wx =

⎧⎨
⎩
Ax +NCx, x ∈ C,

∅, x /∈ C.

http://www.fixedpointtheoryandapplications.com/content/2012/1/162
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For any given (x, y) ∈ G(W ), we have y–Ax ∈NCx. Since un ∈ C, we see from the definition
of NC

〈x – un, y –Ax〉 ≥ . (.)

In view of un = PC(vn – rnAzn), we obtain that

〈x – un,un + rnAzn – vn〉 ≥ 

and hence
〈
x – un,

un – vn
rn

+Azn
〉
≥ . (.)

In view of (.) and (.), we find that

〈x – uni , y〉 ≥ 〈x – uni ,Ax〉

≥ 〈x – uni ,Ax〉 –
〈
x – uni ,

uni – vni
rni

+Azni

〉

= 〈x – uni ,Ax –Auni〉 + 〈x – uni ,Auni –Azni〉

–
〈
x – uni ,

uni – vni
rni

〉

≥ 〈x – uni ,Auni –Azni〉 –
〈
x – uni ,

uni – vni
rni

〉
. (.)

Notice that

‖xn – un‖ ≤ ‖xn – vn‖ + ‖vn – zn‖ + ‖zn – un‖.

It follows from (.), (.), and (.) that

lim
n→∞‖xn – un‖ = .

Since A is Lipschitz continuous, we find from (.) that

〈x – q, y〉 ≥ .

Since W is maximal monotone, we conclude that q ∈ W–(). This proves that q ∈
VI(C,A).
Finally, we prove that q ∈ (B +M)–(). Notice that

xn – snBxn ∈ vn + snMvn;

that is,

xn – vn
sn

– Bxn ∈Mvn. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/162
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Let μ ∈ Mν . SinceM is monotone, we find from (.)

〈
xn – vn

sn
– Bxn –μ, vn – ν

〉
≥ .

In view of the restriction (b), we see that

〈–Bq –μ,q – ν〉 ≥ .

This implies that –Bq ∈Mq, that is, q ∈ (B +M)–(). This completes q ∈F . Assume that
there exists another subsequence {xnj} of {xn} which converges weakly to q′ ∈ F . We can
easily conclude from Opial’s condition that q = q′.
Finally, we show that q = ProjF x and {xn} converges strongly to q. This completes the

proof of Theorem .. In view of the weak lower semicontinuity of the norm, we obtain
from (.) that

‖x – ProjF x‖ ≤ ‖x – q‖ ≤ lim inf
n→∞ ‖x – xn‖

≤ lim sup
n→∞

‖x – xn‖ ≤ ‖x – ProjF x‖,

which yields that limn→∞ ‖x – xn‖ = ‖x – ProjF x‖ = ‖x – q‖. It follows that {xn} con-
verges strongly to ProjF x. This completes the proof. �

If B = , then Theorem . is reduced to the following.

Corollary . Let C be a nonempty, closed, and convex subset of H . Let S : C → C be a
nonexpansive mapping with a nonempty fixed point set and A : C → H be an α-Lipschitz
continuous andmonotonemapping. LetM :H ⇒H be amaximalmonotone operator such
that D(M) ⊂ C. Assume that F := F(S) ∩ M–() ∩ VI(C,A) is not empty. Let {xn} be a
sequence generated by the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

zn = ProjC(Jsnxn – rnAJsnxn),

yn = αnxn + ( – αn)SProjC(Jsnxn – rnAzn),

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = ProjCn+ x, n≥ ,

where Jsn = (I + snM)–, {rn} is a sequence in (, 
α
), {sn} is a sequence in (, +∞), and {αn}

is a sequence in (, ). Assume that the following restrictions are satisfied:
(a)  < a≤ rn ≤ b < 

α
;

(b)  < c≤ sn <∞;
(c)  ≤ αn ≤ d < ,

where a, b, c, and d are real constants.Then the sequence {xn} converges strongly to ProjF x.

