# Fixed point results for cyclic ( $\psi, \phi, A, B$ )-contraction in partial metric spaces 

## Wasfi Shatanawi ${ }^{1}$ and Saurabh Manro ${ }^{2 *}$

Correspondence:
sauravmanro@hotmail.com
${ }^{2}$ School of Mathematics and Computer Applications, Thapar University, Patiala, Punjab, India Full list of author information is available at the end of the article


#### Abstract

Very recently, Agarwal et al. (Fixed Point Theory Appl. 2012:40, 2012) initiated the study of fixed point theorems for mappings satisfying cyclical generalized contractive conditions in complete partial metric spaces. In the present paper, we study some fixed point theorems for a mapping satisfying a cyclical generalized contractive condition based on a pair of altering distance functions in complete partial metric spaces. Also, we introduce an example and an application to support the usability of our paper. MSC: Primary 54H25; secondary 47H10


Keywords: partial metric spaces; fixed point; altering distance function; cyclic map

## 1 Introduction

The existence and uniqueness of fixed and common fixed point theorems of operators has been a subject of great interest since Banach [1] proved the Banach contraction principle in 1922. Many authors generalized the Banach contraction principle in various spaces such as quasi-metric spaces, generalized metric spaces, cone metric spaces and fuzzy metric spaces. Matthews [2] introduced the notion of partial metric spaces in such a way that each object does not necessarily have to have a zero distance from itself and proved a modified version of the Banach contraction principle. Afterwards, many authors proved many existing fixed point theorems in partial metric spaces (see [3-21] for examples).

We recall below the definition of partial metric space and some of its properties.

Definition 1 [2] A partial metric on a nonempty set $X$ is a function $p: X \times X \rightarrow \mathbb{R}^{+}$such that for all $x, y, z \in X$ :
$\left(\mathrm{p}_{1}\right) x=y \Longleftrightarrow p(x, x)=p(x, y)=p(y, y)$,
( $\mathrm{p}_{2}$ ) $p(x, x) \leq p(x, y)$,
$\left(\mathrm{p}_{3}\right) p(x, y)=p(y, x)$,
$\left(\mathrm{p}_{4}\right) p(x, y) \leq p(x, z)+p(z, y)-p(z, z)$.

A partial metric space is a pair $(X, p)$ such that $X$ is a nonempty set and $p$ is a partial metric on $X$. It is clear that, if $p(x, y)=0$, then from $\left(\mathrm{p}_{1}\right)$ and ( $\mathrm{p}_{2}$ ), $x=y$. But if $x=y, p(x, y)$ may not be 0 . The function $p(x, y)=\max \{x, y\}$ for all $x, y \in \mathbb{R}^{+}$defines a partial metric on $\mathbb{R}^{+}$.

Each partial metric $p$ on $X$ generates a $T_{0}$ topology $\tau_{p}$ on $X$ which has as a base the family of open $p$-balls $\left\{B_{p}(x, \varepsilon): x \in X, \varepsilon>0\right\}$, where $B_{p}(x, \varepsilon)=\{y \in X: p(x, y)<p(x, x)+\varepsilon\}$ for all $x \in X$ and $\varepsilon>0$.
If $p$ is a partial metric on $X$, then the function $d_{p}: X \times X \rightarrow \mathbb{R}^{+}$given by

$$
d_{p}(x, y)=2 p(x, y)-p(x, x)-p(y, y)
$$

is a metric on $X$.

Definition 2 Let ( $X, p$ ) be a partial metric space. Then
(1) A sequence $\left\{x_{n}\right\}$ in a partial metric space $(X, p)$ converges to a point $x \in X$ if and only if $p(x, x)=\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)$.
(2) A sequence $\left\{x_{n}\right\}$ in a partial metric space $(X, p)$ is called a Cauchy sequence iff $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ exists (and is finite).
(3) A partial metric space $(X, p)$ is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in $X$ converges, with respect to $\tau_{p}$, to a point $x \in X$ such that $p(x, x)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$.
(4) A subset $A$ of a partial metric space $(X, p)$ is closed if whenever $\left\{x_{n}\right\}$ is a sequence in $A$ such that $\left\{x_{n}\right\}$ converges to some $x \in X$, then $x \in A$.

Remark 1 The limit in a partial metric space is not unique.

Lemma $1([2,17])$ Let $(X, p)$ be a partial metric space.
(a) $\left\{x_{n}\right\}$ is a Cauchy sequence in $(X, p)$ if and only if it is a Cauchy sequence in the metric space $\left(X, d_{p}\right)$.
(b) A partial metric space $(X, p)$ is complete if and only if the metric space $\left(X, d_{p}\right)$ is complete. Furthermore, $\lim _{n \rightarrow \infty} d_{p}\left(x_{n}, x\right)=0$ if and only if

$$
p(x, x)=\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)
$$

Now, we define the cyclic map.

Definition 3 Let $A$ and $B$ be nonempty subsets of metric space $(X, d)$ and $T: A \cup B \rightarrow$ $A \cup B$. Then $T$ is called a cyclic map if $T(A) \subseteq B$ and $T(B) \subseteq A$.

In 2003, Kirk et al. [22] gave the following fixed point theorem for a cyclic map.

Theorem 1 [22] Let $A$ and $B$ be nonempty closed subsets of a complete metric space $(X, d)$. Suppose that $T: A \cup B \rightarrow A \cup B$ is a cyclic map such that

$$
d(T x, T y) \leq k d(x, y) \quad \forall x \in A, \forall y \in B .
$$

If $k \in[0,1)$, then $T$ has a unique fixed point in $A \cap B$.

