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Abstract
Very recently, Agarwal et al. (Fixed Point Theory Appl. 2012:40, 2012) initiated the
study of fixed point theorems for mappings satisfying cyclical generalized contractive
conditions in complete partial metric spaces. In the present paper, we study some
fixed point theorems for a mapping satisfying a cyclical generalized contractive
condition based on a pair of altering distance functions in complete partial metric
spaces. Also, we introduce an example and an application to support the usability of
our paper.
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1 Introduction
The existence and uniqueness of fixed and common fixed point theorems of operators has
been a subject of great interest since Banach [] proved the Banach contraction principle in
. Many authors generalized the Banach contraction principle in various spaces such
as quasi-metric spaces, generalized metric spaces, cone metric spaces and fuzzy metric
spaces. Matthews [] introduced the notion of partial metric spaces in such a way that
each object does not necessarily have to have a zero distance from itself and proved a
modified version of the Banach contraction principle. Afterwards, many authors proved
many existing fixed point theorems in partial metric spaces (see [–] for examples).
We recall below the definition of partial metric space and some of its properties.

Definition  [] A partial metric on a nonempty set X is a function p : X ×X →R
+ such

that for all x, y, z ∈ X:

(p) x = y⇐⇒ p(x,x) = p(x, y) = p(y, y),
(p) p(x,x)≤ p(x, y),
(p) p(x, y) = p(y,x),
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial
metric on X. It is clear that, if p(x, y) = , then from (p) and (p), x = y. But if x = y, p(x, y)
may not be . The function p(x, y) = max{x, y} for all x, y ∈ R

+ defines a partial metric
on R

+.
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Each partial metric p on X generates a T topology τp on X which has as a base the
family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x,x) + ε}
for all x ∈ X and ε > .
If p is a partial metric on X, then the function dp : X ×X → R

+ given by

dp(x, y) = p(x, y) – p(x,x) – p(y, y)

is a metric on X.

Definition  Let (X,p) be a partial metric space. Then
() A sequence {xn} in a partial metric space (X,p) converges to a point x ∈ X if and

only if p(x,x) = limn→∞ p(x,xn).
() A sequence {xn} in a partial metric space (X,p) is called a Cauchy sequence iff

limn,m→∞ p(xn,xm) exists (and is finite).
() A partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in

X converges, with respect to τp, to a point x ∈ X such that
p(x,x) = limn,m→∞ p(xn,xm).

() A subset A of a partial metric space (X,p) is closed if whenever {xn} is a sequence in
A such that {xn} converges to some x ∈ X , then x ∈ A.

Remark  The limit in a partial metric space is not unique.

Lemma  ([, ]) Let (X,p) be a partial metric space.
(a) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric

space (X,dp).
(b) A partial metric space (X,p) is complete if and only if the metric space (X,dp) is

complete. Furthermore, limn→∞ dp(xn,x) =  if and only if

p(x,x) = lim
n→∞p(xn,x) = lim

n,m→∞p(xn,xm).

Now, we define the cyclic map.

Definition  Let A and B be nonempty subsets of a metric space (X,d) and T : A ∪ B →
A∪ B. Then T is called a cyclic map if T(A) ⊆ B and T(B)⊆ A.

In , Kirk et al. [] gave the following fixed point theorem for a cyclic map.

Theorem  [] Let A and B be nonempty closed subsets of a complete metric space (X,d).
Suppose that T : A∪ B → A∪ B is a cyclic map such that

d(Tx,Ty) ≤ kd(x, y) ∀x ∈ A,∀y ∈ B.

If k ∈ [, ), then T has a unique fixed point in A∩ B.

Karapınar and Erhan [] introduced the following types of cyclic contractions:
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Definition  [] Let A and B be nonempty closed subsets of a metric space (X,d).
A cyclic map T : A ∪ B → A ∪ B is said to be a Kannan type cyclic contraction if there
exists k ∈ (,  ) such that

d(Tx,Ty) ≤ k
(
d(Tx,x) + d(Ty, y)

) ∀x ∈ A,∀y ∈ B.

