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Abstract
In this paper, we provide a regularization method for finding a solution of Noor’s
variational inequality problem induced by a hemicontinuous monotone operator.
Moreover, such a solution is related to the set of zero of inverse strongly monotone
mappings. Consequently, since we do not assume the strong monotonicity of the
considered operator, our results are general and extend some well-known results in
the literature.
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1 Introduction and preliminaries
It is well known that the variational inequalities theory, which was introduced by Hart-
man and Stampacchia [] in early s, provides the most natural, direct, simple, unified
and efficient framework for a general treatment of a wide class of linear and nonlinear
problems. Of course, it has been extended and generalized in several directions.
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. An important and

useful generalization of variational inequality problem is called the general variational
inequality introduced by Noor [] in , which is a problem of finding u* ∈ H with
g(u*) ∈ K such that

〈
A

(
u*

)
, g(v) – g

(
u*

)〉 ≥  (.)

for all v ∈ H with g(v) ∈ K , where K is a nonempty closed convex subset of H and A, g :
H →H are mappings.
It is known that a class of nonsymmetric and odd-order obstacle, unilateral and moving

boundary value problems arising in pure and applied sciences can be studied in the unified
framework of general variational inequality (.), see [–] and the references therein.
However, it is worth knowing that to guarantee the existence and uniqueness of a solution
of the problem (.), one has to impose some conditions on the operator A and g (see
[] for an example in a more general case). Indeed, it has been shown that if A fails to
be Lipschitz continuous or strongly monotone, then the solution set of the problem (.),
which will be denoted by GVIK (A, g), may be empty.
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On the other hand, for a nonempty subset K of H , recall that a mapping T : K → H is
said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ K . For a mapping T : K → H , an element x ∈ K is called a fixed point of T
if x = Tx. Here, we will denote the set of all fixed points of the mapping T by F(T). It is
well known that the problem of finding the fixed point sets for the class of nonexpansive
mappings is the subject of current interest in nonlinear functional analysis. A large num-
ber of mathematicians are interested in this field, one may see some important results in
[–]. Moreover, it is well known that there are some relations between the fixed point
problems and many types of variational inequality problems. Hence, of course, it is nat-
ural to consider a unified approach to these two different problems (see [, –] for
examples).
A mapping A : K →H is said to be λ-inverse strongly monotone if there exists λ >  such

that

〈
A(x) –A(y),x – y

〉 ≥ λ
∥∥A(x) –A(y)

∥∥

for all x, y ∈ K .
For a mapping A : K → H , we put SA = {x ∈ K : A(x) = }. Further, if x ∈ SA, then x is

called a zero of A.

Remark . It is easy to see that any -inverse strongly monotone mapping is a nonex-
pansive mapping. Moreover, if T is a nonexpansive mapping, then it is well known that
(I –T) is 

 -inverse strongly monotone mapping (see [, ]). Also, let us notice that the
problem of finding an element of F(T) is equivalent to the problem of finding an element
of x ∈ S(I–T). These mean that the problem of finding zeros of the inverse strongly mono-
tone mappings contains the problem of finding fixed points of nonexpansive mappings as
a special case.

Let A :H →H be a mapping and Ai : K → H be λi-inverse strongly monotone mapping
for each i = , , . . . ,N . In this paper, we present a method for finding a solution of the
problem (.), which is related to the solution sets of those inverse strongly monotone
mappings as follows: find u* ∈H with g(u*) ∈ S such that

〈
A

(
u*

)
, g(v) – g

(
u*

)〉 ≥  (.)

for all v ∈ H with g(v) ∈ K , where S =
⋂N

i= SAi . Further, GVIK (A, g,S) denotes a set of so-
lutions of the problem (.).

Remark .
() If Ai =:  (: the zero operator) for all i = , , . . . ,N , then the problem (.) reduces

to (.).
() If g =: I (: the identity operator), then the problem (.) is reduced to the problem of

finding the common element of the solution of classical variational inequality
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problem and the set S, which has been studied by many authors (see [–] for
examples).