Karapınar and Erhan [23] introduced the following types of cyclic contractions:

Definition 4 [23] Let $A$ and $B$ be nonempty closed subsets of a metric space ( $X, d$ ). A cyclic map $T: A \cup B \rightarrow A \cup B$ is said to be a Kannan type cyclic contraction if there exists $k \in\left(0, \frac{1}{2}\right)$ such that

$$
d(T x, T y) \leq k(d(T x, x)+d(T y, y)) \quad \forall x \in A, \forall y \in B .
$$

Definition 5 [23] Let $A$ and $B$ be nonempty closed subsets of a metric space ( $X, d$ ). A cyclic map $T: A \cup B \rightarrow A \cup B$ is said to be a Reich type cyclic contraction if there exists $k \in\left(0, \frac{1}{3}\right)$ such that

$$
d(T x, T y) \leq k(d(x, y)+d(T x, x)+d(T y, y)) \quad \forall x \in A, \forall y \in B .
$$

Definition 6 [23] Let $A$ and $B$ be nonempty closed subsets of a metric space $(X, d)$. A cyclic map $T: A \cup B \rightarrow A \cup B$ is said to be a Ćirić type cyclic contraction if there exists $k \in\left(0, \frac{1}{3}\right)$ such that

$$
d(T x, T y) \leq k \max \{d(x, y), d(T x, x), d(T y, y)\} \quad \forall x \in A, \forall y \in B .
$$

Moreover, Karapınar and Erhan [23] obtained the following results:

Theorem 2 [23] Let $A$ and $B$ be nonempty closed subsets of a complete metric space $(X, d)$, and let $T: A \cup B \rightarrow A \cup B$ be a Kannan type cyclic contraction. Then $T$ has a unique fixed point in $A \cap B$.

Theorem 3 [23] Let $A$ and $B$ be nonempty closed subsets of a complete metric space $(X, d)$, and let $T: A \cup B \rightarrow A \cup B$ be a Reich type cyclic contraction. Then $T$ has a unique fixed point in $A \cap B$.

Theorem 4 [23] Let $A$ and $B$ be nonempty closed subsets of a complete metric space $(X, d)$, and let $T: A \cup B \rightarrow A \cup B$ be a Ćirić type cyclic contraction. Then $T$ has a unique fixed point in $A \cap B$.

For more results on cyclic contraction mappings, see [24, 25].
Very recently, Agarwal et al. [26] initiated the study of fixed point theorems for mappings satisfying cyclical generalized contractive conditions in complete partial metric spaces.

Khan et al. [27] introduced the notion of altering distance function as follows.

Definition 7 (Altering distance function [27]) The function $\phi:[0,+\infty) \rightarrow[0,+\infty)$ is called an altering distance function if the following properties are satisfied:
(1) $\phi$ is continuous and nondecreasing.
(2) $\phi(t)=0$ if and only if $t=0$.

For some work on altering distance function, we refer the reader to [28-33].
The purpose of this paper is to study some fixed point theorems for a mapping satisfying a cyclical generalized contractive condition based on a pair of altering distance functions in partial metric spaces.

## 2 Main result

We start with the following definition.

Definition 8 Let $(X, p)$ be a partial metric space and $A, B$ be nonempty closed subsets of $X$. A mapping $T: X \rightarrow X$ is called a cyclic $(\psi, \phi, A, B)$-contraction if
(1) $\psi$ and $\phi$ are altering distance functions;
(2) $A \cup B$ has a cyclic representation w.r.t. $T$; that is, $T(A) \subseteq B$ and $T(B) \subseteq A$; and
(3)

$$
\begin{align*}
\psi(p(T x, T y)) \leq & \psi\left(\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}(p(x, T y)+p(T x, y))\right\}\right) \\
& -\phi(\max \{p(x, y), p(y, T y)\}) \tag{2.1}
\end{align*}
$$

$$
\text { for all } x \in A \text { and } y \in B
$$

From now on, by $\psi$ and $\phi$ we mean altering distance functions unless otherwise stated.

In the rest of this paper, $\mathbf{N}$ stands for the set of nonnegative integer numbers.

Theorem 5 Let $A$ and $B$ be nonempty closed subsets of a complete partial metric space $(X, p)$. If $T: X \rightarrow X$ is a cyclic $(\psi, \phi, A, B)$-contraction, then $T$ has a unique fixed point $u \in A \cap B$.

Proof Let $x_{0} \in A$. Since $T A \subseteq B$, we choose $x_{1} \in B$ such that $T x_{0}=x_{1}$. Also, since $T B \subseteq A$, we choose $x_{2} \in A$ such that $T x_{1}=x_{2}$. Continuing this process, we can construct sequences $\left\{x_{n}\right\}$ in $X$ such that $x_{2 n} \in A, x_{2 n+1} \in B, x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=T x_{2 n+1}$. If $x_{2 n_{0}+1}=x_{2 n_{0}+2}$ for some $n \in \mathbf{N}$, then $x_{2 n_{0}+1}=T x_{2 n_{0}+1}$. Thus, $x_{2 n_{0}+1}$ is a fixed point of $T$ in $A \cap B$. Thus, we may assume that $x_{2 n+1} \neq x_{2 n+2}$ for all $n \in \mathbf{N}$.
Given $n \in \mathbf{N}$. If $n$ is even, then $n=2 t$ for some $t \in \mathbf{N}$. By (2.1), we have