Definition  [] Let A and B be nonempty closed subsets of a metric space (X,d).
A cyclic map T : A∪B → A∪ B is said to be a Reich type cyclic contraction if there exists
k ∈ (,  ) such that

d(Tx,Ty) ≤ k
(
d(x, y) + d(Tx,x) + d(Ty, y)

) ∀x ∈ A,∀y ∈ B.

Definition  [] Let A and B be nonempty closed subsets of a metric space (X,d).
A cyclic map T : A∪ B → A∪ B is said to be a Ćirić type cyclic contraction if there exists
k ∈ (,  ) such that

d(Tx,Ty) ≤ kmax
{
d(x, y),d(Tx,x),d(Ty, y)

} ∀x ∈ A,∀y ∈ B.

Moreover, Karapınar and Erhan [] obtained the following results:

Theorem  [] Let A and B be nonempty closed subsets of a complete metric space (X,d),
and let T : A∪B → A∪ B be a Kannan type cyclic contraction. Then T has a unique fixed
point in A∩ B.

Theorem  [] Let A and B be nonempty closed subsets of a complete metric space (X,d),
and let T : A ∪ B → A ∪ B be a Reich type cyclic contraction. Then T has a unique fixed
point in A∩ B.

Theorem [] Let A and B be nonempty closed subsets of a complete metric space (X,d),
and let T : A ∪ B → A ∪ B be a Ćirić type cyclic contraction. Then T has a unique fixed
point in A∩ B.

For more results on cyclic contraction mappings, see [, ].
Very recently, Agarwal et al. [] initiated the study of fixedpoint theorems formappings

satisfying cyclical generalized contractive conditions in complete partial metric spaces.
Khan et al. [] introduced the notion of altering distance function as follows.

Definition  (Altering distance function []) The function φ : [, +∞) → [, +∞) is
called an altering distance function if the following properties are satisfied:
() φ is continuous and nondecreasing.
() φ(t) =  if and only if t = .

For some work on altering distance function, we refer the reader to [–].
The purpose of this paper is to study some fixed point theorems for amapping satisfying

a cyclical generalized contractive condition based on a pair of altering distance functions
in partial metric spaces.
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2 Main result
We start with the following definition.

Definition  Let (X,p) be a partial metric space and A, B be nonempty closed subsets
of X. A mapping T : X → X is called a cyclic (ψ ,φ,A,B)-contraction if
() ψ and φ are altering distance functions;
() A∪ B has a cyclic representation w.r.t. T ; that is, T(A) ⊆ B and T(B)⊆ A; and
()

ψ
(
p(Tx,Ty)

) ≤ ψ

(
max

{
p(x, y),p(x,Tx),p(y,Ty),



(
p(x,Ty) + p(Tx, y)

)})

– φ
(
max

{
p(x, y),p(y,Ty)

})
(.)

for all x ∈ A and y ∈ B.
From now on, by ψ and φ we mean altering distance functions unless otherwise stated.

In the rest of this paper, N stands for the set of nonnegative integer numbers.

Theorem  Let A and B be nonempty closed subsets of a complete partial metric space
(X,p). If T : X → X is a cyclic (ψ ,φ,A,B)-contraction, then T has a unique fixed point
u ∈ A∩ B.

Proof Let x ∈ A. Since TA ⊆ B, we choose x ∈ B such that Tx = x. Also, since TB ⊆ A,
we choose x ∈ A such that Tx = x. Continuing this process, we can construct sequences
{xn} in X such that xn ∈ A, xn+ ∈ B, xn+ = Txn and xn+ = Txn+. If xn+ = xn+ for
some n ∈N, then xn+ = Txn+. Thus, xn+ is a fixed point of T in A∩B. Thus, we may
assume that xn+ �= xn+ for all n ∈N.
Given n ∈N. If n is even, then n = t for some t ∈N. By (.), we have

ψ
(
p(xn+,xn+)

)
= ψ

(
p(xt+,xt+)

)
= ψ

(
p(Txt ,Txt+)

)

≤ ψ

(
max

{
p(xt ,xt+),p(Txt ,xt),p(Txt+,xt+),



(
p(xt ,Txt+) + p(Txt ,xt+)

)})

– φ
(
max

{
p(xt ,xt+),p(Txt+,xt+)

})