We need the following concepts in order to prove our results.
Throughout this paper, we letR andN stand for the set of real numbers and the set of

natural numbers, respectively. Let F : K × K → R be a bifunction with F(u,u) =  for all
u ∈ K .

Definition . A bifunction F : K ×K →R is said to be:
() monotone if, for all u, v ∈ K ,

F(u, v) + F(v,u)≤ ;

() strongly monotone with constant τ if, for all u, v ∈ K ,

F(u, v) + F(v,u)≤ –τ‖u – v‖;

() hemicontinuous in the first variable u if, for any fixed v ∈ K ,

lim
t→+

F
(
u + t(z – u), v

)
= F(u, v)

for all (u, z) ∈ K ×K .

Recall that the equilibrium problem for a bifunction F : K × K → R is to find u* ∈ K
such that

F
(
u*, v

) ≥  (.)

for all v ∈ K .
Considering the problem (.), the following are very useful.

Lemma . [] Let F : K × K → R be a bifunction. If F(u, v) is convex and lower semi-
continuous in the variable v for any fixed u ∈ K , then we have the following:
() If F(u, v) is hemicontinuous in the first variable and has the monotonic property, then

U* = V *, where U* is the solution set of (.), V * is the solution set of F(u, v*)≤  for
all u ∈ K .Moreover, in this case, they are closed and convex;

() If F(u, v) is hemicontinuous in the first variable for each v ∈ K and F is strongly
monotone, then U* is a nonempty singleton. In addition, if F is a strongly monotone
mapping, then U* = V * is a singleton set.

In order to prove our results, we also need the following concepts and facts.

Definition . A mapping A :H →H is said to be hemicontinuous at a point x ∈H if

lim
t→

〈
A(x + th), y

〉
=

〈
A(x), y

〉

for all h, y ∈H .
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Definition . LetH be a realHilbert space andK be a subset ofH . AmappingT : K →H
is said to be k-strictly pseudocontrative if there exists a constant k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)(x) – (I – T)(y)

∥∥

for all x, y ∈ K , where I is the identity operator on K .

Remark . It is well known that if T : K → H is a k-strictly pseudocontrative mapping,
then the mapping A := I – T is a ( –k )-inverse strongly monotone. Conversely, if A : K →
H is a λ-inverse strongly monotone with λ ∈ (,  ], then T := I – A is ( – λ)-strictly
pseudocontractive mapping (see []).

Lemma . [] Let K be a nonempty closed convex subset of a Hilbert space H and T :
K →H be a k-strictly pseudocontractive mapping.Then I –T is demiclosed at zero, that is,
whenever {xn} is a sequence in K such that {xn} converges weakly to x ∈ K and {(I –T)(xn)}
converges strongly to , we have (I – T)(x) = .

From now on, the symbols ‘⇀’ and ‘→’ stand for ‘weak convergence’ and ‘strong con-
vergence’, respectively.

Lemma . Let H be a real Hilbert space and {xn} be a sequence of H . If xn ⇀ x and
‖xn‖ → ‖x‖, then xn → x.

Lemma . [] Let {an}, {bn}, {cn} be the sequences of positive numbers satisfying the
conditions:
(a) an+ ≤ ( – bn)an + cn, where bn < ;
(b)

∑∞
n= bn = +∞ and limn→+∞ cn

bn = .
Then an →  as n → ∞.

2 Regularization
Through this paper, we will denote by R and N the set of all real numbers and the set
of natural numbers, respectively. Let H be a real Hilbert space and K be a closed convex
subset of H . Let A : H → H and Ai : K → H be mappings, where i = , , . . . ,N . For each
α ∈ (, ), we now construct a regularization solution uα for the problem (.). In fact,
we have to solve the following general variational inequality problem: find uα ∈ H with
g(uα) ∈ K such that

〈
A(uα) + αμ

N∑
i=

(Ai ◦ g)(uα) + αg(uα), g(v) – g(uα)

〉
≥  (.)

for all v ∈H with g(v) ∈ K , where μ ∈ (, ) is a fixed real number.