$$
\begin{aligned}
& \psi\left(p\left(x_{n+1}, x_{n+2}\right)\right) \\
&= \psi\left(p\left(x_{2 t+1}, x_{2 t+2}\right)\right) \\
&= \psi\left(p\left(T x_{2 t}, T x_{2 t+1}\right)\right) \\
& \leq \psi\left(\operatorname { m a x } \left\{p\left(x_{2 t}, x_{2 t+1}\right), p\left(T x_{2 t}, x_{2 t}\right), p\left(T x_{2 t+1}, x_{2 t+1}\right),\right.\right. \\
&\left.\left.\frac{1}{2}\left(p\left(x_{2 t}, T x_{2 t+1}\right)+p\left(T x_{2 t}, x_{2 t+1}\right)\right)\right\}\right) \\
&-\phi\left(\max \left\{p\left(x_{2 t}, x_{2 t+1}\right), p\left(T x_{2 t+1}, x_{2 t+1}\right)\right\}\right) \\
&= \psi\left(\operatorname { m a x } \left\{p\left(x_{2 t}, x_{2 t+1}\right), p\left(x_{2 t+2}, x_{2 t+1}\right),\right.\right. \\
&\left.\left.\frac{1}{2}\left(p\left(x_{2 t}, x_{2 t+2}\right)+p\left(x_{2 t+1}, x_{2 t+1}\right)\right)\right\}\right) \\
&-\phi\left(\max \left\{p\left(x_{2 t}, x_{2 t+1}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}\right) .
\end{aligned}
$$

By $\left(\mathrm{p}_{4}\right)$, we have

$$
\begin{aligned}
\psi & \left(p\left(x_{n+1}, x_{n+2}\right)\right) \\
& =\psi\left(p\left(x_{2 t+1}, x_{2 t+2}\right)\right) \\
\leq & \psi\left(\max \left\{p\left(x_{2 t}, x_{2 t+1}\right), p\left(x_{2 t+2}, x_{2 t+1}\right), \frac{1}{2}\left(p\left(x_{2 t}, x_{2 t+1}\right)+p\left(x_{2 t+1}, x_{2 t+2}\right)\right)\right\}\right) \\
& -\phi\left(\max \left\{p\left(x_{2 t}, x_{2 t+1}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}\right) \\
& \leq \psi\left(\max \left\{p\left(x_{2 t}, x_{2 t+1}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}\right)-\phi\left(\max \left\{p\left(x_{2 t}, x_{2 t+1}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}\right) \\
& \leq \psi\left(\max \left\{p\left(x_{2 t}, x_{2 t+1}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}\right) .
\end{aligned}
$$

If

$$
\max \left\{p\left(x_{2 t}, x_{2 t+1}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}=p\left(x_{2 t+2}, x_{2 t+1}\right),
$$

then

$$
\psi\left(p\left(x_{2 t+1}, x_{2 t+2}\right)\right) \leq \psi\left(p\left(x_{2 t+2}, x_{2 t+1}\right)\right)-\phi\left(p\left(x_{2 t+2}, x_{2 t+1}\right)\right) .
$$

Therefore, $\phi\left(p\left(x_{2 t+1}, x_{2 t+2}\right)\right)=0$, and hence $p\left(x_{2 t+1}, x_{2 t+2}\right)=0$. By $\left(\mathrm{p}_{1}\right)$ and $\left(\mathrm{p}_{2}\right)$, we have $x_{2 t+1}=x_{2 t+2}$, which is a contradiction. Therefore,

$$
\max \left\{p\left(x_{2 t}, x_{2 t+1}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}=p\left(x_{2 t}, x_{2 t+1}\right)
$$

Hence,

$$
\begin{equation*}
p\left(x_{n+1}, x_{n+2}\right)=p\left(x_{2 t+2}, x_{2 t+1}\right) \leq p\left(x_{2 t}, x_{2 t+1}\right)=p\left(x_{n}, x_{n+1}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi\left(p\left(x_{n+1}, x_{n+2}\right)\right) \leq \psi\left(p\left(x_{n}, x_{n+1}\right)\right)-\phi\left(p\left(x_{n}, x_{n+1}\right)\right) . \tag{2.3}
\end{equation*}
$$

If $n$ is odd, then $n=2 t+1$ for some $t \in \mathbf{N}$. By (2.1), we have

$$
\begin{aligned}
\psi & \left(p\left(x_{n+1}, x_{n+2}\right)\right) \\
= & \psi\left(p\left(x_{2 t+2}, x_{2 t+3}\right)\right) \\
= & \psi\left(p\left(x_{2 t+3}, x_{2 t+2}\right)\right) \\
= & \psi\left(p\left(T x_{2 t+2}, T x_{2 t+1}\right)\right) \\
\leq & \psi\left(\operatorname { m a x } \left\{p\left(x_{2 t+2}, x_{2 t+1}\right), p\left(T x_{2 t+2}, x_{2 t+2}\right), p\left(T x_{2 t+1}, x_{2 t+1}\right),\right.\right. \\
& \left.\left.\frac{1}{2}\left(p\left(x_{2 t+2}, T x_{2 t+1}\right)+p\left(T x_{2 t+2}, x_{2 t+1}\right)\right)\right\}\right) \\
& -\phi\left(\max \left\{p\left(x_{2 t+2}, x_{2 t+1}\right), p\left(T x_{2 t+1}, x_{2 t+1}\right)\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \psi\left(\max \left\{p\left(x_{2 t+3}, x_{2 t+2}\right), p\left(x_{2 t+2}, x_{2 t+1}\right), \frac{1}{2}\left(p\left(x_{2 t+2}, x_{2 t+2}\right)+p\left(x_{2 t+3}, x_{2 t+1}\right)\right)\right\}\right) \\
& -\phi\left(\max \left\{p\left(x_{2 t+2}, x_{2 t+1}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}\right) .
\end{aligned}
$$