= ψ

(
max

{
p(xt ,xt+),p(xt+,xt+),



(
p(xt ,xt+) + p(xt+,xt+)

)})

– φ
(
max

{
p(xt ,xt+),p(xt+,xt+)

})
.

http://www.fixedpointtheoryandapplications.com/content/2012/1/165
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By (p), we have

ψ
(
p(xn+,xn+)

)
= ψ

(
p(xt+,xt+)

)

≤ ψ

(
max

{
p(xt ,xt+),p(xt+,xt+),



(
p(xt ,xt+) + p(xt+,xt+)

)})

– φ
(
max

{
p(xt ,xt+),p(xt+,xt+)

})
≤ ψ

(
max

{
p(xt ,xt+),p(xt+,xt+)

})
– φ

(
max

{
p(xt ,xt+),p(xt+,xt+)

})
≤ ψ

(
max

{
p(xt ,xt+),p(xt+,xt+)

})
.

If

max
{
p(xt ,xt+),p(xt+,xt+)

}
= p(xt+,xt+),

then

ψ
(
p(xt+,xt+)

) ≤ ψ
(
p(xt+,xt+)

)
– φ

(
p(xt+,xt+)

)
.

Therefore, φ(p(xt+,xt+)) = , and hence p(xt+,xt+) = . By (p) and (p), we have
xt+ = xt+, which is a contradiction. Therefore,

max
{
p(xt ,xt+),p(xt+,xt+)

}
= p(xt ,xt+).

Hence,

p(xn+,xn+) = p(xt+,xt+) ≤ p(xt ,xt+) = p(xn,xn+) (.)

and

ψ
(
p(xn+,xn+)

) ≤ ψ
(
p(xn,xn+)

)
– φ

(
p(xn,xn+)

)
. (.)

If n is odd, then n = t +  for some t ∈ N. By (.), we have

ψ
(
p(xn+,xn+)

)
= ψ

(
p(xt+,xt+)

)
= ψ

(
p(xt+,xt+)

)
= ψ

(
p(Txt+,Txt+)

)

≤ ψ

(
max

{
p(xt+,xt+),p(Txt+,xt+),p(Txt+,xt+),



(
p(xt+,Txt+) + p(Txt+,xt+)

)})

– φ
(
max

{
p(xt+,xt+),p(Txt+,xt+)

})

http://www.fixedpointtheoryandapplications.com/content/2012/1/165
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= ψ

(
max

{
p(xt+,xt+),p(xt+,xt+),



(
p(xt+,xt+) + p(xt+,xt+)

)})

– φ
(
max

{
p(xt+,xt+),p(xt+,xt+)

})
.

By (p), we have

ψ
(
p(xn+,xn+)

)
= ψ

(
p(xt+,xt+)

)

≤ ψ

(
max

{
p(xt+,xt+),p(xt+,xt+),



(
p(xt+,xt+) + p(xt+,xt+)

)})

– φ
(
max

{
p(xt+,xt+),p(Txt+,xt+)

})
≤ ψ

(
max

{
p(xt+,xt+),p(xt+,xt+)

})
– φ

(
max

{
p(xt+,xt+),p(Txt+,xt+)

})
≤ ψ

(
max

{
p(xt+,xt+),p(xt+,xt+)

})
.

If

max
{
p(xt+,xt+),p(xt+,xt+)

}
= p(xt+,xt+),

then

φ
(
p(xt+,xt+)

) ≤ ψ
(
p(xt+,xt+)

)
– φ

(
p(xt+,xt+)

)
.

Therefore, φ(p(xt+,xt+)) = , and hence p(xt+,xt+) = . By (p) and (p), we have
xt+ = xt+, which is a contradiction. Therefore,

max
{
p(xt+,xt+),p(xt+,xt+)

}
= p(xt+,xt+).

Hence,

p(xn+,xn+) = p(xt+,xt+) ≤ p(xt+,xt+) = p(xn+,xn), (.)

ψ
(
p(xn+,xn+)

) ≤ ψ
(
p(xn,xn+)

)
– φ

(
p(xn,xn+)

)
. (.)

From (.) and (.), we have {p(xn+,xn) : n ∈ N} is a nonincreasing sequence and hence
there exists r ≥  such that

lim
n→+∞p(xn,xn+) = r.

