RESEARCH

Open Access

Fixed point theorems in convex metric spaces

Mohammad Moosaei^{*}

*Correspondence: m.moosaei@basu.ac.ir Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran

Abstract

In this paper, we study some fixed point theorems for self-mappings satisfying certain contraction principles on a convex complete metric space. In addition, we investigate some common fixed point theorems for a Banach operator pair under certain generalized contractions on a convex complete metric space. Finally, we also improve and extend some recent results.

MSC: 47H09; 47H10; 47H19; 54H25

Keywords: Banach operator pair; common fixed point; convex metric spaces; fixed point

1 Introduction

In 1970, Takahashi [1] introduced the notion of convexity in metric spaces and studied some fixed point theorems for nonexpansive mappings in such spaces. A convex metric space is a generalized space. For example, every normed space and cone Banach space is a convex metric space and convex complete metric space, respectively. Subsequently, Beg [2], Beg and Abbas [3, 4], Chang, Kim and Jin [5], Ciric [6], Shimizu and Takahashi [7], Tian [8], Ding [9], and many others studied fixed point theorems in convex metric spaces.

The purpose of this paper is to study the existence of a fixed point for self-mappings defined on a nonempty closed convex subset of a convex complete metric space that satisfies certain conditions. We also study the existence of a common fixed point for a Banach operator pair defined on a nonempty closed convex subset of a convex complete metric space that satisfies suitable conditions. Our results improve and extend some of Karapinar's results in [10] from a cone Banach space to a convex complete metric space. For instance, Karapinar proved that for a closed convex subset *C* of a cone Banach space *X* with the norm $||x||_p = d(x, 0)$, if a mapping $T: C \to C$ satisfies the condition

 $d(x, Tx) + d(y, Ty) \le qd(x, y)$

for all $x, y \in C$, where $2 \le q < 4$, then *T* has at least one fixed point. Letting x = y in the above inequality, it is easy to see that *T* is an identity mapping. In this paper, the above result is improved and extended to a convex complete metric space.

2 Preliminaries

Definition 2.1 (see [11]) Let (X, d) be a metric space and I = [0, 1]. A mapping $W: X \times X \times I \rightarrow X$ is said to be a convex structure on X if for each $(x, y, \lambda) \in X \times X \times I$ and $u \in X$,

 $d(u, W(x, y, \lambda)) \leq \lambda d(u, x) + (1 - \lambda)d(u, y).$

© 2012 Moosaei; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A metric space (X, d) together with a convex structure W is called a convex metric space, which is denoted by (X, d, W).

Example 2.2 Let (X, || ||) be a normed space. The mapping $W: X \times X \times I \to X$ defined by $W(x, y, \lambda) = \lambda x + (1 - \lambda)y$ for each $x, y \in X$, $\lambda \in I$ is a convex structure on X.

Definition 2.3 (see [11]) Let (X, d, W) be a convex metric space. A nonempty subset *C* of *X* is said to be convex if $W(x, y, \lambda) \in C$ whenever $(x, y, \lambda) \in C \times C \times I$.

Definition 2.4 (see [3]) Let (X, d, W) be a convex metric space and *C* be a convex subset of *X*. A self-mapping *f* on *C* has a property (I) if $f(W(x, y, \lambda)) = W(f(x), f(y), \lambda)$ for each $x, y \in C$ and $\lambda \in I$.

Example 2.5 If (X, || ||) is a normed space, then every affine mapping on a convex subset of *X* has the property (I).

Definition 2.6 Let $f, g: X \to X$. A point $x \in X$ is called

- (i) a fixed point of f if f(x) = x,
- (ii) a coincidence point of a pair (f,g) if f(x) = g(x),
- (iii) a common fixed point of a pair (f,g) if f(x) = g(x) = x.

F(f), C(f,g), and F(f,g) denote the set of all fixed points of f, coincidence points of the pair (f,g), and common fixed points of the pair (f,g), respectively.

Definition 2.7 (see [12, 13]) The ordered pair (f,g) of two self-maps of a metric space (X, d) is called a Banach operator pair if F(g) is *f*-invariant, namely $f(F(g)) \subseteq F(g)$.

Example 2.8 (i) Let (X, d) be a metric space and $k \ge 0$. If the self-maps f, g of X satisfy $d(g(f(x)), f(x)) \le kd(g(x), x)$ for all $x \in X$, then (f, g) is a Banach operator pair.