Theorem . Let K be a closed convex subset of a real Hilbert space H and g :H →H be a
mapping such that K ⊂ g(H). Let A :H → H be a hemicontinuous and g-monotone map-
ping. Let Ai be a λi-inverse strongly monotone mapping of K into H for each i = , , . . . ,N .
If g is an expanding affine continuous mapping and GVIK (A, g,S) �= ∅, then the following
conclusions are true:

http://www.fixedpointtheoryandapplications.com/content/2012/1/169
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() For each α ∈ (, ), the problem (.) has the unique solution uα ;
() limα→+ g(uα) = g(u*) for some u* ∈ GVIK (A, g,S);
() There exists a positive constantM such that

∥∥g(uα) – g(uβ )
∥∥ ≤ M|α – β|

α (.)

for all α,β ∈ (, ).

Proof Put I = {, , . . . ,N}. Firstly, due to the definition of an inverse strongly monotone
mapping, we may always assume that λi ∈ (,  ] for each i ∈ I . Now, for each i ∈ I , we
define functions F,Fi : g–(K)× g–(K) →R by

F(u, v) =
〈
A(u), g(v) – g(u)

〉
, Fi(u, v) =

〈
(Ai ◦ g)(u), g(v) – g(u)

〉
for all (u, v) ∈ g–(K)× g–(K). Note that since g is an affine continuous mapping, we have
g–(K) is a closed convex subset of H . Moreover, it is easy to see that F and Fi are mono-
tone bifunctions on g–(K) for each i ∈ I .
Now, let α ∈ (, ) be a given real number. We construct a function Fα : g–(K) ×

g–(K) →R by

Fα(u, v) = F(u, v) + αμ

N∑
i=

Fi(u, v) + α
〈
g(u), g(v) – g(u)

〉
(.)

for all (u, v) ∈ g–(K)× g–(K).
() Observe that the problem (.) is equivalent to the problem of finding uα ∈ g–(K)

such that

Fα(uα , v)≥  (.)

for all v ∈ g–(K). Moreover, one can easily check that Fα(u, v) is a monotone hemicontin-
uous in the variable u for each fixed v ∈ g–(K). Indeed, if g is an ξ -expanding mapping,
then we have Fα(u, v) is a strongly monotone mapping with constant αξ > . Thus, by
Lemma .(), the problem (.) has the unique solution uα ∈ g–(K) for each α > . This
proves ().
() Observe that for each y ∈ GVIK (A, g,S), we have F(y,uα) ≥  and Fi(y,uα) =  for

each i ∈ I . This implies that

F(y,uα) + αμ

N∑
i=

Fi(y,uα)≥ . (.)

Consequently, by using the monotonicity of F and Fi, we see that (.), (.) and (.)
imply

 ≥ –Fα(uα , y)

= –

[
F(uα , y) + αμ

N∑
i=

Fi(uα , y) + α
〈
g(uα), g(y) – g(uα)

〉]

http://www.fixedpointtheoryandapplications.com/content/2012/1/169
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≥ –F(uα , y) – αμ

N∑
i=

Fi(uα , y) – α
〈
g(uα), g(y) – g(uα)

〉

–

[
F(y,uα) + αμ

N∑
i=

Fi(y,uα)

]

= –
[
F(uα , y) + F(y,uα)

]
– αμ

N∑
i=

[
Fi(uα , y) + Fi(y,uα)

]
– α

〈
g(uα), g(y) – g(uα)

〉
≥ α

〈
g(uα), g(uα) – g(y)

〉
. (.)