Also, from (.) and (.), we have

ψ
(
p(xn+,xn+)

) ≤ ψ
(
p(xn,xn+)

)
– φ

(
p(xn,xn+)

) ∀n ∈N. (.)

Letting n→ +∞ in (.) and using the fact that ψ and φ are continuous, we get that

ψ(r)≤ ψ(r) – φ(r).

http://www.fixedpointtheoryandapplications.com/content/2012/1/165
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Therefore, φ(r) =  and hence r = . Thus

lim
n→+∞p(xn,xn+) = . (.)

By (p), we get that

lim
n→+∞p(xn,xn) = . (.)

Since dp(x, y) ≤ p(x, y) for all x, y ∈ X, we get that

lim
n→+∞dp(xn,xn+) = . (.)

Next, we show that {xn} is a Cauchy sequence in the metric space (A ∪ B,dp). It is suf-
ficient to show that {xn} is a Cauchy sequence in (A ∪ B,dp). Suppose the contrary; that
is, {xn} is not a Cauchy sequence in (A∪ B,dp). Then there exists ε >  for which we can
find two subsequences {xm(i)} and {xn(i)} of {xn} such that n(i) is the smallest index for
which

n(i) >m(i) > i, dp(xm(i),xn(i)) ≥ ε. (.)

This means that

dp(xm(i),xn(i)–) < ε. (.)

From (.), (.) and the triangular inequality, we get that

ε ≤ dp(xm(i),xn(i))

≤ dp(xm(i),xn(i)–) + dp(xn(i)–,xn(i)–)

+ dp(xn(i)–,xn(i))

< ε + dp(xn(i)–,xn(i)–) + dp(xn(i)–,xn(i)).

On letting i→ +∞ in the above inequalities and using (.), we have

lim
i→+∞dp(xm(i),xn(i)) = ε. (.)

Again, from (.) and the triangular inequality, we get that

ε ≤ dp(xm(i),xn(i))

≤ dp(xn(i),xn(i)–) + dp(xn(i)–,xm(i))

≤ dp(xn(i),xn(i)–) + dp(xn(i)–,xm(i)+) + dp(xm(i)+,xm(i))

≤ dp(xn(i),xn(i)–) + dp(xn(i)–,xm(i)) + dp(xm(i)+,xm(i))

≤ dp(xn(i),xn(i)–) + dp(xn(i),xm(i)) + dp(xm(i)+,xm(i)).

http://www.fixedpointtheoryandapplications.com/content/2012/1/165
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Letting i→ +∞ in the above inequalities and using (.) and (.), we get that

lim
i→+∞dp(xm(i),xn(i)) = lim

i→+∞dp(xm(i)+,xn(i)–)

= lim
i→+∞dp(xm(i)+,xn(i))

= lim
i→+∞dp(xm(i),xn(i)–)

= ε.

Since

dp(x, y) = p(x, y) – p(x,x) – p(y, y)

for all x, y ∈ X, then

lim
i→+∞p(xm(i),xn(i)) = lim

i→+∞p(xm(i)+,xn(i)–)

= lim
i→+∞p(xm(i)+,xn(i))

= lim
i→+∞p(xm(i),xn(i)–)

=
ε


.

By (.), we have

ψ
(
p(xm(i)+,xn(i))

)
= ψ

(
p(Txm(i),Txn(i)–)

)

≤ ψ

(
max

{
p(xm(i),xn(i)–),p(xm(i),Txm(i)),p(xn(i)–,Txn(i)–),



(
p(xm(i),Txn(i)–) + p(xn(i)–,Txm(i))

)})

– φ
(
max

{
p(xm(i),xn(i)–),p(xn(i)–,Txn(i)–)

})

= ψ

(
max

{
p(xm(i),xn(i)–),p(xm(i),xm(i)+),p(xn(i)–,xn(i)),



(
p(xm(i),xn(i)) + p(xn(i)–,xm(i)+)

)})

– φ
(
max

{
p(xm(i),xn(i)–),p(xn(i)–,xn(i))

})
.

Letting i→ +∞ and using the continuity of φ and ψ , we get that

ψ

(
ε



)
≤ ψ

(
ε



)
– φ

(
ε



)
.