(ii) It is obvious that a commuting pair (f,g) of self-maps on X (namely fg(x) = gf(x) for all $x \in X$) is a Banach operator pair, but the converse is generally not true. For example, let $X = \mathbb{R}$ with the usual norm, and let $f(x) = x^2 - 2x$, $g(x) = x^2 - x - 3$ for all $x \in X$, then $F(g) = \{-1, 3\}$. Moreover, $f(F(g)) \subseteq F(g)$ implies that (f,g) is a Banach operator pair, but the pair (f,g) does not commute.

In [10], Karapinar obtained the following theorems.

Theorem 2.9 (see Theorem 2.4 of [10]) Let *C* be a closed and convex subset of a cone Banach space *X* with the norm $||x||_p = d(x, 0)$, and $T: C \to C$ be a mapping which satisfies the condition

 $d(x, Tx) + d(y, Ty) \le qd(x, y)$

for all $x, y \in C$, where $2 \le q < 4$. Then, T has at least one fixed point.

Theorem 2.10 (see Theorem 2.6 of [10]) Let *C* be a closed and convex subset of a cone Banach space *X* with the norm $||x||_p = d(x, 0)$, and $T: C \to C$ be a mapping which satisfies the condition

 $d(Tx, Ty) + d(x, Tx) + d(y, Ty) \le rd(x, y)$

for all $x, y \in C$, where $2 \le r < 5$. Then, T has at least one fixed point.

3 Main results

To prove the next theorem, we need the following lemma.

Lemma 3.1 Let (X, d, W) be a convex metric space, then the following statements hold:

(i) d(x, y) = d(x, W(x, y, λ)) + d(y, W(x, y, λ)) for all (x, y, λ) ∈ X × X × I.
(ii) d(x, W(x, y, ¹/₂)) = d(y, W(x, y, ¹/₂)) = ¹/₂d(x, y) for all x, y ∈ X.

 $(1) \ u(w, w(w, y, 2)) = u(y, w(w, y, 2)) = 2^{u(w, y)} for unit, w, y$

Proof (i) For any $(x, y, \lambda) \in X \times X \times I$, we have

$$egin{aligned} d(x,y) &\leq dig(x,W(x,y,\lambda)ig) + dig(y,W(x,y,\lambda)ig) \ &\leq (1-\lambda)d(x,y) + \lambda d(x,y) \ &= d(x,y). \end{aligned}$$

Therefore, $d(x, y) = d(x, W(x, y, \lambda)) + d(y, W(x, y, \lambda))$ holds.

(ii) Let $x, y \in X$. By the definition of W and using (i), we have

$$d\left(x, W\left(x, y, \frac{1}{2}\right)\right) \leq \frac{1}{2}d(x, y) = \frac{1}{2}d\left(x, W\left(x, y, \frac{1}{2}\right)\right) + \frac{1}{2}d\left(y, W\left(x, y, \frac{1}{2}\right)\right).$$

Therefore,

$$\frac{1}{2}d\left(x,W\left(x,y,\frac{1}{2}\right)\right) \leq \frac{1}{2}d\left(y,W\left(x,y,\frac{1}{2}\right)\right).$$

Similarly,

$$\frac{1}{2}d\left(y,W\left(x,y,\frac{1}{2}\right)\right) \leq \frac{1}{2}d\left(x,W\left(x,y,\frac{1}{2}\right)\right).$$

Therefore, $d(x, W(x, y, \frac{1}{2})) = d(y, W(x, y, \frac{1}{2}))$. Now, from (i), we obtain

$$d\left(x, W\left(x, y, \frac{1}{2}\right)\right) = d\left(y, W\left(x, y, \frac{1}{2}\right)\right) = \frac{1}{2}d(x, y)$$

for all $x, y \in C$, and the proof of the lemma is complete.

The following theorem improves and extends Theorem 2.6 in [10].

Theorem 3.2 Let C be a nonempty closed convex subset of a convex complete metric space (X, d, W) and f be a self-mapping of C. If there exist a, b, c, k such that

$$2b - |c| \le k < 2(a + b + c) - |c|, \tag{3.1}$$

$$ad(x,f(x)) + bd(y,f(y)) + cd(f(x),f(y)) \le kd(x,y)$$

$$(3.2)$$

for all $x, y \in C$, then f has at least one fixed point.

