RESEARCH Open Access

Explicit averaging cyclic algorithm for common fixed points of a finite family of asymptotically strictly pseudocontractive mappings in q-uniformly smooth Banach spaces

Ying Zhang^{1,2*} and Zhiwei Xie³

*Correspondence: spzhangying@126.com
1 School of Mathematics and Physics, North China Electric Power University, Baoding, Hebei 071003, RR. China
2 School of Economics, Renmin University of China, Beijing, 100872, RR. China
Full list of author information is

available at the end of the article

Abstract

Let E be a real q-uniformly smooth Banach space which is also uniformly convex and K be a nonempty, closed and convex subset of E. We obtain a weak convergence theorem of the explicit averaging cyclic algorithm for a finite family of asymptotically strictly pseudocontractive mappings of K under suitable control conditions, and elicit a necessary and sufficient condition that guarantees strong convergence of an explicit averaging cyclic process to a common fixed point of a finite family of asymptotically strictly pseudocontractive mappings in q-uniformly smooth Banach spaces. The results of this paper are interesting extensions of those known results. **MSC:** 47H09; 47H10

Keywords: asymptotically strictly pseudocontractive mappings; weak and strong convergence; explicit averaging cyclic algorithm; fixed points; *q*-uniformly smooth Banach spaces

1 Introduction

Let E and E^* be a real Banach space and the dual space of E, respectively. Let J_q (q > 1) denote the generalized duality mapping from E into 2^{E^*} given by $J_q(x) = \{f \in E^* : \langle x, f \rangle = \|x\|^q$ and $\|f\| = \|x\|^{q-1}\}$ for all $x \in E$, where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing between E and E^* . In particular, J_2 is called the normalized duality mapping and it is usually denoted by J. If E is smooth or E^* is strictly convex, then J_q is single-valued. In the sequel, we will denote the single-valued generalized duality mapping by J_q .

Let K be a nonempty subset of E. A mapping $T: K \to K$ is called *asymptotically* κ -strictly pseudocontractive with sequence $\{\kappa_n\}_{n=1}^{\infty} \subseteq [1, \infty)$ such that $\lim_{n\to\infty} \kappa_n = 1$ (see, *e.g.*, [1-3]) if for all $x,y\in K$, there exist a constant $\kappa\in [0,1)$ and $j_q(x-y)\in J_q(x-y)$ such that

$$\left\langle T^{n}x - T^{n}y, j_{q}(x - y) \right\rangle \leq \kappa_{n} \|x - y\|^{q} - \kappa \|x - y - \left(T^{n}x - T^{n}y\right)\|^{q}, \quad \forall n \geq 1.$$
 (1)

© 2012 Zhang and Xie; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

If *I* denotes the identity operator, then (1) can be written in the form

$$\langle (I - T^n)x - (I - T^n)y, j_q(x - y) \rangle$$

$$\geq \kappa \left\| (I - T^n)x - (I - T^n)y \right\|^q - (\kappa_n - 1) \|x - y\|^q.$$
(2)

The class of asymptotically κ -strictly pseudocontractive mappings was first introduced in Hilbert spaces by Qihou [3]. In Hilbert spaces, j_q is the identity, and it is shown by Osilike *et al.* [2] that (1) (and hence (2)) is equivalent to the inequality

$$||T^n x - T^n y||^2 \le \lambda_n ||x - y||^2 + \lambda ||x - y - (T^n x - T^n y)||^2$$
,

where
$$\lim_{n\to\infty} \lambda_n = \lim_{n\to\infty} [1 + 2(\kappa_n - 1)] = 1$$
, $\lambda = (1 - 2\kappa) \in [0, 1)$.

A mapping T with domain D(T) and range R(T) in E is called *strictly pseudocontractive* of Browder-Petryshyn type [4] if for all $x, y \in D(T)$, there exist $\kappa \in [0,1)$ and $j_q(x-y) \in J_q(x-y)$ such that

$$\langle Tx - Ty, j_q(x - y) \rangle \le ||x - y||^q - \kappa ||x - y - (Tx - Ty)||^q.$$
 (3)

If I denotes the identity operator, then (3) can be written in the form

$$\langle (I-T)x - (I-T)y, j_q(x-y) \rangle \ge \kappa \| (I-T)x - (I-T)y \|^q.$$
 (4)

In Hilbert spaces, (3) (and hence (4)) is equivalent to the inequality

$$||Tx - Ty||^2 \le ||x - y||^2 + k ||x - y - (Tx - Ty)||^2, \quad k = (1 - 2\kappa) < 1.$$

It is shown in [5] that the class of asymptotically κ -strictly pseudocontractive mappings and the class of κ -strictly pseudocontractive mappings are independent.

A mapping T is said to be *uniformly L-Lipschitzian* if there exists a constant L > 0 such that, for all $x, y \in K$,

$$||T^n x - T^n y|| < L||x - y||, \quad n > 1.$$

Let $\{T_j\}_{j=0}^{N-1}$ be N asymptotically strictly pseudocontractive self-mappings of K, and denote the common fixed points set of $\{T_j\}_{j=0}^{N-1}$ by $F:=\bigcap_{j=0}^{N-1}F(T_j)$, where $F(T_j):=\{x\in K:T_jx=x\}$. We consider the following explicit averaging cyclic algorithm.