IfM = , then Jsn = I . Corollary . is reduced to the following.

http://www.fixedpointtheoryandapplications.com/content/2012/1/162
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Corollary . Let C be a nonempty, closed, and convex subset of H . Let S : C → C be a
nonexpansive mapping with a nonempty fixed point set and A : C → H be an α-Lipschitz
continuous and monotone mapping. Assume that F := F(S) ∩ VI(C,A) is not empty. Let
{xn} be a sequence generated by the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

zn = ProjC(xn – rnAxn),

yn = αnxn + ( – αn)SProjC(xn – rnAzn),

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = ProjCn+ x, n≥ ,

where {rn} is a sequence in (, 
α
), and {αn} is a sequence in (, ). Assume that the following

restrictions are satisfied:
(a)  < a≤ rn ≤ b < 

α
;

(b)  ≤ αn ≤ c < ,
where a, b, and c are real constants. Then the sequence {xn} converges strongly to ProjF x.

If A = , then Theorem . is reduced to the following.

Corollary . Let C be a nonempty, closed, and convex subset of H .Let S : C → C be a non-
expansive mapping with a nonempty fixed point set and B : C → H be a β-inverse-strongly
monotonemapping. LetM :H ⇒H be amaximalmonotone operator such that D(M) ⊂ C.
Assume that F := F(S)∩ (B+M)–() is not empty. Let {xn} be a sequence generated by the
following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

yn = αnxn + ( – αn)SJsn (xn – snBxn),

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = ProjCn+ x, n≥ ,

where Jsn = (I + snM)–, {sn} is a sequence in (, β), and {αn} is a sequence in (, ). Assume
that the following restrictions are satisfied:
(a)  < a≤ sn ≤ b < β ;
(b)  ≤ αn ≤ c < ,

where a, b, and c are real constants. Then the sequence {xn} converges strongly to ProjF x.

Let f : H → (–∞, +∞] be a proper convex lower semicontinuous function. Then the
subdifferential ∂f of f is defined as follows:

∂f (x) =
{
y ∈H : f (z) ≥ f (x) + 〈z – x, y〉, z ∈H

}
, ∀x ∈H .

From Rockafellar [], we know that ∂f is maximal monotone. It is not hard to verify that
 ∈ ∂f (x) if and only if f (x) =miny∈H f (y).

http://www.fixedpointtheoryandapplications.com/content/2012/1/162
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Let IC be the indicator function of C, i.e.,

IC(x) =

⎧⎨
⎩
, x ∈ C,

+∞, x /∈ C.

Since IC is a proper lower semicontinuous convex function onH , we see that the subdiffer-
ential ∂IC of IC is a maximal monotone operator. It is clear that Jsx = PCx, ∀x ∈ H . Notice
that (B + ∂IC)–() =VI(C,B). Indeed,

x ∈ (B + ∂IC)–() ⇐⇒  ∈ Bx + ∂ICx

⇐⇒ –Bx ∈ ∂ICx

⇐⇒ 〈Bx, y – x〉 ≥ 

⇐⇒ x ∈VI(C,B). (.)

In the light of the above, the following is not hard to derive from Corollary ..

Corollary . Let C be a nonempty, closed, and convex subset of H . Let S : C → C be a
nonexpansive mapping with a nonempty fixed point set and B : C → H be a β-inverse-
strongly monotone mapping. Assume that F := F(S) ∩ VI(C,B) is not empty. Let {xn} be a
sequence generated by the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

yn = αnxn + ( – αn)SPC(xn – snBxn),

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = ProjCn+ x, n≥ ,

where {sn} is a sequence in (, β), and {αn} is a sequence in (, ).Assume that the following
restrictions are satisfied:
(a)  < a≤ sn ≤ b < β ;
(b)  ≤ αn ≤ c < ,

where a, b, and c are real constants. Then the sequence {xn} converges strongly to ProjF x.