Hence, we have

〈
g(uα), g(y) – g(uα)

〉 ≥ 

for all y ∈GVIK (A, g,S). This implies

∥∥g(uα)
∥∥ ≤ ∥∥g(y)∥∥ (.)

for all y ∈ GVIK (A, g,S). Thus, {g(uα)} is a bounded subset of K . Consequently, the set of
weak limit points as α →  of the net (g(uα)), denoted by ωw(g(uα)), is nonempty. This
allows us to pick z ∈ ωw(g(uα)) and a null sequence {αk} in the interval (, ) such that
{g(uαk )} weakly converges to z as k → ∞. Notice that since K is closed and convex, we
know that K is weakly closed, and so z ∈ K . Consequently, since K ⊂ g(H), we let u* ∈ H
be such that z = g(u*).
Now, we claim that u* ∈GVIK (A, g,S). To prove this claim, we divide the proof into two

steps:
Step :We show that g(u*) ∈ S. Observe that F(y,uαk )≥  for each y ∈GVIK (A, g,S) and

k ∈N . Thus, by (.) and the monotonicity of F, we see that

α
μ

k

N∑
i=

Fi(uαk , y) + αk
〈
g(uαk ), g(y) – g(uαk )

〉 ≥ –F(uαk , y) ≥ F(y,uαk ) ≥ ,

that is,

N∑
i=

Fi(uαk , y) + α
–μ

k
〈
g(uαk ), g(y) – g(uαk )

〉 ≥  (.)

for any y ∈ GVIK (A, g,S) and k ∈ N . Let j ∈ I be given. Pick y ∈ GVIK (A, g,S). Since Ai is
a λi-inverse strongly monotone mapping for each i ∈ I , in view of (.), we have

λj
∥∥Aj ◦ g(uαk ) –Aj ◦ g(y)

∥∥ ≤ 〈
Aj

(
g(uαk )

)
–Aj

(
g(y)

)
, g(uαk ) – g(y)

〉
=

〈
Aj

(
g(uαk )

)
, g(uαk ) – g(y)

〉
≤

N∑
i=

〈
Ai

(
g(uαk )

)
, g(uαk ) – g(y)

〉

= –
N∑
i=

Fi(uαk , y)

http://www.fixedpointtheoryandapplications.com/content/2012/1/169
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≤ α
–μ

k
〈
g(uαk ), g(y) – g(uαk )

〉
≤ α

–μ

k
[∥∥g(uαk )

∥∥∥∥g(y)∥∥ –
∥∥g(uαk )

∥∥]
≤ α

–μ

k
∥∥g(y)∥∥ (.)

for each k ∈N . Letting k → ∞ in (.), we obtain

lim
k→∞

∥∥Aj ◦ g(uαk )
∥∥ = lim

k→∞
∥∥Aj ◦ g(uαk ) –Aj ◦ g(y)

∥∥ = . (.)

On the other hand, we know that the mapping Tj := I –Aj is strictly pseudocontractive
for each j ∈ I , and hence by Lemma ., we haveAj = I –Tj is demiclosed at zero. It follows
that Aj(g(u*)) = . This means g(u*) ∈ Sj. Consequently, since j ∈ I is arbitrary chosen, we
conclude that g(u*) ∈ ⋂N

i= Si. This proves Step .
Step : We show that u* ∈GVIK (A, g). From the monotonic property of Fα and (.), we

have

F(v,uαk ) + α
μ

k

N∑
i=

Fi(v,uαk ) + αk
〈
g(v), g(uαk ) – g(v)

〉
= Fα(v,uαk ) ≤ –Fα(uαk , v)≤ 

for all v ∈ g–(K). This gives

F(v,uαk ) + α
μ

k

N∑
i=

Fi(v,uαk ) ≤ αk
〈
g(v), g(v) – g(uαk )

〉
(.)

for all v ∈ g–(K). Since the operator Ai is a Lipschitzian mapping for each i ∈ I , it follows
that Fi is a bounded mapping for each i ∈ I . Thus, letting k → ∞, since αk → + and
g(uαk ) ⇀ g(u*) as k → ∞, it follows from (.) that F(v,u*) ≤  for any v ∈ H , g(v) ∈ K .
Consequently, in view of Lemma .(), Step  is proved.
Hence, from Steps  and , we conclude that u* ∈GVIK (A, g,S) as required.
Next, we observe that the sequence {g(uαk )} actually converges strongly to g(u*). In fact,

by using the lower semi-continuity of the norm, we know that

∥∥g(u*)∥∥ ≤ lim inf
k→∞

∥∥g(uαk )
∥∥. (.)