For a given $x_0 \in K$, and a real sequence $\{\alpha_n\}_{n=0}^{\infty} \subseteq (0,1)$, the sequence $\{x_n\}_{n=0}^{\infty}$ is generated as follows:

$$x_{1} = \alpha_{0}x_{0} + (1 - \alpha_{0})T_{0}x_{0},$$

$$x_{2} = \alpha_{1}x_{1} + (1 - \alpha_{1})T_{1}x_{1},$$

$$\vdots$$

$$x_{N} = \alpha_{N-1}x_{N-1} + (1 - \alpha_{N-1})T_{N-1}x_{N-1},$$

$$x_{N+1} = \alpha_{N}x_{N} + (1 - \alpha_{N})T_{0}^{2}x_{N},$$

$$\begin{split} x_{N+2} &= \alpha_{N+1} x_{N+1} + (1 - \alpha_{N+1}) T_1^2 x_{N+1}, \\ \vdots \\ x_{2N} &= \alpha_{2N-1} x_{2N-1} + (1 - \alpha_{2N-1}) T_{N-1}^2 x_{2N-1}, \\ x_{2N+1} &= \alpha_{2N} x_{2N} + (1 - \alpha_{2N}) T_0^3 x_{2N}, \\ x_{2N+2} &= \alpha_{2N+1} x_{2N+1} + (1 - \alpha_{2N+1}) T_1^3 x_{2N+1}, \\ \vdots \\ \end{split}$$

The algorithm can be expressed in a compact form as

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T_{i(n)}^{k(n)} x_n, \quad n \ge 0,$$
 (5)

where n = (k-1)N + i with $i = i(n) \in I = \{0, 1, 2, ..., N-1\}$, $k = k(n) \ge 1$ a positive integer and $\lim_{n \to \infty} k(n) = \infty$. The cyclic algorithm was first studied by Acedo and Xu [6] for the iterative approximation of common fixed points of a finite family of strictly pseudocontractive mappings in Hilbert spaces, and it is better than implicit iteration methods.

In [7] Xiaolong Qin et al. proved the following theorem in a Hilbert space.

Theorem QCKS Let K be a closed and convex subset of a Hilbert space H and $N \ge 1$ be an integer. Let, for each $1 \le i \le N$, $T_i: K \to K$ be an asymptotically κ_i -strictly pseudocontractive mapping for some $0 \le \kappa_i < 1$ and a sequence $\{k_{n,i}\}$ such that $\sum_{n=0}^{\infty} (k_{n,i}-1) < \infty$. Let $\kappa = \max\{\kappa_i: 1 \le i \le N\}$ and $\kappa_n = \max\{\kappa_{n,i}: 1 \le i \le N\}$. Assume that $F \ne \emptyset$. For any $x_0 \in K$, let $\{x_n\}$ be the sequence generated by the cyclic algorithm (5). Assume that the control sequence $\{\alpha_n\}$ is chosen such that $\kappa + \epsilon \le \alpha_n \le 1 - \epsilon$ for all $n \ge 0$ and a small enough constant $\epsilon \in (0,1)$. Then $\{x_n\}$ converges weakly to a common fixed point of the family $\{T_i\}_{i=1}^N$.

Osilike and Shehu [8] extended the result of Theorem QCKS from a Hilbert space to 2-uniformly smooth Banach spaces which are also uniformly convex. They proved the following theorem.

Theorem OS Let E be a real 2-uniformly smooth Banach space which is also uniformly convex, and K be a nonempty, closed and convex subset of E. Let $\{T_j\}_{j=0}^{N-1}$ be N asymptotically λ_j -strictly pseudocontractive self-mappings of K for some $0 \le \lambda_j < 1$ with a sequence $\{\kappa_n^{(j)}\}_{n=0}^{\infty} \subset [1,\infty)$ such that $\sum_{n=0}^{\infty} (\kappa_n^{(j)}-1) < \infty$, $\forall j \in J = \{0,1,2,\ldots,N-1\}$, and $F \ne \emptyset$. Let $\{\alpha_n\}$ satisfy the conditions

$$(i^*)$$
 $0 < \alpha_n < 1$, $n > 0$,

(ii*)
$$0 < a \le 1 - \alpha_n \le b < \frac{2\lambda}{C_2}$$
,

where $\lambda = \min_{j \in J} \{\lambda_j\}$ and C_2 is the constant appearing in the inequality (7) with q = 2. Let $\{x_n\}$ be the sequence generated by the cyclic algorithm (5). Then $\{x_n\}$ converges weakly to a common fixed point of the family $\{T_j\}_{j=0}^{N-1}$.

We would like to point out that the condition (ii^{*}) in Theorem OS excludes the natural choice $1 - \frac{1}{n}$ for α_n . This is overcome by this paper. Moreover, we improve and extend the

result of Theorem OS from 2-uniformly smooth Banach spaces to q-uniformly smooth Banach spaces which are also uniformly convex. We prove that if $\{\alpha_n\}$ satisfies the conditions

(i)
$$\mu \le \alpha_n < 1$$
, $n \ge 0$,
(ii)
$$\sum_{n=0}^{\infty} (1 - \alpha_n) \left[q\lambda - C_q (1 - \alpha_n)^{q-1} \right] = \infty,$$
(6)

where $\mu = \max\{0, 1 - (\frac{q\lambda}{C_q})^{\frac{1}{q-1}}\}$, $\lambda = \min_{j \in J} \{\lambda_j\}$, then the iterative sequence (5) converges weakly to a common fixed point of the family $\{T_j\}_{j=0}^{N-1}$.