By ( $\mathrm{p}_{4}$ ), we have

$$
\begin{aligned}
\psi & \left(p\left(x_{n+1}, x_{n+2}\right)\right) \\
& =\psi\left(p\left(x_{2 t+3}, x_{2 t+2}\right)\right) \\
& \leq \psi\left(\max \left\{p\left(x_{2 t+3}, x_{2 t+2}\right), p\left(x_{2 t+2}, x_{2 t+1}\right), \frac{1}{2}\left(p\left(x_{2 t+3}, x_{2 t+2}\right)+p\left(x_{2 t+2}, x_{2 t+1}\right)\right)\right\}\right) \\
& -\phi\left(\max \left\{p\left(x_{2 t+2}, x_{2 t+1}\right), p\left(T x_{2 t+1}, x_{2 t+1}\right)\right\}\right) \\
& \leq \psi\left(\max \left\{p\left(x_{2 t+3}, x_{2 t+2}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}\right)-\phi\left(\max \left\{p\left(x_{2 t+2}, x_{2 t+1}\right), p\left(T x_{2 t+1}, x_{2 t+1}\right)\right\}\right) \\
& \leq \psi\left(\max \left\{p\left(x_{2 t+3}, x_{2 t+2}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}\right)
\end{aligned}
$$

If

$$
\max \left\{p\left(x_{2 t+3}, x_{2 t+2}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}=p\left(x_{2 t+3}, x_{2 t+2}\right)
$$

then

$$
\phi\left(p\left(x_{2 t+3}, x_{2 t+2}\right)\right) \leq \psi\left(p\left(x_{2 t+3}, x_{2 t+2}\right)\right)-\phi\left(p\left(x_{2 t+2}, x_{2 t+1}\right)\right)
$$

Therefore, $\phi\left(p\left(x_{2 t+2}, x_{2 t+1}\right)\right)=0$, and hence $p\left(x_{2 t+3}, x_{2 t+2}\right)=0$. By $\left(p_{1}\right)$ and $\left(p_{2}\right)$, we have $x_{2 t+2}=x_{2 t+1}$, which is a contradiction. Therefore,

$$
\max \left\{p\left(x_{2 t+3}, x_{2 t+2}\right), p\left(x_{2 t+2}, x_{2 t+1}\right)\right\}=p\left(x_{2 t+2}, x_{2 t+1}\right)
$$

Hence,

$$
\begin{align*}
& p\left(x_{n+2}, x_{n+1}\right)=p\left(x_{2 t+3}, x_{2 t+2}\right) \leq p\left(x_{2 t+2}, x_{2 t+1}\right)=p\left(x_{n+1}, x_{n}\right)  \tag{2.4}\\
& \psi\left(p\left(x_{n+2}, x_{n+1}\right)\right) \leq \psi\left(p\left(x_{n}, x_{n+1}\right)\right)-\phi\left(p\left(x_{n}, x_{n+1}\right)\right) \tag{2.5}
\end{align*}
$$

From (2.2) and (2.4), we have $\left\{p\left(x_{n+1}, x_{n}\right): n \in \mathbf{N}\right\}$ is a nonincreasing sequence and hence there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow+\infty} p\left(x_{n}, x_{n+1}\right)=r .
$$

Also, from (2.3) and (2.5), we have

$$
\begin{equation*}
\psi\left(p\left(x_{n+2}, x_{n+1}\right)\right) \leq \psi\left(p\left(x_{n}, x_{n+1}\right)\right)-\phi\left(p\left(x_{n}, x_{n+1}\right)\right) \quad \forall n \in \mathbf{N} . \tag{2.6}
\end{equation*}
$$

Letting $n \rightarrow+\infty$ in (2.6) and using the fact that $\psi$ and $\phi$ are continuous, we get that

$$
\psi(r) \leq \psi(r)-\phi(r)
$$

Therefore, $\phi(r)=0$ and hence $r=0$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} p\left(x_{n}, x_{n+1}\right)=0 . \tag{2.7}
\end{equation*}
$$

By ( $\mathrm{p}_{2}$ ), we get that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} p\left(x_{n}, x_{n}\right)=0 \tag{2.8}
\end{equation*}
$$

Since $d_{p}(x, y) \leq 2 p(x, y)$ for all $x, y \in X$, we get that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} d_{p}\left(x_{n}, x_{n+1}\right)=0 . \tag{2.9}
\end{equation*}
$$

Next, we show that $\left\{x_{n}\right\}$ is a Cauchy sequence in the metric space $\left(A \cup B, d_{p}\right)$. It is sufficient to show that $\left\{x_{2 n}\right\}$ is a Cauchy sequence in $\left(A \cup B, d_{p}\right)$. Suppose the contrary; that is, $\left\{x_{2 n}\right\}$ is not a Cauchy sequence in $\left(A \cup B, d_{p}\right)$. Then there exists $\epsilon>0$ for which we can find two subsequences $\left\{x_{2 m(i)}\right\}$ and $\left\{x_{2 n(i)}\right\}$ of $\left\{x_{2 n}\right\}$ such that $n(i)$ is the smallest index for which

$$
\begin{equation*}
n(i)>m(i)>i, \quad d_{p}\left(x_{2 m(i)}, x_{2 n(i)}\right) \geq \epsilon . \tag{2.10}
\end{equation*}
$$

This means that

$$
\begin{equation*}
d_{p}\left(x_{2 m(i)}, x_{2 n(i)-2}\right)<\epsilon \tag{2.11}
\end{equation*}
$$