Therefore, we get that φ( ε
 ) = . Hence, ε =  is a contradiction. Thus {xn} is a Cauchy

sequence in (A ∪ B,dp). Since (X,p) is complete and A ∪ B is a closed subspace of (X,p),
then we have (A ∪ B,p) is complete. From Lemma , the sequence {xn} converges in the
metric space (A∪ B,dp), say limn→∞ dp(xn,u) = . Again from Lemma , we have

p(u,u) = lim
n→∞p(xn,u) = lim

n,m→∞p(xn,xm). (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/165
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Moreover, since {xn} is a Cauchy sequence in the metric space (A∪ B,dp), we have

lim
n,m→∞dp(xn,xm) = . (.)

From the definition of dp we have

dp(xn,xm) = p(xn,xm) – p(xn,xn) – p(xm,xm).

Letting n,m → +∞ in the above equality and using (.) and (.), we get

lim
n,m→∞p(xn,xm) = .

Thus by (.), we have

lim
n→+∞p(xn,u) = p(u,u) = . (.)

Since p(xn,u) →  = p(u,u), {xn} is a sequence in A, and A is closed in (X,p), we have
u ∈ A. Similarly, we have u ∈ B, that is u ∈ A∩ B. Again, from the definition of p, we have

p(xn,Tu) ≤ p(xn,u) + p(u,Tu) – p(u,u)

≤ p(xn,u) + p(u,xn) + p(xn,Tu) – p(xn,xn) – p(u,u).

Letting n → +∞ in the above inequalities and using (.) and (.), we get that

lim
n→+∞p(xn,Tu) = p(u,Tu).

Now, we claim that Tu = u.
Since xn ∈ A and u ∈ B, by (.) we have

ψ
(
p(xn+,Tu)

)
= ψ

(
p(Txn,Tu)

)

≤ ψ

(
max

{
p(xn,u),p(Txn,xn),p(Tu,u),



(
p(xn,Tu) + p(u,Txn)

)})

– φ
(
max

{
p(xn,u),p(Tu,u)

})

= ψ

(
max

{
p(xn,u),p(xn,xn+),p(Tu,u),



(
p(xn,Tu) + p(u,xn+)

)})

– φ
(
max

{
p(xn,u),p(u,Tu)

})
.

Letting n → +∞, we get that

ψ
(
p(u,Tu)

) ≤ ψ
(
p(u,Tu)

)
– φ

(
p(u,Tu)

)
.

Therefore, φ(p(u,Tu)) = . Since φ is an altering distance function, p(u,Tu) = , that is,
u = Tu.

http://www.fixedpointtheoryandapplications.com/content/2012/1/165
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Therefore, u is a fixed point of T . To prove the uniqueness of the fixed point, we let v be
any other fixed point of T in A ∩ B. It is an easy matter to prove that p(v, v) = . Now, we
prove that u = v. Since u ∈ A∩ B ⊆ A and v ∈ A∩ B⊆ B, we have

ψ
(
p(u, v)

)
= ψ

(
p(Tu,Tv)

)
≤ ψ

(
max

{
p(u, v),p(u,u),p(v, v)

})
– φ

(
max

{
p(u, v),p(v, v)

})
= ψ

(
p(u, v)

)
– φ

(
p(u, v)

)
.

Thus φ(p(u, v)) =  and hence p(u, v) = . Therefore, u = v. �

Taking ψ = I[,+∞) (the identity function) in Theorem , we have the following result.

Corollary  Let A and B be nonempty closed subsets of a complete partial metric space
(X,p). Let T : X → X be a mapping such that A ∪ B has a cyclic representation w.r.t. T .
Suppose there exists an altering distance function φ such that

p(Tx,Ty) ≤ max

{
p(x, y),p(x,Tx),p(y,Ty),



(
p(x,Ty) + p(Tx, y)

)}

– φ
(
max

{
p(x, y),p(y,Ty)

})

for all x ∈ A and y ∈ B. Then T has a unique fixed point u ∈ A∩ B.