Furthermore, we elicit a necessary and sufficient condition that guarantees strong convergence of the iterative sequence (5) to a common fixed point of the family $\{T_j\}_{j=0}^{N-1}$ in q-uniformly smooth Banach spaces.

We will use the notation:

- 1. \rightarrow for weak convergence.
- 2. $\omega_{\mathcal{W}}(x_n) = \{x : \exists x_{n_i} \rightarrow x\}$ denotes the weak ω -limit set of $\{x_n\}$.

2 Preliminaries

Let *E* be a real Banach space. The *modulus of smoothness* of *E* is the function $\rho_E : [0, \infty) \to [0, \infty)$ defined by

$$\rho_E(\tau) = \sup \left\{ \frac{1}{2} (\|x + y\| + \|x - y\|) - 1 : \|x\| \le 1, \|y\| \le \tau \right\}.$$

E is *uniformly smooth* if and only if $\lim_{\tau \to 0} [\rho_E(\tau)/\tau] = 0$.

Let q>1. E is said to be q-uniformly smooth (or to have a modulus of smoothness of power type q>1) if there exists a constant c>0 such that $\rho_E(\tau)\leq c\tau^q$. Hilbert spaces, L_p (or l_p) spaces $(1< p<\infty)$ and the Sobolev spaces W_m^p $(1< p<\infty)$ are q-uniformly smooth. Hilbert spaces are 2-uniformly smooth while

$$L_p ext{ (or } l_p) ext{ or } W_m^p ext{ is } \begin{cases} p ext{-uniformly smooth} & ext{if } 1$$

Theorem HKX ([9, p.1130]) Let q > 1 and let E be a real q-uniformly smooth Banach space. Then there exists a constant $C_q > 0$ such that, for all $x, y \in E$,

$$||x + y||^q < ||x||^q + q\langle y, j_a(x) \rangle + C_a ||y||^q.$$
(7)

E is said to have a *Fréchet differentiable norm* if, for all $x \in U = \{x \in E : ||x|| = 1\}$,

$$\lim_{t\to 0} \frac{\|x+ty\|-\|x\|}{t}$$

exists and is attained uniformly in $y \in U$. In this case, there exists an increasing function $b:[0,\infty) \to [0,\infty)$ with $\lim_{t\to 0^+} [b(t)/t] = 0$ such that, for all $x,h\in E$,

$$\frac{1}{2}\|x\|^2 + \langle h, j(x) \rangle \le \frac{1}{2}\|x + h\|^2 \le \frac{1}{2}\|x\|^2 + \langle h, j(x) \rangle + b(\|h\|). \tag{8}$$

It is well known (see, for example, [10, p.107]) that a *q*-uniformly smooth Banach space has a Fréchet differentiable norm.

Lemma 2.1 ([5, p.1338]) Let E be a real q-uniformly smooth Banach space which is also uniformly convex. Let K be a nonempty, closed and convex subset of E and $T: K \to K$ be an asymptotically κ -strictly pseudocontractive mapping with a nonempty fixed point set. Then (I-T) is demiclosed at zero, that is, if whenever $\{x_n\} \subset D(T)$ such that $\{x_n\}$ converges weakly to $x \in D(T)$ and $\{(I-T)x_n\}$ converges strongly to 0, then Tx = x.

Lemma 2.2 ([2, p.80]) Let $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, $\{\delta_n\}_{n=0}^{\infty}$ be sequences of nonnegative real numbers satisfying the following inequality:

$$a_{n+1} < (1+\delta_n)a_n + b_n, \quad \forall n > 0.$$

If $\sum_{n=0}^{\infty} \delta_n < \infty$ and $\sum_{n=0}^{\infty} b_n < \infty$, then $\lim_{n\to\infty} a_n$ exists. If, in addition, $\{a_n\}_{n=0}^{\infty}$ has a subsequence which converges strongly to zero, then $\lim_{n\to\infty} a_n = 0$.

Lemma 2.3 ([2, p.78]) Let E be a real Banach space, K be a nonempty subset of E and $T: K \to K$ be an asymptotically κ -strictly pseudocontractive mapping. Then T is uniformly L-Lipschitzian.

Lemma 2.4 Let E be a real q-uniformly smooth Banach space which is also uniformly convex, and let K be a nonempty, closed and convex subset of E. Let, for each $0 \le j \le N-1$, $T_j: K \to K$ be an asymptotically λ_j -strictly pseudocontractive mapping with $F \ne \emptyset$. Let $\{x_n\}_{n=0}^{\infty}$ be the sequence satisfying the following conditions:

- (a) $\lim_{n\to\infty} ||x_n p||$ exists for every $p \in F$;
- (b) $\lim_{n\to\infty} ||x_n T_j x_n|| = 0$, for each $0 \le j \le N 1$;
- (c) $\lim_{n\to\infty} \|tx_n + (1-t)p_1 p_2\|$ exists for all $t\in[0,1]$ and for all $p_1,p_2\in F$.

Then the sequence $\{x_n\}$ converges weakly to a common fixed point of the family $\{T_i\}_{i=0}^{N-1}$.