From (2.10), (2.11) and the triangular inequality, we get that

$$
\begin{aligned}
\epsilon \leq & d_{p}\left(x_{2 m(i)}, x_{2 n(i)}\right) \\
\leq & d_{p}\left(x_{2 m(i)}, x_{2 n(i)-2}\right)+d_{p}\left(x_{2 n(i)-2}, x_{2 n(i)-1}\right) \\
& +d_{p}\left(x_{2 n(i)-1}, x_{2 n(i)}\right) \\
< & \epsilon+d_{p}\left(x_{2 n(i)-2}, x_{2 n(i)-1}\right)+d_{p}\left(x_{2 n(i)-1}, x_{2 n(i)}\right) .
\end{aligned}
$$

On letting $i \rightarrow+\infty$ in the above inequalities and using (2.9), we have

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} d_{p}\left(x_{2 m(i)}, x_{2 n(i)}\right)=\epsilon . \tag{2.12}
\end{equation*}
$$

Again, from (2.10) and the triangular inequality, we get that

$$
\begin{aligned}
\epsilon & \leq d_{p}\left(x_{2 m(i)}, x_{2 n(i)}\right) \\
& \leq d_{p}\left(x_{2 n(i)}, x_{2 n(i)-1}\right)+d_{p}\left(x_{2 n(i)-1}, x_{2 m(i)}\right) \\
& \leq d_{p}\left(x_{2 n(i)}, x_{2 n(i)-1}\right)+d_{p}\left(x_{2 n(i)-1}, x_{2 m(i)+1}\right)+d_{p}\left(x_{2 m(i)+1}, x_{2 m(i)}\right) \\
& \leq d_{p}\left(x_{2 n(i)}, x_{2 n(i)-1}\right)+d_{p}\left(x_{2 n(i)-1}, x_{2 m(i)}\right)+2 d_{p}\left(x_{2 m(i)+1}, x_{2 m(i)}\right) \\
& \leq 2 d_{p}\left(x_{2 n(i)}, x_{2 n(i)-1}\right)+d_{p}\left(x_{2 n(i)}, x_{2 m(i)}\right)+2 d_{p}\left(x_{2 m(i)+1}, x_{2 m(i)}\right) .
\end{aligned}
$$

Letting $i \rightarrow+\infty$ in the above inequalities and using (2.9) and (2.12), we get that

$$
\begin{aligned}
\lim _{i \rightarrow+\infty} d_{p}\left(x_{2 m(i)}, x_{2 n(i)}\right) & =\lim _{i \rightarrow+\infty} d_{p}\left(x_{2 m(i)+1}, x_{2 n(i)-1}\right) \\
& =\lim _{i \rightarrow+\infty} d_{p}\left(x_{2 m(i)+1}, x_{2 n(i)}\right) \\
& =\lim _{i \rightarrow+\infty} d_{p}\left(x_{2 m(i)}, x_{2 n(i)-1}\right) \\
& =\epsilon .
\end{aligned}
$$

Since

$$
d_{p}(x, y)=2 p(x, y)-p(x, x)-p(y, y)
$$

for all $x, y \in X$, then

$$
\begin{aligned}
\lim _{i \rightarrow+\infty} p\left(x_{2 m(i)}, x_{2 n(i)}\right) & =\lim _{i \rightarrow+\infty} p\left(x_{2 m(i)+1}, x_{2 n(i)-1}\right) \\
& =\lim _{i \rightarrow+\infty} p\left(x_{2 m(i)+1}, x_{2 n(i)}\right) \\
& =\lim _{i \rightarrow+\infty} p\left(x_{2 m(i)}, x_{2 n(i)-1}\right) \\
& =\frac{\epsilon}{2} .
\end{aligned}
$$

By (2.1), we have

$$
\begin{aligned}
\psi\left(p\left(x_{2 m(i)+1}, x_{2 n(i)}\right)\right)= & \psi\left(p\left(T x_{2 m(i)}, T x_{2 n(i)-1}\right)\right) \\
\leq & \psi\left(\operatorname { m a x } \left\{p\left(x_{2 m(i)}, x_{2 n(i)-1}\right), p\left(x_{2 m(i)}, T x_{2 m(i)}\right), p\left(x_{2 n(i)-1}, T x_{2 n(i)-1}\right),\right.\right. \\
& \left.\left.\frac{1}{2}\left(p\left(x_{2 m(i)}, T x_{2 n(i)-1}\right)+p\left(x_{2 n(i)-1}, T x_{2 m(i)}\right)\right)\right\}\right) \\
& -\phi\left(\max \left\{p\left(x_{2 m(i)}, x_{2 n(i)-1}\right), p\left(x_{2 n(i)-1}, T x_{2 n(i)-1}\right)\right\}\right) \\
= & \psi\left(\operatorname { m a x } \left\{p\left(x_{2 m(i)}, x_{2 n(i)-1}\right), p\left(x_{2 m(i)}, x_{2 m(i)+1}\right), p\left(x_{2 n(i)-1}, x_{2 n(i)}\right),\right.\right. \\
& \left.\left.\frac{1}{2}\left(p\left(x_{2 m(i)}, x_{2 n(i)}\right)+p\left(x_{2 n(i)-1}, x_{2 m(i)+1}\right)\right)\right\}\right) \\
& -\phi\left(\max \left\{p\left(x_{2 m(i)}, x_{2 n(i)-1}\right), p\left(x_{2 n(i)-1}, x_{2 n(i)}\right)\right\}\right) .
\end{aligned}
$$

Letting $i \rightarrow+\infty$ and using the continuity of $\phi$ and $\psi$, we get that

$$
\psi\left(\frac{\epsilon}{2}\right) \leq \psi\left(\frac{\epsilon}{2}\right)-\phi\left(\frac{\epsilon}{2}\right) .
$$