Subsequently, since u* ∈ GVIK (A, g,S), we see that (.) and (.) imply ‖g(uαk )‖ →
‖g(u*)‖ as k → ∞. Then it is straightforward from Lemma . that the weak convergence
to g(u*) of {g(uαk )} implies the strong convergence to g(u*) of {g(uαk )}. Moreover, in view
of (.), we see that

∥∥g(u*)∥∥ = inf
{∥∥g(y)∥∥ : y ∈ GVIK (A, g,S)

}
. (.)

Now, we show that

lim
α→+

g(uα) = g(u*).

To do so, let {g(uαj )} ⊂ (g(uα)), where {αj}, be any null sequence in the interval (, ). By
following the lines of proof as above (passing to a subsequence if necessary), we know that

http://www.fixedpointtheoryandapplications.com/content/2012/1/169
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there exists ũ ∈ GVIK (A, g,S) such that g(uαj ) → g(ũ) as j → ∞. Moreover, from (.) and
(.), we have ‖g(ũ)‖ = ‖g(u*)‖. Consequently, since the function ‖g(·)‖ is a lower semi-
continuous function andGVIK (A, g,S) is a closed convex subset ofH , it follows from (.)
that u* = ũ. This implies that g(u*) is the strong limit of the net (g(uα)) as α → +.
() Let α,β ∈ (, ) and uα , uβ be the solutions of the problem (.) associated with α

and β , respectively. Without loss of generality, we assume that α < β . For each i ∈ I , we
know that F and Fi are monotone mappings. Then by applying (.), we have

(
αμ – βμ

) N∑
i=

Fi(uα ,uβ ) + α
〈
g(uα), g(uβ ) – g(uα)

〉
+ β

〈
g(uβ ), g(uα) – g(uβ )

〉 ≥ ,

that is,

〈
g(uα) –

β

α
g(uβ ), g(uα) – g(uβ )

〉
≤ βμ – αμ

α

N∑
i=

∣∣Fi(uα ,uβ )
∣∣. (.)

Notice that

〈
g(uα) –

β

α
g(uβ ), g(uα) – g(uβ )

〉

=
∥∥g(uα) – g(uβ )

∥∥ +
α – β

α

〈
g(uβ ), g(uα)

〉
–

α – β

α

∥∥g(uβ )
∥∥

≥ ∥∥g(uα) – g(uβ )
∥∥ +

α – β

α

〈
g(uβ ), g(uα)

〉

since  < α < β . Using this one together with (.), we have

∥∥g(uα) – g(uβ )
∥∥ ≤ β – α

α
θ +

βμ – αμ

α

N∑
i=

∣∣Fi(uα ,uβ )
∣∣, (.)

where θ = sup{‖g(uα)‖ : α ∈ (, )}. Consequently, by using the boundedness of Fi, we have

∥∥g(uα) – g(uβ )
∥∥ ≤ β – α

α
θ +

βμ – αμ

α
M

for someM > .
Finally, by applying Lagrange’s mean-value theorem to a function which is defined on

[, +∞) by t �→ t–μ, we see that

∥∥g(uα) – g(uβ )
∥∥ ≤ β – α

α θ +
β – α

α · μM ≤ β – α

α M,

whereM =max{θ,μM}. This completes the proof. �

Remark . As a special case of Theorem ., if g is the identity operator on H , then we
recover a recent result presented by Kim and Buong [].
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3 Main results
In this section, we provide a regularization inertial proximal point algorithm for finding a
solution of the problem (.). In fact, starting with an element z ∈ H such that g(z) ∈ K ,
we consider the following processes:

〈
cn

[
A(zn+)+αμ

n

N∑
i=

(Ai◦g)(zn+)+αng(zn+)

]
+g(zn+)–g(zn), g(v)–g(zn+)

〉
≥  (.)