Proof Since $\lim_{n\to\infty} \|x_n - p\|$ exists, then $\{x_n\}$ is bounded. By (b) and Lemma 2.1, we have $\omega_{\mathcal{W}}(x_n) \subset F$. Assume that $p_1, p_2 \in \omega_{\mathcal{W}}(x_n)$ and that $\{x_{n_i}\}$ and $\{x_{m_j}\}$ are subsequences of $\{x_n\}$ such that $x_{n_i} \rightharpoonup p_1$ and $x_{m_j} \rightharpoonup p_2$, respectively. Since E is a real q-uniformly smooth Banach space, which is also uniformly convex, then E has a Fréchet differentiable norm. Set $x = p_1 - p_2$, $h = t(x_n - p_1)$ in (8), we obtain

$$\frac{1}{2} \|p_1 - p_2\|^2 + t \langle x_n - p_1, j(p_1 - p_2) \rangle \le \frac{1}{2} \|tx_n + (1 - t)p_1 - p_2\|^2
\le \frac{1}{2} \|p_1 - p_2\|^2 + b (t \|x_n - p_1\|)
+ t \langle x_n - p_1, j(p_1 - p_2) \rangle,$$

where *b* is an increasing function. Since $||x_n - p_1|| \le M$, $\forall n \ge 0$, for some M > 0, then

$$\frac{1}{2} \|p_1 - p_2\|^2 + t \langle x_n - p_1, j(p_1 - p_2) \rangle \le \frac{1}{2} \|tx_n + (1 - t)p_1 - p_2\|^2
\le \frac{1}{2} \|p_1 - p_2\|^2 + b(tM) + t \langle x_n - p_1, j(p_1 - p_2) \rangle.$$

Therefore,

$$\frac{1}{2} \|p_1 - p_2\|^2 + t \limsup_{n \to \infty} \langle x_n - p_1, j(p_1 - p_2) \rangle \le \frac{1}{2} \lim_{n \to \infty} \|tx_n + (1 - t)p_1 - p_2\|^2
\le \frac{1}{2} \|p_1 - p_2\|^2 + b(tM)
+ t \liminf_{n \to \infty} \langle x_n - p_1, j(p_1 - p_2) \rangle.$$

Hence, $\limsup_{n\to\infty}\langle x_n-p_1,j(p_1-p_2)\rangle\leq \liminf_{n\to\infty}\langle x_n-p_1,j(p_1-p_2)\rangle+b(tM)/t$. Since $\lim_{t\to 0^+}[b(tM)/t]=0$, then $\lim_{n\to\infty}\langle x_n-p_1,j(p_1-p_2)\rangle$ exists. Since $\lim_{n\to\infty}\langle x_n-p_1,j(p_1-p_2)\rangle=\langle p-p_1,j(p_1-p_2)\rangle$, for all $p\in\omega_{\mathcal{W}}(x_n)$. Set $p=p_2$. We have $\langle p_2-p_1,j(p_1-p_2)\rangle=0$, that is, $p_2=p_1$. Hence, $\omega_{\mathcal{W}}(x_n)$ is a singleton, so that $\{x_n\}$ converges weakly to a common fixed point of the family $\{T_j\}_{j=0}^{N-1}$.

3 Main results

Theorem 3.1 Let E be a real q-uniformly smooth Banach space which is also uniformly convex and E be a nonempty, closed and convex subset of E. Let E be an integer and E are also uniformly pseudocontractive mapping for some E and E and E are asymptotically E such that E and E and E and E and E and E are an E and E and E and E are also uniformly smooth Banach space which is also uniformly pseudocontractive mapping for some E and E and E are an E and E and E are an E and E are an E and E are also uniformly smooth Banach space which is also uniformly convex and E are an integer a

Proof Pick a $p \in F$. We firstly show that $\lim_{n\to\infty} \|x_n - p\|$ exists. To see this, using (2) and (7), we obtain

$$||x_{n+1} - p||^{q} = ||x_{n} - p - (1 - \alpha_{n})[x_{n} - p - (T_{i(n)}^{k(n)}x_{n} - p)]||^{q}$$

$$\leq ||x_{n} - p||^{q} + C_{q}(1 - \alpha_{n})^{q}||x_{n} - p - (T_{i(n)}^{k(n)}x_{n} - p)||^{q}$$

$$- q(1 - \alpha_{n})\langle x_{n} - p - (T_{i(n)}^{k(n)}x_{n} - p), j_{q}(x_{n} - p)\rangle$$

$$\leq ||x_{n} - p||^{q} + C_{q}(1 - \alpha_{n})^{q}||x_{n} - p - (T_{i(n)}^{k(n)}x_{n} - p)||^{q}$$

$$- q(1 - \alpha_{n})\{\lambda_{i(n)}||x_{n} - p - (T_{i(n)}^{k(n)}x_{n} - p)||^{q}$$

$$- (\kappa_{k(n),i(n)} - 1)||x_{n} - p||^{q}\}$$

$$= [1 + q(1 - \alpha_{n})(\kappa_{k(n),i(n)} - 1)]||x_{n} - p||^{q}$$

$$- (1 - \alpha_{n})[q\lambda_{i(n)} - C_{q}(1 - \alpha_{n})^{q-1}]||x_{n} - T_{i(n)}^{k(n)}x_{n}||^{q}$$

$$\leq [1 + q(1 - \alpha_{n})(\kappa_{k(n)} - 1)]||x_{n} - p||^{q}$$

$$- (1 - \alpha_{n})[q\lambda - C_{q}(1 - \alpha_{n})^{q-1}]||x_{n} - T_{i(n)}^{k(n)}x_{n}||^{q},$$
(9)

where $\kappa_{k(n)} = \max_{i \in J} \{\kappa_{k(n),i(n)}\}$. Since $\mu \le \alpha_n < 1$ for all n, where $\mu = \max\{0, 1 - (\frac{q\lambda}{C_q})^{\frac{1}{q-1}}\}$, we get $(1 - \alpha_n)[q\lambda - C_q(1 - \alpha_n)^{q-1}] \ge 0$. Therefore, (9) implies

$$\|x_{n+1} - p\|^q \le \left[1 + q(1 - \alpha_n)(\kappa_{k(n)} - 1)\right] \|x_n - p\|^q. \tag{10}$$