Therefore, we get that $\phi\left(\frac{\epsilon}{2}\right)=0$. Hence, $\epsilon=0$ is a contradiction. Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(A \cup B, d_{p}\right)$. Since $(X, p)$ is complete and $A \cup B$ is a closed subspace of $(X, p)$, then we have $(A \cup B, p)$ is complete. From Lemma 1 , the sequence $\left\{x_{n}\right\}$ converges in the metric space $\left(A \cup B, d_{p}\right)$, say $\lim _{n \rightarrow \infty} d_{p}\left(x_{n}, u\right)=0$. Again from Lemma 1, we have

$$
\begin{equation*}
p(u, u)=\lim _{n \rightarrow \infty} p\left(x_{n}, u\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right) . \tag{2.13}
\end{equation*}
$$

Moreover, since $\left\{x_{n}\right\}$ is a Cauchy sequence in the metric space $\left(A \cup B, d_{p}\right)$, we have

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} d_{p}\left(x_{n}, x_{m}\right)=0 \tag{2.14}
\end{equation*}
$$

From the definition of $d_{p}$ we have

$$
d_{p}\left(x_{n}, x_{m}\right)=2 p\left(x_{n}, x_{m}\right)-p\left(x_{n}, x_{n}\right)-p\left(x_{m}, x_{m}\right) .
$$

Letting $n, m \rightarrow+\infty$ in the above equality and using (2.8) and (2.14), we get

$$
\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0 .
$$

Thus by (2.13), we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} p\left(x_{n}, u\right)=p(u, u)=0 . \tag{2.15}
\end{equation*}
$$

Since $p\left(x_{2 n}, u\right) \rightarrow 0=p(u, u),\left\{x_{2 n}\right\}$ is a sequence in $A$, and $A$ is closed in $(X, p)$, we have $u \in A$. Similarly, we have $u \in B$, that is $u \in A \cap B$. Again, from the definition of $p$, we have

$$
\begin{aligned}
p\left(x_{n}, T u\right) & \leq p\left(x_{n}, u\right)+p(u, T u)-p(u, u) \\
& \leq p\left(x_{n}, u\right)+p\left(u, x_{n}\right)+p\left(x_{n}, T u\right)-p\left(x_{n}, x_{n}\right)-p(u, u) .
\end{aligned}
$$

Letting $n \rightarrow+\infty$ in the above inequalities and using (2.9) and (2.15), we get that

$$
\lim _{n \rightarrow+\infty} p\left(x_{n}, T u\right)=p(u, T u) .
$$

Now, we claim that $T u=u$.
Since $x_{2 n} \in A$ and $u \in B$, by (2.1) we have

$$
\begin{aligned}
\psi\left(p\left(x_{2 n+1}, T u\right)\right)= & \psi\left(p\left(T x_{2 n}, T u\right)\right) \\
\leq & \psi\left(\operatorname { m a x } \left\{p\left(x_{2 n}, u\right), p\left(T x_{2 n}, x_{2 n}\right), p(T u, u),\right.\right. \\
& \left.\left.\frac{1}{2}\left(p\left(x_{2 n}, T u\right)+p\left(u, T x_{2 n}\right)\right)\right\}\right) \\
& -\phi\left(\max \left\{p\left(x_{2 n}, u\right), p(T u, u)\right\}\right) \\
= & \psi\left(\operatorname { m a x } \left\{p\left(x_{2 n}, u\right), p\left(x_{2 n}, x_{2 n+1}\right), p(T u, u),\right.\right. \\
& \left.\left.\frac{1}{2}\left(p\left(x_{2 n}, T u\right)+p\left(u, x_{2 n+1}\right)\right)\right\}\right) \\
& -\phi\left(\max \left\{p\left(x_{2 n}, u\right), p(u, T u)\right\}\right) .
\end{aligned}
$$

Letting $n \rightarrow+\infty$, we get that

$$
\psi(p(u, T u)) \leq \psi(p(u, T u))-\phi(p(u, T u)) .
$$

Therefore, $\phi(p(u, T u))=0$. Since $\phi$ is an altering distance function, $p(u, T u)=0$, that is, $u=T u$.

Therefore, $u$ is a fixed point of $T$. To prove the uniqueness of the fixed point, we let $v$ be any other fixed point of $T$ in $A \cap B$. It is an easy matter to prove that $p(v, v)=0$. Now, we prove that $u=v$. Since $u \in A \cap B \subseteq A$ and $v \in A \cap B \subseteq B$, we have

$$
\begin{aligned}
\psi(p(u, v)) & =\psi(p(T u, T v)) \\
& \leq \psi(\max \{p(u, v), p(u, u), p(v, v)\})-\phi(\max \{p(u, v), p(v, v)\}) \\
& =\psi(p(u, v))-\phi(p(u, v))
\end{aligned}
$$

Thus $\phi(p(u, v))=0$ and hence $p(u, v)=0$. Therefore, $u=v$.

Taking $\psi=I_{[0,+\infty)}$ (the identity function) in Theorem 5, we have the following result.

Corollary 1 Let $A$ and $B$ be nonempty closed subsets of a complete partial metric space $(X, p)$. Let $T: X \rightarrow X$ be a mapping such that $A \cup B$ has a cyclic representation w.r.t. $T$. Suppose there exists an altering distance function $\phi$ such that

$$
\begin{aligned}
p(T x, T y) \leq & \max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}(p(x, T y)+p(T x, y))\right\} \\
& -\phi(\max \{p(x, y), p(y, T y)\})
\end{aligned}
$$

for all $x \in A$ and $y \in B$. Then $T$ has a unique fixed point $u \in A \cap B$.

