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Abstract
In this paper, we study some fixed point theorems for self-mappings satisfying certain
contraction principles on a convex complete metric space. In addition, we investigate
some common fixed point theorems for a Banach operator pair under certain
generalized contractions on a convex complete metric space. Finally, we also improve
and extend some recent results.
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1 Introduction
In , Takahashi [] introduced the notion of convexity in metric spaces and studied
some fixed point theorems for nonexpansive mappings in such spaces. A convex metric
space is a generalized space. For example, every normed space and cone Banach space is
a convex metric space and convex complete metric space, respectively. Subsequently, Beg
[], Beg and Abbas [, ], Chang, Kim and Jin [], Ciric [], Shimizu and Takahashi [],
Tian [], Ding [], and many others studied fixed point theorems in convex metric spaces.
The purpose of this paper is to study the existence of a fixed point for self-mappings

defined on a nonempty closed convex subset of a convex complete metric space that satis-
fies certain conditions. We also study the existence of a common fixed point for a Banach
operator pair defined on a nonempty closed convex subset of a convex complete metric
space that satisfies suitable conditions. Our results improve and extend some of Karap-
inar’s results in [] from a cone Banach space to a convex complete metric space. For
instance, Karapinar proved that for a closed convex subset C of a cone Banach space X
with the norm ‖x‖p = d(x, ), if a mapping T : C → C satisfies the condition

d(x,Tx) + d(y,Ty) ≤ qd(x, y)

for all x, y ∈ C, where  ≤ q < , then T has at least one fixed point. Letting x = y in the
above inequality, it is easy to see that T is an identity mapping. In this paper, the above
result is improved and extended to a convex complete metric space.

2 Preliminaries
Definition . (see []) Let (X,d) be a metric space and I = [, ]. A mapping W : X ×
X × I → X is said to be a convex structure on X if for each (x, y,λ) ∈ X ×X × I and u ∈ X,

d
(
u,W (x, y,λ)

) ≤ λd(u,x) + ( – λ)d(u, y).
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Ametric space (X,d) together with a convex structureW is called a convex metric space,
which is denoted by (X,d,W ).

Example . Let (X,‖ ‖) be a normed space. The mapping W : X × X × I → X defined
byW (x, y,λ) = λx + ( – λ)y for each x, y ∈ X, λ ∈ I is a convex structure on X.

Definition . (see []) Let (X,d,W ) be a convex metric space. A nonempty subset C of
X is said to be convex ifW (x, y,λ) ∈ C whenever (x, y,λ) ∈ C ×C × I .

Definition . (see []) Let (X,d,W ) be a convex metric space and C be a convex subset
of X. A self-mapping f on C has a property (I) if f (W (x, y,λ)) = W (f (x), f (y),λ) for each
x, y ∈ C and λ ∈ I .

Example . If (X,‖ ‖) is a normed space, then every affine mapping on a convex subset
of X has the property (I).

Definition . Let f , g : X → X. A point x ∈ X is called
(i) a fixed point of f if f (x) = x,
(ii) a coincidence point of a pair (f , g) if f (x) = g(x),
(iii) a common fixed point of a pair (f , g) if f (x) = g(x) = x.

F(f ), C(f , g), and F(f , g) denote the set of all fixed points of f , coincidence points of the
pair (f , g), and common fixed points of the pair (f , g), respectively.

Definition . (see [, ]) The ordered pair (f , g) of two self-maps of a metric space
(X,d) is called a Banach operator pair if F(g) is f -invariant, namely f (F(g))⊆ F(g).

Example . (i) Let (X,d) be a metric space and k ≥ . If the self-maps f , g of X satisfy
d(g(f (x)), f (x))≤ kd(g(x),x) for all x ∈ X, then (f , g) is a Banach operator pair.
(ii) It is obvious that a commuting pair (f , g) of self-maps on X (namely fg(x) = gf (x) for

all x ∈ X) is a Banach operator pair, but the converse is generally not true. For example,
let X = R with the usual norm, and let f (x) = x – x, g(x) = x – x –  for all x ∈ X, then
F(g) = {–, }. Moreover, f (F(g)) ⊆ F(g) implies that (f , g) is a Banach operator pair, but
the pair (f , g) does not commute.