Let $\delta_n = 1 + q(1 - \alpha_n)(\kappa_{k(n)} - 1)$. Since $\sum_{n=0}^{\infty} (\kappa_n - 1) < \infty$, we have

$$\sum_{n=0}^{\infty} (\delta_n - 1) = q \sum_{n=0}^{\infty} (1 - \alpha_n) (\kappa_{k(n)} - 1) \le q N \sum_{n=1}^{\infty} (\kappa_n - 1) < \infty,$$

then (10) implies $\lim_{n\to\infty} \|x_n - p\|$ exists by Lemma 2.2 (and hence the sequence $\{\|x_n - p\|\}$ is bounded, that is, there exists a constant M > 0 such that $\|x_n - p\| < M$).

Then we prove $\lim_{n\to\infty} ||x_n - T_j x_n|| = 0$, $\forall j \in J$. In fact, it follows from (9) that

$$(1 - \alpha_n) \left[q\lambda - C_q (1 - \alpha_n)^{q-1} \right] \left\| x_n - T_{i(n)}^{k(n)} x_n \right\|^q \le \|x_n - p\|^q - \|x_{n+1} - p\|^q + q(1 - \alpha_n) (\kappa_{k(n)} - 1) \|x_n - p\|^q.$$

Then

$$\sum_{n=0}^{\infty} (1 - \alpha_n) \left[q\lambda - C_q (1 - \alpha_n)^{q-1} \right] \left\| x_n - T_{i(n)}^{k(n)} x_n \right\|^q < \|x_0 - p\|^q + M^q \sum_{n=0}^{\infty} (\delta_{k(n)} - 1) < \infty.$$
 (11)

Since $\sum_{n=0}^{\infty} (1 - \alpha_n)[q\lambda - C_q(1 - \alpha_n)^{q-1}] = \infty$, then (11) implies that $\liminf_{n \to \infty} \|x_n - T_{i(n)}^{k(n)}x_n\| = 0$. Thus $\lim_{n \to \infty} \|x_n - T_{i(n)}^{k(n)}x_n\| = 0$.

For all n > N, we have k(n) - 1 = k(n - N) and i(n) = i(n - N). By Lemma 2.3, we know that T_j is uniformly L_j -Lipschitzian, then there exists a constant $L = \max_{j \in J} \{L_j\}$, such that

$$||T_j^n x - T_j^n y|| \le L||x - y||, \quad \forall n \ge 0, \forall x, y \in K \text{ and } \forall j \in J.$$

Thus

$$||x_{n} - T_{i(n)}x_{n}|| \leq ||x_{n} - T_{i(n)}^{k(n)}x_{n}|| + ||T_{i(n)}^{k(n)}x_{n} - T_{i(n)}x_{n}||$$

$$\leq ||x_{n} - T_{i(n)}^{k(n)}x_{n}|| + L||T_{i(n)}^{k(n)-1}x_{n} - x_{n}||$$

$$\leq ||x_{n} - T_{i(n)}^{k(n)}x_{n}|| + L||T_{i(n)}^{k(n)-1}x_{n} - T_{i(n-N)}^{k(n)-1}x_{n-N}||$$

$$+ L||T_{i(n-N)}^{k(n)-1}x_{n-N} - x_{n-N-1}|| + L||x_{n-N-1} - x_{n}||$$

$$\leq ||x_{n} - T_{i(n)}^{k(n)}x_{n}|| + L^{2}||x_{n} - x_{n-N}||$$

$$+ L||T_{i(n-N)}^{k(n-N)}x_{n-N} - x_{n-N-1}|| + L||x_{n-N-1} - x_{n}||.$$

Observe that

$$||x_n - x_{n+1}|| = (1 - \alpha_n) ||x_n - T_{i(n)}^{k(n)} x_n|| \to 0 \text{ as } n \to \infty.$$

Consequently,

$$||x_n - x_{n+l}|| \to 0$$
 as $n \to \infty$, for all integer l .

Observe also that

$$||x_{n-1} - T_{i(n)}^{k(n)} x_n|| \le ||x_n - x_{n-1}|| + ||x_n - T_{i(n)}^{k(n)} x_n|| \to 0$$
 as $n \to \infty$.

Hence,

$$\lim_{n\to\infty}\|x_n-T_{i(n)}x_n\|=0.$$

Consequently, for all $j \in J$, we have

$$||x_n - T_{n+j}x_n|| \le ||x_n - x_{n+j}|| + ||x_{n+j} - T_{n+j}x_{n+j}|| + L||x_n - x_{n+j}|| \to 0$$
 as $n \to \infty$.