for all v ∈H , g(v) ∈ K , where {cn} and {αn} are sequences of positive real numbers.
The well-definedness of algorithm (.) is guaranteed by the following proposition:

Proposition . Assume that all hypotheses of Theorem . are satisfied. Let z ∈ g–(K)
be a given element and c, α be positive real numbers. Define a bifunction F(z,c,α) : g–(K)×
g–(K) →R by

F(z,c,α)(u, v) :=

〈
c

[
A(u) + αμ

N∑
i=

(Ai ◦ g)(u) + αg(u)

]
+ g(u) – g(z), g(v) – g(u)

〉

for all u, v ∈ g–(K). Then there exists a unique element u* ∈ g–(K) such that F(z,c,α)(u*, v) ≥
 for all v ∈ g–(K).

Proof Assume that g is an ξ -expanding mapping. Then, for any u, v ∈ g–(K), we see that

F(z,c,α)(u, v) + F(z,c,α)(v,u) ≤ ( + cα)
〈
g(u) – g(v), g(v) – g(u)

〉
= –( + cα)

∥∥g(u) – g(v)
∥∥

≤ –ξ ( + cα)‖u – v‖.

This means F(z,c,α) is ξ ( + cα)-strongly monotone. Consequently, by Lemma .(), the
proof is completed. �

Now, we provide some sufficient conditions for the convergence of the regularization
inertial proximal point algorithm (.).

Theorem . Assume that all hypotheses of Theorem . are satisfied. If the parameters
cn and αn are positive real numbers such that
(a) limn→∞ αn = ;
(b) limn→∞ αn–αn+

αn+
= ;

(c) lim infn→∞ cnαn > ,
then the sequence {g(zn)} defined by (.) converges strongly to an element g(u*) ∈ H for
some u* ∈GVIK (A, g,S).

Proof Let v ∈H such that g(v) ∈ K . From (.), for each n ∈N , we see that

〈
cn

[
A(zn+) + αμ

n

N∑
i=

(Ai ◦ g)(zn+)
]
+ ( + cnαn)g(zn+) – g(zn), g(v) – g(zn+)

〉
≥ ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/169
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that is,

〈
cn

[
A(zn+) + αμ

n

N∑
i=

(Ai ◦ g)(zn+)
]
+ ( + cnαn)g(zn+), g(v) – g(zn+)

〉

≥ 〈
g(zn), g(v) – g(zn+)

〉
.

Thus we have

( + cnαn)

〈
cn

( + cnαn)

[
A(zn+) + αμ

n

N∑
i=

(Ai ◦ g)(zn+)
]
+ g(zn+), g(v) – g(zn+)

〉

≥ 〈
g(zn), g(v) – g(zn+)

〉

and so

〈
cn

( + cnαn)

[
A(zn+) + αμ

n

N∑
i=

(Ai ◦ g)(zn+)
]
+ g(zn+), g(v) – g(zn+)

〉

≥ 
( + cnαn)

〈
g(zn), g(v) – g(zn+)

〉
.

Hence we have

〈
γn

[
A(zn+) + αμ

n

N∑
i=

(Ai ◦ g)(zn+)
]
+ g(zn+), g(v) – g(zn+)

〉
≥ βn

〈
g(zn), g(v) – g(zn+)

〉

for any v ∈H with g(v) ∈ K and n ∈N , where

βn =


( + cnαn)
, γn = cnβn. (.)

By the similar argument, it follows from (.) that

〈
cnA(un) + αμ

n

N∑
i=

(Ai ◦ g)(un) + αng(un) + g(un) – g(un), g(v) – g(un)
〉
≥ 

and so

〈
cn

( + cnαn)

[
A(un) + αμ

n

N∑
i=

(Ai ◦ g)(un)
]
+ g(un), g(v) – g(un)

〉

≥ 
( + cnαn)

〈
g(un), g(v) – g(un)

〉
,

when un is the solution of (.) and α is replaced by αn. Thus we have

〈
γn

[
A(un) + αμ

n

N∑
i=

(Ai ◦ g)(un)
]
+ g(un), g(v) – g(un)