In [], Karapinar obtained the following theorems.

Theorem . (see Theorem . of []) Let C be a closed and convex subset of a cone
Banach space X with the norm ‖x‖p = d(x, ), and T : C → C be a mapping which satisfies
the condition

d(x,Tx) + d(y,Ty) ≤ qd(x, y)

for all x, y ∈ C, where  ≤ q < . Then, T has at least one fixed point.

Theorem . (see Theorem . of []) Let C be a closed and convex subset of a cone
Banach space X with the norm ‖x‖p = d(x, ), and T : C → C be a mapping which satisfies
the condition

d(Tx,Ty) + d(x,Tx) + d(y,Ty) ≤ rd(x, y)

for all x, y ∈ C, where  ≤ r < . Then, T has at least one fixed point.
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3 Main results
To prove the next theorem, we need the following lemma.

Lemma . Let (X,d,W ) be a convex metric space, then the following statements hold:
(i) d(x, y) = d(x,W (x, y,λ)) + d(y,W (x, y,λ)) for all (x, y,λ) ∈ X ×X × I .
(ii) d(x,W (x, y,  )) = d(y,W (x, y,  )) =


d(x, y) for all x, y ∈ X .

Proof (i) For any (x, y,λ) ∈ X ×X × I , we have

d(x, y) ≤ d
(
x,W (x, y,λ)

)
+ d

(
y,W (x, y,λ)

)
≤ ( – λ)d(x, y) + λd(x, y)

= d(x, y).

Therefore, d(x, y) = d(x,W (x, y,λ)) + d(y,W (x, y,λ)) holds.
(ii) Let x, y ∈ X. By the definition ofW and using (i), we have

d
(
x,W

(
x, y,




))
≤ 


d(x, y) =



d
(
x,W

(
x, y,




))
+


d
(
y,W

(
x, y,




))
.

Therefore,



d
(
x,W

(
x, y,




))
≤ 


d
(
y,W

(
x, y,




))
.

Similarly,



d
(
y,W

(
x, y,




))
≤ 


d
(
x,W

(
x, y,




))
.

Therefore, d(x,W (x, y,  )) = d(y,W (x, y,  )). Now, from (i), we obtain

d
(
x,W

(
x, y,




))
= d

(
y,W

(
x, y,




))
=


d(x, y)

for all x, y ∈ C, and the proof of the lemma is complete. �

The following theorem improves and extends Theorem . in [].

Theorem . Let C be a nonempty closed convex subset of a convex complete metric space
(X,d,W ) and f be a self-mapping of C. If there exist a, b, c, k such that

b – |c| ≤ k < (a + b + c) – |c|, (.)

ad
(
x, f (x)

)
+ bd

(
y, f (y)

)
+ cd

(
f (x), f (y)

) ≤ kd(x, y) (.)

for all x, y ∈ C, then f has at least one fixed point.

Proof Suppose x ∈ C is arbitrary. We define a sequence {xn}∞n= in the following way:

xn =W
(
xn–, f (xn–),




)
, n = , . . . . (.)
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As C is convex, xn ∈ C for all n ∈N. By Lemma .(ii) and (.), we have

d
(
xn, f (xn)

)
= d(xn,xn+), (.)

d
(
xn, f (xn–)

)
= d(xn,xn–) (.)

for all n ∈N. Now, by substituting x with xn and y with xn– in (.), we get

ad
(
xn, f (xn)

)
+ bd

(
xn–, f (xn–)

)
+ cd

(
f (xn), f (xn–)

) ≤ kd(xn,xn–)

for all n ∈N. Therefore, from (.) and (.), it follows that

ad(xn,xn+) + bd(xn,xn–) + cd
(
f (xn), f (xn–)

) ≤ kd(xn,xn–) (.)