Thus.

$$\lim_{n\to\infty}\|x_n-T_jx_n\|=0,\quad\forall j\in J.$$

Now we prove that for all $p_1, p_2 \in F$, $\lim_{n\to\infty} \|tx_n + (1-t)p_1 - p_2\|$ exists for all $t \in [0,1]$. Let $a_n(t) = \|tx_n + (1-t)p_1 - p_2\|$. It is obvious that $\lim_{n\to\infty} a_n(0) = \|p_1 - p_2\|$ and $\lim_{n\to\infty} a_n(1) = \lim_{n\to\infty} \|x_n - p_2\|$ exist. So, we only need to consider the case of $t \in (0,1)$. Define $A_n : K \to K$ by

$$A_n x = \alpha_n x + (1 - \alpha_n) T_{i(n)}^{k(n)} x, \quad x \in K.$$

Then for all $x, y \in K$

$$\begin{aligned} \|A_{n}x - A_{n}y\|^{q} &\leq \|x - y\|^{q} - q(1 - \alpha_{n}) \langle \left(I - T_{i(n)}^{k(n)}\right)x - \left(I - T_{i(n)}^{k(n)}\right)y, j_{q}(x - y) \rangle \\ &+ C_{q}(1 - \alpha_{n})^{q} \|x - y - \left(T_{i(n)}^{k(n)}x - T_{i(n)}^{k(n)}y\right)\|^{q} \\ &\leq \left[1 + q(1 - \alpha_{n})(\kappa_{k(n)} - 1)\right] \|x - y\|^{q} \\ &- (1 - \alpha_{n}) \left[q\lambda - C_{q}(1 - \alpha_{n})^{q-1}\right] \|x - y - \left(T_{i(n)}^{k(n)}x - T_{i(n)}^{k(n)}y\right)\|^{q}. \end{aligned}$$

By the choice of α_n , we have $(1-\alpha_n)[q\lambda-C_q(1-\alpha_n)^{q-1}]\geq 0$, so it follows that $\|A_nx-A_ny\|^q\leq [1+q(1-\alpha_n)(\kappa_{k(n)}-1)]\|x-y\|^q=\delta_n\|x-y\|^q$. For the convenience of the following discussion, set $\eta_n=(\delta_n)^{\frac{1}{q}}$, then $\|A_nx-A_ny\|\leq \eta_n\|x-y\|$.

Set
$$S_{n,m} = A_{n+m-1}A_{n+m-2} \cdots A_n$$
, $m \ge 1$. We have

$$||S_{n,m}x - S_{n,m}y|| \le \left(\prod_{j=n}^{n+m-1} \eta_j\right) ||x - y|| \quad \text{for all } x, y \in K,$$

and

$$S_{n,m}x_n = x_{n+m}$$
, $S_{n,m}p = p$ for all $p \in F$.

Set $b_{n,m} = \|S_{n,m}(tx_n + (1-t)p_1) - tS_{n,m}x_n - (1-t)S_{n,m}p_1\|$. If $\|x_n - p_1\| = 0$ for some n_0 , then $x_n = p_1$ for any $n \ge n_0$ so that $\lim_{n \to \infty} \|x_n - p_1\| = 0$, in fact, $\{x_n\}$ converges strongly to $p_1 \in F$. Thus we may assume $\|x_n - p_1\| > 0$ for any $n \ge 0$. Let δ denote the modulus of convexity of E. It is well known (see, for example, [11, p.108]) that

$$||tx + (1-t)y|| \le 1 - 2\min\{t, (1-t)\}\delta(||x-y||)$$

$$\le 1 - 2t(1-t)\delta(||x-y||)$$
(12)

for all $t \in [0,1]$ and for all $x, y \in E$ such that $||x|| \le 1$, $||y|| \le 1$. Set

$$w_{n,m} = \frac{S_{n,m}p_1 - S_{n,m}(tx_n + (1-t)p_1)}{t(\prod_{j=n}^{n+m-1}\eta_j)\|x_n - p_1\|}, \qquad z_{n,m} = \frac{S_{n,m}(tx_n + (1-t)p_1) - S_{n,m}x_n}{(1-t)(\prod_{j=n}^{n+m-1}\eta_j)\|x_n - p_1\|}.$$

Then $||w_{n,m}|| \le 1$ and $||z_{n,m}|| \le 1$ so that it follows from (12) that

$$2t(1-t)\delta(\|w_{n,m}-z_{n,m}\|) \le 1 - \|tw_{n,m}+(1-t)z_{n,m}\|.$$
(13)

Observe that

$$\|w_{n,m} - z_{n,m}\| = \frac{b_{n,m}}{t(1-t)(\prod_{j=n}^{n+m-1} \eta_j)\|x_n - p_1\|}$$

and

$$||tw_{n,m} + (1-t)z_{n,m}|| = \frac{||S_{n,m}x_n - S_{n,m}p_1||}{(\prod_{j=n}^{n+m-1}\eta_j)||x_n - p_1||},$$

it follows from (13) that

$$2t(1-t)\left(\prod_{j=n}^{n+m-1} \eta_{j}\right) \|x_{n} - p_{1}\| \delta\left(\frac{b_{n,m}}{t(1-t)(\prod_{j=n}^{n+m-1} \eta_{j})} \|x_{n} - p_{1}\|\right)$$

$$\leq \left(\prod_{j=n}^{n+m-1} \eta_{j}\right) \|x_{n} - p_{1}\| - \|S_{n,m}x_{n} - S_{n,m}p_{1}\|$$

$$= \left(\prod_{j=n}^{n+m-1} \eta_{j}\right) \|x_{n} - p_{1}\| - \|x_{n+m} - p_{1}\|. \tag{14}$$