〉
≥ βn

〈
g(un), g(v) – g(un)

〉
, (.)
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for any v ∈H with g(v) ∈ K and n ∈N . By setting v = un in (.), we have

〈
γn

[
A(zn+)+αμ

n

N∑
i=

(Ai◦g)(zn+)
]
+g(zn+), g(un)–g(zn+)

〉
≥ βn

〈
g(zn), g(un)–g(zn+)

〉

and, by setting v = zn+ in (.), we have

〈
γn

[
A(un) + αμ

n

N∑
i=

(Ai ◦ g)(un)
]
+ g(un), g(zn+) – g(un)

〉
≥ βn

〈
g(un), g(zn+) – g(un)

〉
.

Thus, by adding two inequalities above, we have

γn

〈
A(zn+) –A(un) + αμ

n

N∑
i=

[
Ai ◦ g(zn+) –Ai ◦ g(un)

]
, g(un) – g(zn+)

〉

+
〈
g(zn+) – g(un), g(un) – g(zn+)t

〉
≥ βn

〈
g(zn) – g(un), g(un) – g(zn+)

〉
. (.)

Notice that since A is a g-monotone mapping and each Ai for each i ∈ I is a λi-inverse
strongly monotone, we have

〈
A(zn+) –A(un), g(un) – g(zn+)

〉 ≤ 

and

〈
Ai ◦ g(zn+) –Ai ◦ g(un), g(un) – g(zn+)

〉 ≤ 

for each i ∈ I . Thus, from the above fact, we obtain

〈
g(zn+) – g(un), g(un) – g(zn+)

〉 ≥ βn
〈
g(zn) – g(un), g(un) – g(zn+)

〉
.

This gives

∥∥g(zn+) – g(un)
∥∥ ≤ βn

∥∥g(zn) – g(un)
∥∥ (.)

for each n ∈N . Thus, using Theorem .(), we have

∥∥g(zn+) – g(un+)
∥∥ ≤ ∥∥g(zn+) – g(un)

∥∥ +
∥∥g(un) – g(un+)

∥∥
≤ βn

∥∥g(zn) – g(un)
∥∥ +

√
M(αn – αn+)

α
n+

≤ ( – bn)
∥∥g(zn) – g(un)

∥∥ + dn,

where

bn =
cnαn

( + cnαn)
, dn =

√
M(αn – αn+)

α
n+

.
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Consequently, by the condition (c), we have
∑∞

n= bn = ∞. Meanwhile, the conditions (b)
and (c) imply limn→∞ dn

bn = . Thus, all the conditions of Lemma . are satisfied, and so
‖g(zn+) – g(un+)‖ →  as n→ ∞. Moreover, by the condition (a) and Theorem .(), we
know that there exists u* ∈ GVIK (A, g,S) such that {g(un)} converges strongly to g(u*). This
implies that {g(zn)} converges strongly to g(u*) as n → +∞. This completes the proof. �

Example . Let p ∈ (, ) be a fixed real number. Let αn = ( n )
p and cn = 

αn
for each

n ∈ N . Then we can check that the sequences {αn} and {cn} satisfy all the conditions in
Theorem ..

Remark . Note that because of the condition (b) of Theorem ., the choice { 
n } is

not included in the class of the parameters {αn}. This may lead to an important further
research work, that is, finding other (regularization inertial proximal point) algorithms
for the problem (.) including the natural parameter choice { 

n }.

4 Conclusion
In this paper, we provide a regularization method for general monotone variational in-
equality, where the regularizer is a Lipschitz continuous and strongly monotone operator.
Also, an iterative method as discretization of regularization method is introduced. We
would like to point out, as we have mentioned in Remark . and Remark ., that our
results are general and extend some well-known results which have been investigated in
literature; for more examples, see [–]. Further, let us notice that although many au-
thors have proved results for finding the solution of the variational inequality problem and
the solution set of a finite inverse strongly monotone mapping, it is clear that it cannot be
directly applied to our main considered problem (.) due to the presence of g .
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