Corollary 2 Let $A$ and $B$ be nonempty closed subsets of a complete partial metric space $(X, p)$. Let $T: X \rightarrow X$ be a mapping such that $A \cup B$ has a cyclic representation w.r.t. $T$. Suppose there exists an altering distance function $\phi$ such that

$$
p(T x, T y) \leq \max \{p(x, y), p(x, T x), p(y, T y)\}-\phi(\max \{p(x, y), p(x, T x), p(y, T y)\})
$$

for all $x \in A$ and $y \in B$. Then $T$ has a unique fixed point $u \in A \cap B$.

Now, we introduce an example to support the usability of our results.

Example 1 Let $X=[0,1]$. Define the partial metric $p$ on $X$ by

$$
p(x, y)= \begin{cases}0, & \text { if } x=y \\ \max \{x, y\}, & \text { if } x \neq y\end{cases}
$$

Also, define the mapping $T: X \rightarrow X$ by $T(x)=\frac{x^{2}}{1+x}$ and the functions $\psi, \phi:[0,+\infty) \rightarrow$ $[0,+\infty)$ by $\psi(t)=2 t$ and $\phi(t)=\frac{t}{1+2 t}$. Take $A=\left[0, \frac{1}{2}\right]$ and $B=[0,1]$. Then
(1) $(X, p)$ is a complete partial metric space.
(2) $A \cup B$ has a cyclic representation w.r.t. $T$.
(3) For all $x \in A$ and $y \in B$, we have

$$
\begin{aligned}
\psi(p(T x, T y)) \leq & \psi\left(\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}(p(x, T y)+p(T x, y))\right\}\right) \\
& -\phi(\max \{p(x, y), p(y, T y)\})
\end{aligned}
$$

Proof Note that $T A=\left[0, \frac{1}{6}\right] \subseteq B$ and $T B=\left[0, \frac{1}{2}\right] \subseteq A$. Thus $A \cup B$ has a cyclic representation of $T$. To prove (3), given $x \in A$ and $y \in B$, without loss of generality, we may assume that $x \leq y$. So,

$$
\begin{aligned}
& \psi(p(T x, T y))=\psi\left(p\left(\frac{x^{2}}{1+x}, \frac{y^{2}}{1+y}\right)\right)=\psi\left(\frac{y^{2}}{1+y}\right)=\frac{2 y^{2}}{1+y} \\
& \psi\left(\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}(P(x, T y)+p(T x, y))\right\}\right) \\
& \quad=\psi\left(\max \left\{y, p\left(x, \frac{x^{2}}{1+x}\right), p\left(y, \frac{y^{2}}{1+y}\right), \frac{1}{2}\left(p\left(x, \frac{y^{2}}{1+y}\right)+p\left(\frac{x^{2}}{1+x}, y\right)\right)\right\}\right) \\
& \quad \leq \psi(y)=2 y,
\end{aligned}
$$

and

$$
\phi(\max \{p(x, y), p(y, T y)\})=\phi\left(\max \left\{y, p\left(y, \frac{y^{2}}{1+y}\right)\right\}\right)=\phi(y)=\frac{y}{1+2 y} .
$$

Since

$$
\frac{2 y^{2}}{1+y} \leq 2 y-\frac{y}{1+2 y}
$$

we have

$$
\begin{aligned}
\psi(p(T x, T y)) \leq & \psi\left(\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}(p(x, T y)+p(T x, y))\right\}\right) \\
& -\phi(\max \{p(x, y), p(y, T y)\})
\end{aligned}
$$

Note that Example 1 satisfies all the hypotheses of Theorem 5.

## 3 Application

Denote by $\Lambda$ the set of functions $\mu:[0,+\infty) \rightarrow[0,+\infty)$ satisfying the following hypotheses:
(h1) $\mu$ is a Lebesgue-integrable mapping on each compact of $[0,+\infty)$.
(h2) For every $\epsilon>0$, we have

$$
\int_{0}^{\epsilon} \mu(t) d t>0
$$

Theorem 6 Let $A$ and $B$ be nonempty closed subsets of a complete partial metric space $(X, p)$. Let $T: X \rightarrow X$ be a mapping such that $A \cup B$ has a cyclic representation w.r.t. $T$. Suppose that for $x \in A$ and $y \in B$, we have

$$
\begin{aligned}
\int_{0}^{p(T x, T y)} \mu_{1}(t) d t \leq & \int_{0}^{\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}(p(x, T y)+p(T x, y))\right\}} \mu_{1}(t) d t \\
& -\int_{0}^{\max \{p(x, y), p(y, T y)\}} \mu_{2}(t) d t
\end{aligned}
$$

where $\mu_{1}, \mu_{2} \in \Lambda$. Then $T$ has a unique fixed point $u \in A \cap B$.

Proof Follows from Theorem 5 by defining $\psi, \phi:[0,+\infty) \rightarrow[0,+\infty)$ via $\psi(t)=\int_{0}^{t} \mu_{1}(s) d s$ and $\phi(t)=\int_{0}^{t} \mu_{2}(s) d s$ and noting that $\psi, \phi$ are altering distance functions.

Remark 2 Theorem 2.1 of [23] is a special case of Corollary 2.

Remark 3 Theorem 2.3 of [23] is a special case of Corollary 2.

Remark 4 Theorem 2.4 of [23] is a special case of Corollary 2.

Remark 5 Theorem 1.1 of [22] is a special case of Corollary 2.