Since E is uniformly convex, then $\delta(s)/s$ is nondecreasing, and since $(\prod_{j=n}^{n+m-1} \eta_j) \|x_n - p_1\| \le (\prod_{j=n}^{n+m-1} \eta_j) \eta_{n-1} \|x_{n-1} - p_1\| \le \cdots \le (\prod_{j=n}^{n+m-1} \eta_j) (\prod_{j=0}^{n-1} \eta_j) \|x_0 - p_1\| = (\prod_{j=0}^{n+m-1} \eta_j) \|x_0 - p_1\|$, hence it follows from (14) that

$$\frac{\left(\prod_{j=0}^{n+m-1} \eta_{j}\right) \|x_{0} - p_{1}\|}{2} \delta\left(\frac{4}{\left(\prod_{j=0}^{n+m-1} \eta_{j}\right) \|x_{0} - p_{1}\|} b_{n,m}\right) \\
\leq \left(\prod_{j=n}^{n+m-1} \eta_{j}\right) \|x_{n} - p_{1}\| - \|x_{n+m} - p_{1}\| \quad \left(\text{since } t(1-t) \leq \frac{1}{4} \text{ for all } t \in [0,1]\right).$$

Since $\lim_{n\to\infty}\prod_{j=0}^{n+m-1}\eta_j$ exits and $\lim_{n\to\infty}\prod_{j=0}^{n+m-1}\eta_j\neq 0$. Also since $\lim_{n\to\infty}\prod_{j=n}^{n+m-1}\eta_j=1$ and $\lim_{n\to\infty}\|x_n-p_1\|$ exists, then the continuity of δ and $\delta(0)=0$ yield $\lim_{n\to\infty}b_{n,m}=0$ uniformly for all $m\geq 1$. Observe that

$$a_{n+m}(t) \le \|tx_{n+m} + (1-t)p_1 - p_2 + (S_{n,m}(tx_n + (1-t)p_1)) - tS_{n,m}x_n - (1-t)S_{n,m}p_1)\| + \|S_{n,m}(tx_n + (1-t)p_1) - tS_{n,m}x_n - (1-t)S_{n,m}p_1\|$$

$$= \|S_{n,m}(tx_n + (1-t)p_1) - S_{n,m}p_2\| + b_{n,m}$$

$$\leq \left(\prod_{j=n}^{n+m-1} \eta_j\right) \|tx_n + (1-t)p_1 - p_2\| + b_{n,m} = \left(\prod_{j=n}^{n+m-1} \eta_j\right) a_n(t) + b_{n,m}.$$

Hence $\limsup_{n\to\infty} a_n(t) \le \liminf_{n\to\infty} a_n(t)$, this ensures that $\lim_{n\to\infty} a_n(t)$ exists for all $t \in (0,1)$.

Now apply Lemma 2.4 to conclude that $\{x_n\}$ converges weakly to a common fixed point of the family $\{T_i\}_{i=0}^{N-1}$.

Theorem 3.2 Let E be a real q-uniformly smooth Banach space, and let K be a nonempty, closed and convex subset of E. Let $N \ge 1$ be an integer and $J = \{0, 1, 2, ..., N-1\}$. Let, for each $j \in J$, $T_j : K \to K$ be an asymptotically λ_j -strictly pseudocontractive mapping for some $0 \le \lambda_j < 1$ with sequences $\{\kappa_{n,j}\}_{n=0}^{\infty} \subset [1, \infty)$ such that $\sum_{n=0}^{\infty} (\kappa_n - 1) < \infty$, where $\kappa_n = \max_{j \in J} \{\kappa_{n,j}\}$, and $F := \bigcap_{j=0}^{N-1} F(T_j) \ne \emptyset$. Let $\lambda = \min_{j \in J} \{\lambda_j\}$. Let $\{\alpha_n\}$ satisfy the conditions $\{0\}$ and $\{x_n\}$ be the sequence generated by the cyclic algorithm $\{0\}$. Then $\{x_n\}$ converges strongly to a common fixed point of the family $\{T_j\}_{j=0}^{N-1}$ if and only if

$$\liminf_{n\to\infty} d(x_n, F) = 0,$$

where $d(x_n, F) = \inf_{p \in F} ||x_n - p||$.

Proof It follows from (10) that

$$||x_{n+1} - p||^q \le \delta_n ||x_n - p||^q$$
.

Thus $[d(x_{n+1}-p)]^q \le \delta_n [d(x_n-p)]^q$, and it follows from Lemma 2.2 that $\lim_{n\to\infty} d(x_n,F)$ exists.

Now if $\{x_n\}$ converges strongly to a common fixed point p of the family $\{T_j\}_{j=0}^{N-1}$, then $\lim_{n\to\infty} \|x_n - p\| = 0$. Since

$$0 \leq d(x_n, F) \leq ||x_n - p||,$$

we have $\liminf_{n\to\infty} d(x_n, F) = 0$.

Conversely, suppose $\liminf_{n\to\infty} d(x_n, F) = 0$, then the existence of $\lim_{n\to\infty} d(x_n, F)$ implies that $\lim_{n\to\infty} d(x_n, F) = 0$. Thus, for arbitrary $\epsilon > 0$, there exists a positive integer n_0 such that $d(x_n, F) < \frac{\epsilon}{2}$ for any $n \ge n_0$.