Corollary  Let A and B be nonempty closed subsets of a complete partial metric space
(X,p). Let T : X → X be a mapping such that A ∪ B has a cyclic representation w.r.t. T .
Suppose there exists an altering distance function φ such that

p(Tx,Ty) ≤ max
{
p(x, y),p(x,Tx),p(y,Ty)

}
– φ

(
max

{
p(x, y),p(x,Tx),p(y,Ty)

})

for all x ∈ A and y ∈ B. Then T has a unique fixed point u ∈ A∩ B.

Now, we introduce an example to support the usability of our results.

Example  Let X = [, ]. Define the partial metric p on X by

p(x, y) =

⎧⎨
⎩
, if x = y;

max{x, y}, if x �= y.

Also, define the mapping T : X → X by T(x) = x
+x and the functions ψ ,φ : [, +∞) →

[, +∞) by ψ(t) = t and φ(t) = t
+t . Take A = [,  ] and B = [, ]. Then

() (X,p) is a complete partial metric space.
() A∪ B has a cyclic representation w.r.t. T .
() For all x ∈ A and y ∈ B, we have

ψ
(
p(Tx,Ty)

) ≤ ψ

(
max

{
p(x, y),p(x,Tx),p(y,Ty),



(
p(x,Ty) + p(Tx, y)

)})

– φ
(
max

{
p(x, y),p(y,Ty)

})
.

http://www.fixedpointtheoryandapplications.com/content/2012/1/165
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Proof Note that TA = [,  ] ⊆ B and TB = [,  ] ⊆ A. Thus A∪ B has a cyclic representa-
tion of T . To prove (), given x ∈ A and y ∈ B, without loss of generality, we may assume
that x≤ y. So,

ψ
(
p(Tx,Ty)

)
= ψ

(
p
(

x

 + x
,
y

 + y

))
= ψ

(
y

 + y

)
=

y

 + y
,

ψ

(
max

{
p(x, y),p(x,Tx),p(y,Ty),



(
P(x,Ty) + p(Tx, y)

)})

= ψ

(
max

{
y,p

(
x,

x

 + x

)
,p

(
y,

y

 + y

)
,



(
p
(
x,

y

 + y

)
+ p

(
x

 + x
, y

))})

≤ ψ(y) = y,

and

φ
(
max

{
p(x, y),p(y,Ty)

})
= φ

(
max

{
y,p

(
y,

y

 + y

)})
= φ(y) =

y
 + y

.

Since

y

 + y
≤ y –

y
 + y

,

we have

ψ
(
p(Tx,Ty)

) ≤ ψ

(
max

{
p(x, y),p(x,Tx),p(y,Ty),



(
p(x,Ty) + p(Tx, y)

)})

– φ
(
max

{
p(x, y),p(y,Ty)

})
. �

Note that Example  satisfies all the hypotheses of Theorem .

3 Application
Denote by � the set of functions μ : [, +∞)→ [, +∞) satisfying the following hypothe-
ses:
(h) μ is a Lebesgue-integrable mapping on each compact of [, +∞).
(h) For every ε > , we have

∫ ε


μ(t)dt > .

Theorem  Let A and B be nonempty closed subsets of a complete partial metric space
(X,p). Let T : X → X be a mapping such that A ∪ B has a cyclic representation w.r.t. T .
Suppose that for x ∈ A and y ∈ B, we have

∫ p(Tx,Ty)


μ(t)dt ≤

∫ max{p(x,y),p(x,Tx),p(y,Ty),  (p(x,Ty)+p(Tx,y))}


μ(t)dt

–
∫ max{p(x,y),p(y,Ty)}


μ(t)dt,

where μ,μ ∈ �. Then T has a unique fixed point u ∈ A∩ B.

http://www.fixedpointtheoryandapplications.com/content/2012/1/165
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Proof Follows fromTheorem  by definingψ ,φ : [, +∞)→ [, +∞) viaψ(t) =
∫ t
 μ(s)ds

and φ(t) =
∫ t
 μ(s)ds and noting that ψ , φ are altering distance functions. �

Remark  Theorem . of [] is a special case of Corollary .

Remark  Theorem . of [] is a special case of Corollary .

Remark  Theorem . of [] is a special case of Corollary .

Remark  Theorem . of [] is a special case of Corollary .
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