3 Applications
First, we consider the problem of finding a minimizer of a proper convex lower semicon-
tinuous function.

Theorem . Let f : H → (–∞, +∞] be a proper convex lower semicontinuous function
such that (∂f )–() is not empty. Let {xn} be a sequence generated by the following iterative

http://www.fixedpointtheoryandapplications.com/content/2012/1/162
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process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈H ,

C =H ,

yn = argmins∈H{f (z) + ‖z–xn‖
sn },

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = ProjCn+ x, n≥ ,

where {sn} is a positive sequence such that  < a ≤ sn, where a is a real constant. Then the
sequence {xn} converges strongly to Proj(∂f )–() x.

Proof Putting A = B = , S = I , and αn ≡ , we can immediately draw the desired conclu-
sion from Theorem .. �

Second, we consider the problem of approximating a common fixed point of a pair of
nonexpansive mappings.

Theorem . Let C be a nonempty, closed, and convex subset of H . Let S : C → C and
T : C → C be a pair of nonexpansive mappings with a nonempty common fixed point set.
Let {xn} be a sequence generated by the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

zn = ( – sn)xn + snTxn,

yn = αnxn + ( – αn)Szn,

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = ProjCn+ x, n≥ ,

where {sn}, and {αn} are sequences in (, ). Assume that the following restrictions are sat-
isfied:
(a)  < a≤ sn ≤ b < ;
(b)  ≤ αn ≤ c < ,

where a, b, and c are real constants. Then the sequence {xn} converges strongly to
ProjF(S)∩F(T) x.

Proof PuttingA = ,M = ∂IC , and B = I–T , we see that B is 
 -inverse-stronglymonotone.

We also have F(T)=VI(C,B) and PC(xn – snBxn) = ( – sn)xn + snTxn. In view of (.), we
can immediately obtain the desired result. �

Let F be a bifunction of C × C into R, where R denotes the set of real numbers. Recall
the following equilibrium problem in the terminology of Blum and Oettli [] (see also
Fan []):

Find x ∈ C such that F(x, y)≥ , ∀y ∈ C. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/162
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To study the equilibrium problem (.), we may assume that F satisfies the following
conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x)≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and lower semi-continuous.
Putting F(x, y) = 〈Ax, y – x〉 for every x, y ∈ C, we see that the equilibrium problem (.)

is reduced to the variational inequality (.).
The following lemma can be found in [] and [].

Lemma . Let C be a nonempty, closed, and convex subset of H and F : C ×C → R be a
bifunction satisfying (A)-(A). Then, for any s >  and x ∈H , there exists z ∈ C such that

F(z, y) +

s
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, define

Tsx =
{
z ∈ C : F(z, y) +


s
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
(.)

for all s >  and x ∈H . Then, the following hold:
(a) Ts is single-valued;
(b) Ts is firmly nonexpansive; that is,

‖Tsx – Tsy‖ ≤ 〈Tsx – Tsy,x – y〉, ∀x, y ∈H ;

(c) F(Ts) = EP(F);
(d) EP(F) is closed and convex.

Lemma . [] Let C be a nonempty, closed, and convex subset of H , F be a bifunction
from C × C to R which satisfies (A)-(A), and AF be a multivalued mapping of H into
itself defined by

AFx =

⎧⎨
⎩

{z ∈H : F(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,

∅, x /∈ C.
(.)

Then AF is a maximal monotone operator with the domain D(AF ) ⊂ C, EP(F) = A–
F (),

where FP(F) stands for the solution set of (.), and

Tsx = (I + sAF )–x, ∀x ∈ H , r > ,

where Ts is defined as in (.).

Finally, we consider finding a solution of the equilibrium problem.

http://www.fixedpointtheoryandapplications.com/content/2012/1/162
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Theorem . Let C be a nonempty, closed, and convex subset of H . Let F : C ×C → R be
a bifunction satisfying (A)-(A) such that EP(F) �= ∅. Let {xn} be a sequence generated by
the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

yn = (I + snAF )–xn,

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = ProjCn+ x, n≥ ,

where AF is defined as (.), and {sn} is a positive sequence such that  < a≤ sn < ∞, where
a is a real constant Then the sequence {xn} converges strongly to ProjFP(F) x.

Proof Putting A = B = , S = I and αn ≡ , we immediately reach the desired conclusion
from Lemma .. �
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