From (10), we have

$$||x_{n+1}-p||^q \le ||x_n-p||^q + M^q(\delta_n-1), \quad n \ge 0,$$

and for some M > 0, $||x_n - p|| < M$. Now, an induction yields

$$||x_{n} - p||^{q} \le ||x_{n-1} - p||^{q} + M^{q}(\delta_{n-1} - 1)$$

$$\le ||x_{n-2} - p||^{q} + M^{q}(\delta_{n-2} - 1) + M^{q}(\delta_{n-1} - 1)$$

$$\le \dots \le ||x_{l} - p||^{q} + M^{q} \sum_{i=l}^{n-1} (\delta_{j} - 1), \quad n - 1 \ge l \ge 0.$$

Since $\sum_{n=0}^{\infty} (\delta_n - 1) < \infty$, then there exists a positive integer n_1 such that $\sum_{j=n}^{\infty} (\delta_j - 1) < (\frac{\epsilon}{2M})^q$, $\forall n \ge n_1$. Choose $N = \max\{n_0, n_1\}$, then for all $n, m \ge N + 1$ and for all $p \in F$, we have

$$||x_{n} - x_{m}|| \leq ||x_{n} - p|| + ||x_{m} - p||$$

$$\leq \left[||x_{N} - p||^{q} + M^{q} \sum_{j=N}^{n-1} (\delta_{j} - 1) \right]^{\frac{1}{q}} + \left[||x_{N} - p||^{q} + M^{q} \sum_{j=N}^{m-1} (\delta_{j} - 1) \right]^{\frac{1}{q}}$$

$$\leq \left[||x_{N} - p||^{q} + M^{q} \sum_{j=N}^{\infty} (\delta_{j} - 1) \right]^{\frac{1}{q}} + \left[||x_{N} - p||^{q} + M^{q} \sum_{j=N}^{\infty} (\delta_{j} - 1) \right]^{\frac{1}{q}}$$

$$= 2 \left[||x_{N} - p||^{q} + M^{q} \sum_{j=N}^{\infty} (\delta_{j} - 1) \right]^{\frac{1}{q}}.$$

Taking infimum over all $p \in F$, we obtain

$$||x_n - x_m|| \le 2 \left\{ \left[d(x_N, F) \right]^q + M^q \sum_{j=N}^{\infty} (\delta_j - 1) \right\}^{\frac{1}{q}}$$

$$< 2 \left[\left(\frac{\epsilon}{2} \right)^q + M^q \left(\frac{\epsilon}{2M} \right)^q \right]^{\frac{1}{q}} < 2\epsilon.$$

Thus $\{x_n\}_{n=0}^{\infty}$ is Cauchy. Suppose $\lim_{n\to} x_n = u$. Then for all $j \in J$ we have

$$0 \le ||u - T_i u|| \le ||u - x_n|| + ||x_n - T_i x_n|| + L||x_n - u|| \to 0$$
 as $n \to \infty$.

Thus $u \in F(T_i)$, $\forall j \in J$, and hence $u \in F$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All the authors have read and approved the final manuscript.

Author details

¹School of Mathematics and Physics, North China Electric Power University, Baoding, Hebei 071003, P.R. China. ²School of Economics, Renmin University of China, Beijing, 100872, P.R. China. ³Easyway Company Limited, Beijing, 100872, P.R. China. P.R. China.

Received: 9 June 2012 Accepted: 13 September 2012 Published: 2 October 2012

Reference

- Osilike, MO: Iterative approximations of fixed points of asymptotically demicontractive mappings. Indian J. Pure Appl. Math. 29(12), 1291-1300 (1998)
- 2. Osilike, MO, Aniagbosor, SC, Akuchu, BG: Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces. Panam. Math. J. 12(2), 77-88 (2002)
- 3. Qihou, L. Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings. Nonlinear Anal. 26(11), 1835-1842 (1996)
- 4. Browder, FE, Petryshyn, WV: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. **20**, 197-228 (1967)
- Osilike, MO, Udomene, A, Igbokwe, DI, Akuchu, BG: Demiclosedness principle and convergence theorems for κ-strictly asymptotically pseudo-contractive maps. J. Math. Anal. Appl. 326, 1334-1345 (2007)
- Acedo, GL, Xu, HK: Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 67, 2258-2271 (2007)
- Qin, X, Cho, YJ, Ku, SM, Shang, M: A hybrid iterative scheme for asymptotically k-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 70, 1902-1911 (2009)

- 8. Osilike, MO, Shehu, Y: Explicit averaging cyclic algorithm for common fixed points of a finite family of asymptotically strictly pseudocontractive maps in Banach spaces. Comput. Math. Appl. 57, 1502-1510 (2009)
- 9. Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127-1138 (1991)
- 10. Takahashi, W: Nonlinear Functional Analysis. Fixed Point Theory and Its Applications. Yokohama, Yokohama (2000)
- 11. Bruck, RE: A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces. Isr. J. Math. 32(2-3), 107-116 (1979)

doi:10.1186/1687-1812-2012-167

Cite this article as: Zhang and Xie: Explicit averaging cyclic algorithm for common fixed points of a finite family of asymptotically strictly pseudocontractive mappings in *q*-uniformly smooth Banach spaces. Fixed Point Theory and Applications 2012 2012:167.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- \blacktriangleright Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com