Proof Suppose $x_0 \in C$ is arbitrary. We define a sequence $\{x_n\}_{n=1}^{\infty}$ in the following way:

$$x_n = W\left(x_{n-1}, f(x_{n-1}), \frac{1}{2}\right), \quad n = 1, \dots$$
 (3.3)

As *C* is convex, $x_n \in C$ for all $n \in \mathbb{N}$. By Lemma 3.1(ii) and (3.3), we have

$$d(x_n, f(x_n)) = 2d(x_n, x_{n+1}),$$
(3.4)

$$d(x_n, f(x_{n-1})) = d(x_n, x_{n-1})$$
(3.5)

for all $n \in \mathbb{N}$. Now, by substituting x with x_n and y with x_{n-1} in (3.2), we get

$$ad(x_n, f(x_n)) + bd(x_{n-1}, f(x_{n-1})) + cd(f(x_n), f(x_{n-1})) \le kd(x_n, x_{n-1})$$

for all $n \in \mathbb{N}$. Therefore, from (3.4) and (3.5), it follows that

$$2ad(x_n, x_{n+1}) + 2bd(x_n, x_{n-1}) + cd(f(x_n), f(x_{n-1})) \le kd(x_n, x_{n-1})$$
(3.6)

for all $n \in \mathbb{N}$. Let *c* be a nonnegative number. Using the triangle inequality, (3.4) and (3.5), we obtain

$$2cd(x_n, x_{n+1}) - cd(x_n, x_{n-1}) \le cd(f(x_n), f(x_{n-1}))$$

for all $n \in \mathbb{N}$. Similarly, for the case c < 0, we have

$$2cd(x_n, x_{n+1}) + cd(x_n, x_{n-1}) \le cd(f(x_n), f(x_{n-1}))$$

for all $n \in \mathbb{N}$. Therefore, for each case we have

$$2cd(x_n, x_{n+1}) - |c|d(x_n, x_{n-1}) \le cd(f(x_n), f(x_{n-1}))$$
(3.7)

for all $n \in \mathbb{N}$. Now, from (3.6) and (3.7), it follows that

$$2ad(x_n, x_{n+1}) + 2bd(x_n, x_{n-1}) + 2cd(x_n, x_{n+1}) - |c|d(x_n, x_{n-1}) \le kd(x_n, x_{n-1})$$

for all $n \in \mathbb{N}$. This implies

$$d(x_n, x_{n+1}) \leq \frac{k - 2b + |c|}{2(a+c)} d(x_n, x_{n-1})$$

for all $n \in \mathbb{N}$. From (3.1), $\frac{k-2b+|c|}{2(a+c)} \in [0,1)$, and hence, $\{x_n\}_{n=1}^{\infty}$ is a contraction sequence in *C*. Therefore, it is a Cauchy sequence. Since *C* is a closed subset of a complete space, there exists $v \in C$ such that $\lim_{n\to\infty} x_n = v$. Therefore, the triangle inequality and (3.4) imply $\lim_{n\to\infty} f(x_n) = v$. Now, by substituting *x* with *v* and *y* with x_n in (3.2), we obtain

$$ad(v,f(v)) + bd(x_n,f(x_n)) + cd(f(v),f(x_n)) \le kd(v,x_n)$$

for all $n \in \mathbb{N}$. Letting $n \to \infty$ in the above inequality, it follows that

$$(a+c)d\big(\nu,f(\nu)\big)\leq 0.$$

Since a + c is positive from (3.1), it follows that d(v, f(v)) = 0. Therefore, f(v) = v and the proof of the theorem is complete.

The following corollary improves and extends Theorem 2.4 in [10].

Corollary 3.3 Let (X, d, W) be a convex complete metric space and C be a nonempty closed convex subset of X. Suppose that f is a self-map of C. If there exist a, b, k such that

$$2b \le k < 2(a+b),$$

$$ad(x,f(x)) + bd(y,f(y)) \le kd(x,y)$$

for all $x, y \in C$, then F(f) is a nonempty set.

Proof Set c = 0 in Theorem 3.2.