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

All authors read and approved the manuscript

## Author details

${ }^{1}$ Department of Mathematics, Hashemite University, P.O. Box 150459, Zarqa, 13115, Jordan. ${ }^{2}$ School of Mathematics and Computer Applications, Thapar University, Patiala, Punjab, India.

## Acknowledgements

The authors thank the Editor and the referees for their useful comments and suggestions.
Received: 2 July 2012 Accepted: 31 August 2012 Published: 28 September 2012

## References

1. Banach, S: Sur les operations dans les ensembles et leur application aux equation sitegrales. Fundam. Math. 3, 133-181 (1922)
2. Matthews, SG: Partial metric topology. Proc. 8th Summer Conference on General Topology and Applications. Ann. N.Y. Acad. Sci. 728, 183-197 (1994)
3. Abdeljawad, T, Karapinar, E, Taş, K: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 24, 1900-1904 (2011)
4. Abdeljawad, T, Karapinar, E, Taş, K: A generalized contraction principle with control functions on partial metric spaces. Comput. Math. Appl. 6, 716-719 (2012)
5. Abdeljawad, T: Fixed points for generalized weakly contractive mappings in partial metric spaces. Math. Comput Model. 54, 2923-2927 (2011)
6. Altun, I, Erduran, A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. 2011, Article ID 508730 (2011)
7. Altun, I, Sola, F, Simsek, H: Generalized contractions on partial metric spaces. Topol. Appl. 157, 2778-2785 (2010)
8. Aydi, H: Some fixed point results in ordered partial metric spaces. J. Nonlinear Sci. Appl 4, 1-12 (2011)
9. Aydi, H: Some coupled fixed point results on partial metric spaces. Int. J. Math. Math. Sci. 2011, Article ID 647091 (2011)
10. Aydi, H: Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces. J. Nonlinear Anal. Optim. 2, 33-48 (2011)
11. Aydi, H, Karapinar, E, Shatanawi, W: Coupled fixed point results for $(\psi, \varphi)$-weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 62, 4449-4460 (2011)
12. Golubović, Z, Kadelburg, Z, Radenović, S: Coupled coincidence points of mappings in ordered partial metric spaces Abstr. Appl. Anal. 2012, Article ID 192581 (2012)
13. Heckmann, R: Approximation of metric spaces by partial metric spaces. Appl. Categ. Struct. 7, 71-83 (1999)
14. Karapinar, E: Generalizations of Caristi Kirk's theorem on partial metric spaces. Fixed Point Theory Appl. (2011, in press)
15. Karapinar, E, Erhan, IM: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. (2011) doi:10.1016/j.aml.2011.05.013
16. Nashine, HK, Kadelburg, Z, Radenović, S: Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces. Math. Comput. Model. (2012, in press)
17. Oltra, S, Valero, O: Banach's fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 36, 17-26 (2004)
18. Romaguera, S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010 Article ID 493298 (2010)
19. Samet, B, Rajović, M, Lazović, R, Stoiljković, R: Common fixed point results for nonlinear contractions in ordered partial metric spaces. Fixed Point Theory Appl. 2011, 71 (2011)
20. Shatanawi, W, Nashine, HK: A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space. J. Nonlinear Sci. Appl 5, 37-43 (2012)
21. Valero, O: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 6, 229-240 (2005)
22. Kirk, WA, Srinavasan, PS, Veeramani, P: Fixed points for mapping satisfying cyclical contractive conditions. Fixed Point Theory 4, 79-89 (2003)
23. Karapinar, E, Erhan, IM: Best proximity point on different type contractions. Appl. Math. Inf. Sci. 5, 342-353 (2011)
24. Karapinar, E, Erhan, IM, Ulus, AY: Fixed point theorem for cyclic maps on partial metric spaces. Appl. Math. Inf. Sci. 6, 239-244 (2012)
25. Karapinar, E, Erhan, IM: Cyclic contractions and fixed point theorems. Filomat 26, 777-782 (2012)
26. Agarwal, RP, Alghamdi, MA, Shahzad, N: Fixed point theory for cyclic generalized contractions in partial metric spaces. Fixed Point Theory Appl. 2012, 40 (2012)
27. Khan, MS, Swaleh, M, Sessa, S: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 30, 1-9 (1984)
28. Cho, YJ, Rhoades, BE, Saadati, R, Samet, B, Shatanawi, W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012, 8 (2012). doi:10.1186/1687-1812-2012-8
29. Aydi, H, Postolache, M, Shatanawi, W: Coupled fixed point results for $(\psi, \phi)$-weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 63, 298-309 (2012)
30. Lakzian, H, Samet, B: Fixed points for $(\psi, \phi)$-weakly contractive mappings in generalized metric spaces. Appl. Math. Lett. 25, 902-906 (2012)
31. Shatanawi, W, Al-Rawashdeh, A: Common fixed points of almost generalized ( $\psi, \phi$ )-contractive mappings in ordered metric spaces. Fixed Point Theory Appl. (accepted)
32. Shatanawi, W, Mustafa, Z, Tahat, N: Some coincidence point theorems for nonlinear contraction in ordered metric spaces. Fixed Point Theory Appl. 2011, 68 (2011)
33. Shatanawi, W, Samet, B: On $(\psi, \phi)$-weakly contractive condition in partially ordered metric spaces. Comput. Math. Appl. 62, 3204-3214 (2011)

## doi:10.1186/1687-1812-2012-165

Cite this article as: Shatanawi and Manro: Fixed point results for cyclic ( $\psi, \phi, A, B$ )-contraction in partial metric spaces. Fixed Point Theory and Applications 2012 2012:165.

## Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