for all n ∈N. Let c be a nonnegative number. Using the triangle inequality, (.) and (.),
we obtain

cd(xn,xn+) – cd(xn,xn–)≤ cd
(
f (xn), f (xn–)

)

for all n ∈N. Similarly, for the case c < , we have

cd(xn,xn+) + cd(xn,xn–)≤ cd
(
f (xn), f (xn–)

)

for all n ∈N. Therefore, for each case we have

cd(xn,xn+) – |c|d(xn,xn–) ≤ cd
(
f (xn), f (xn–)

)
(.)

for all n ∈N. Now, from (.) and (.), it follows that

ad(xn,xn+) + bd(xn,xn–) + cd(xn,xn+) – |c|d(xn,xn–) ≤ kd(xn,xn–)

for all n ∈N. This implies

d(xn,xn+) ≤ k – b + |c|
(a + c)

d(xn,xn–)

for all n ∈N. From (.), k–b+|c|
(a+c) ∈ [, ), and hence, {xn}∞n= is a contraction sequence in C.

Therefore, it is a Cauchy sequence. Since C is a closed subset of a complete space, there
exists v ∈ C such that limn→∞ xn = v. Therefore, the triangle inequality and (.) imply
limn→∞ f (xn) = v. Now, by substituting x with v and y with xn in (.), we obtain

ad
(
v, f (v)

)
+ bd

(
xn, f (xn)

)
+ cd

(
f (v), f (xn)

) ≤ kd(v,xn)

for all n ∈N. Letting n→ ∞ in the above inequality, it follows that

(a + c)d
(
v, f (v)

) ≤ .
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Since a + c is positive from (.), it follows that d(v, f (v)) = . Therefore, f (v) = v and the
proof of the theorem is complete. �

The following corollary improves and extends Theorem . in [].

Corollary . Let (X,d,W ) be a convex completemetric space and C be a nonempty closed
convex subset of X. Suppose that f is a self-map of C. If there exist a, b, k such that

b≤ k < (a + b),

ad
(
x, f (x)

)
+ bd

(
y, f (y)

) ≤ kd(x, y)

for all x, y ∈ C, then F(f ) is a nonempty set.

Proof Set c =  in Theorem .. �

Theorem. Let (X,d,W ) be a convex completemetric space and C be a nonempty subset
of X. Suppose that f , g are self-mappings of C, and there exist a, b, c, k such that

b – |c| ≤ k < (a + b + c) – |c|, (.)

ad
(
g(x), f (x)

)
+ bd

(
g(y), f (y)

)
+ cd

(
f (x), f (y)

) ≤ kd
(
g(x), g(y)

)
(.)

for all x, y ∈ C. If (f , g) is a Banach operator pair, g has the property (I) and F(g) is a
nonempty closed subset of C, then F(f , g) is nonempty.

Proof From (.), we obtain

ad
(
x, f (x)

)
+ bd

(
y, f (y)

)
+ cd

(
f (x), f (y)

) ≤ kd(x, y) (.)

for all x, y ∈ F(g). F(g) is convex because g has the property (I). It follows fromTheorem .
that F(f , g) is nonempty. �

Theorem. Let (X,d,W ) be a convex complete metric space and C be a nonempty subset
of X. Suppose that f , g are self-mappings of C, F(g) is a nonempty closed subset of C, and
there exist a, b, c, k such that

b – |c| ≤ k < (a + b + c) – |c|, (.)

ad
(
g(x), g

(
f (x)

))
+ bd

(
g(y), g

(
f (y)

))
+ cd

(
g
(
f (x)

)
, g

(
f (y)

)) ≤ kd
(
g(x), g(y)

)
(.)

for all x, y ∈ C. If (f , g) is a Banach operator pair and g has the property (I), then F(f , g) is
nonempty.

Proof Since (f , g) is a Banach operator pair from (.), we have

ad
(
x, f (x)

)
+ bd

(
y, f (y)

)
+ cd

(
f (x), f (y)

) ≤ kd(x, y)

for all x, y ∈ F(g). Because g has the property (I) and F(g) is closed, Theorem . guaranties
that F(f , g) is nonempty. �
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