Theorem 3.4 Let (X, d, W) be a convex complete metric space and C be a nonempty subset of X. Suppose that f, g are self-mappings of C, and there exist a, b, c, k such that

$$2b - |c| \le k < 2(a + b + c) - |c|, \tag{3.8}$$

$$ad(g(x), f(x)) + bd(g(y), f(y)) + cd(f(x), f(y)) \le kd(g(x), g(y))$$
(3.9)

for all $x, y \in C$. If (f,g) is a Banach operator pair, g has the property (I) and F(g) is a nonempty closed subset of C, then F(f,g) is nonempty.

Proof From (3.9), we obtain

$$ad(x,f(x)) + bd(y,f(y)) + cd(f(x),f(y)) \le kd(x,y)$$

$$(3.10)$$

for all $x, y \in F(g)$. F(g) is convex because g has the property (I). It follows from Theorem 3.2 that F(f,g) is nonempty.

Theorem 3.5 Let (X, d, W) be a convex complete metric space and C be a nonempty subset of X. Suppose that f, g are self-mappings of C, F(g) is a nonempty closed subset of C, and there exist a, b, c, k such that

$$2b - |c| \le k < 2(a + b + c) - |c|, \tag{3.11}$$

$$ad(g(x),g(f(x))) + bd(g(y),g(f(y))) + cd(g(f(x)),g(f(y))) \le kd(g(x),g(y))$$

$$(3.12)$$

for all $x, y \in C$. If (f,g) is a Banach operator pair and g has the property (I), then F(f,g) is nonempty.

Proof Since (f,g) is a Banach operator pair from (3.12), we have

$$ad(x,f(x)) + bd(y,f(y)) + cd(f(x),f(y)) \le kd(x,y)$$

for all $x, y \in F(g)$. Because g has the property (I) and F(g) is closed, Theorem 3.2 guaranties that F(f,g) is nonempty.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The author is grateful to Bu-Ali Sina University for supporting this research.

Received: 28 February 2012 Accepted: 30 August 2012 Published: 25 September 2012

References

- 1. Takahashi, T: A convexity in metric spaces and nonexpansive mapping I. Kodai Math. Semin. Rep. 22, 142-149 (1970)
- 2. Beg, I: An iteration scheme for asymptotically nonexpansive mappings on uniformly convex metric spaces. Nonlinear Anal. Forum 6(1), 27-34 (2001)
- Beg, I, Abbas, M: Common fixed points and best approximation in convex metric spaces. Soochow J. Math. 33(4), 729-738 (2007)
- Beg, I, Abbas, M: Fixed-point theorem for weakly inward multivalued maps on a convex metric space. Demonstr. Math. 39(1), 149-160 (2006)
- Chang, SS, Kim, JK, Jin, DS: Iterative sequences with errors for asymptotically quasi nonexpansive mappings in convex metric spaces. Arch. Inequal. Appl. 2, 365-374 (2004)
- Ciric, L: On some discontinuous fixed point theorems in convex metric spaces. Czechoslov. Math. J. 43(188), 319-326 (1993)
- 7. Shimizu, T, Takahashi, W: Fixed point theorems in certain convex metric spaces. Math. Jpn. 37, 855-859 (1992)
- Tian, YX: Convergence of an Ishikawa type iterative scheme for asymptotically quasi nonexpansive mappings. Comput. Math. Appl. 49, 1905-1912 (2005)
- 9. Ding, XP: Iteration processes for nonlinear mappings in convex metric spaces. J. Math. Anal. Appl. 132, 114-122 (1998)
- Karapinar, E: Fixed point theorems in cone Banach spaces. Fixed Point Theory Appl. 2009, Article ID 609281 (2009). doi:10.1155/2009/609281
- 11. Agarwal, RP, O'Regan, D, Sahu, DR: Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Springer, Heidelberg (2009)
- 12. Chen, J, Li, Z: Common fixed-points for Banach operator pairs in best approximation. J. Math. Anal. Appl. 336, 1466-1475 (2007)
- Pathak, HK, Hussain, N: Common fixed points for Banach operator pairs with applications. Nonlinear Anal. 69, 2788-2802 (2008)

doi:10.1186/1687-1812-2012-164

Cite this article as: Moosaei: Fixed point theorems in convex metric spaces. Fixed Point Theory and Applications 2012 2012:164.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com