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Abstract
In this paper, we show the existence of a coupled fixed point theorem of nonlinear
contraction mappings in complete metric spaces without the mixed monotone
property and give some examples of a nonlinear contraction mapping, which is not
applied to the existence of coupled fixed point by using the mixed monotone
property. We also study the necessary condition for the uniqueness of a coupled fixed
point of the given mapping. Further, we apply our results to the existence of a
coupled fixed point of the given mapping in partially ordered metric spaces.
Moreover, some applications to integral equations are presented.
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1 Introduction
Let X be an arbitrary nonempty set. A fixed point for a self mapping f : X → X is a point
x ∈ X such that fx = x. The applications of fixed point theorems are very important in
diverse disciplines of mathematics, statistics, chemistry, biology, computer science, engi-
neering and economics in dealing with problems arising in approximation theory, poten-
tial theory, game theory, mathematical economics, theory of differential equations, theory
of integral equations, theory of matrix equations etc. (see, e.g., [–]). For example, fixed
point theorems are incredibly useful when it comes to prove the existence of various types
of Nash equilibria (see, e.g., []) in economics. Fixed point theorems are also helpful for
proving the existence of weak periodic solutions for amodel describing the electrical heat-
ing of a conductor taking into account the Joule-Thomson effect (see, e.g., []).
One of the very popular tools of a fixed point theory is the Banach contraction principle

which first appeared in . It states that if (X,d) is a complete metric space and T :
X → X is a contraction mapping (i.e., d(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X, where k is a non-
negative number such that k < ), then T has a unique fixed point. Several mathematicians
have been dedicated to improvement and generalization of this principle (see [–]).
Especially, in , Ran and Reurings [] showed the existence of fixed points of non-

linear contraction mappings in metric spaces endowed with a partial ordering and pre-
sented applications of their results to matrix equations. Since  some authors have
studied fixed point theorems in partially ordered metric spaces (see [–] and refer-
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ences therein). Subsequently, Nieto and Rodríguez-López [] extended the results in []
for non-decreasing mappings and obtained a unique solution for a first-order ordinary
differential equation with periodic boundary conditions (see also []).
One of the interesting and crucial concepts, a coupled fixed point theorem, was intro-

duced by Guo and Lakshmikantham []. In  Bhaskar and Lakshmikantham []
introduced the notion of the mixedmonotone property of a given mapping. Furthermore,
they proved some coupled fixed point theorems for mappings which satisfy the mixed
monotone property and gave some applications in the existence and uniqueness of a so-
lution for a periodic boundary value problem. They also established the classical coupled
fixed point theorems and gave some of their applications. Themain results of Bhaskar and
Lakshmikantham are as follows.

Theorem . (Bhaskar and Lakshmikantham []) Let (X,�) be a partially ordered set
and suppose that there is a metric d on X such that (X,d) is a complete metric space. Let
F : X×X → X be a continuousmapping having themixedmonotone property on X.Assume
that there exists a k ∈ [, ) with

d
(
F(x, y),F(u, v)

) ≤ k
(
d(x,u) + d(y, v)



)
(.)

for all x, y,u, v ∈ X for which x � u and y� v. If there exists x, y ∈ X such that

x � F(x, y), y � F(y,x),

then there exists x, y ∈ X such that x = F(x, y) and y = F(y,x).

Theorem . (Bhaskar and Lakshmikantham []) Let (X,�) be a partially ordered set
and suppose there is a metric d on X such that (X,d) is a complete metric space. Suppose
that X has the following property:

(i) if {xn} is a non-decreasing sequence with {xn} → x, then xn � x for all n≥ ,
(ii) if {yn} is a non-increasing sequence with {yn} → y, then yn � y for all n≥ .

Let F : X × X → X be a mapping having the mixed monotone property on X. Assume that
there exists k ∈ [, ) with

d
(
F(x, y),F(u, v)

) ≤ k
(
d(x,u) + d(y, v)



)
(.)

for all x, y,u, v ∈ X for which x � u and y� v. If there exists x, y ∈ X such that

x � F(x, y), y � F(y,x),

then there exists x, y ∈ X such that x = F(x, y) and y = F(y,x).

Because of the important role of Theorems . and . in nonlinear differential equa-
tions, nonlinear integral equations and differential inclusions, many authors have studied
the existence of coupled fixed points of the given mappings in several spaces and applica-
tions (see [–] and references therein).
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In this paper, we establish the existence of a coupled fixed point of the given mapping
in complete metric spaces without the mixed monotone property. We also give some il-
lustrative examples to illustrate our main theorems. Furthermore, we find the necessary
condition to guarantee the uniqueness of the coupled fixed point. Our results improve and
extend some coupled fixed point theorems of Bhaskar and Lakshmikantham [] and oth-
ers. As an application, we apply the main results to the setting of partially ordered metric
spaces and also present some applications to integral equations.

2 Preliminaries
In this section, we give some definitions, examples and remarks which are useful for main
results in this paper.
Throughout this paper, P(X) denotes a collection of subsets of X, and (X,�) denotes

a partially ordered set with the partial order �. By x � y, we mean y � x. A mapping f :
X → X is said to be non-decreasing (resp., non-increasing) if for all x, y ∈ X, x � y implies
f (x)� f (y) (resp., f (y) � f (x)).

Definition . (Bhaskar and Lakshmikantham []) Let (X,�) be a partially ordered set
and F : X × X → X. The mapping F is said to have the mixed monotone property if F
is monotone non-decreasing in its first argument and is monotone non-increasing in its
second argument, that is, for any x, y ∈ X,

x,x ∈ X, x � x =⇒ F(x, y) � F(x, y) (.)

and

y, y ∈ X, y � y =⇒ F(x, y)� F(x, y). (.)

Definition . (Bhaskar and Lakshmikantham []) LetX be a nonempty set. An element
(x, y) ∈ X × X is called a coupled fixed point of the mapping F : X × X → X if x = F(x, y)
and y = F(y,x).

Example . Let X = [,∞) and F : X ×X → X be defined by

F(x, y) = x + y

for all x, y ∈ X. It is easy to see that F has a unique coupled fixed point (, ).

Example . Let X = P([,∞)) and F : X ×X → X be defined by

F(A,B) = A – B

for all A,B ∈ X. We can see that a coupled fixed point of F is (Ã, B̃), where Ã and B̃ are
disjoint sets.

Next, we give the notion of an F-invariant set which is due to Samet and Vetro [].

http://www.fixedpointtheoryandapplications.com/content/2012/1/170
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Definition . (Samet and Vetro []) Let (X,d) be a metric space and F : X × X → X
be a given mapping. Let M be a nonempty subset of X. We say that M is an F-invariant
subset of X if and only if, for all x, y, z,w ∈ X,

(i) (x, y, z,w) ∈M ⇐⇒ (w, z, y,x) ∈ M;
(ii) (x, y, z,w) ∈M =⇒ (F(x, y),F(y,x),F(z,w),F(w, z)) ∈M.

Here, we introduce the new property which is useful for our main results.

Definition. Let (X,d) be ametric space andM be a subset ofX.We say thatM satisfies
the transitive property if and only if, for all x, y, z,w,a,b ∈ X,

(x, y, z,w) ∈ M and (z,w,a,b) ∈M =⇒ (x, y,a,b) ∈M.

Remark. Wecan easily check that the setM = X is trivially F-invariant, which satisfies
the transitive property.

Example . Let X = {, , , } endowed with the usual metric and F : X × X → X be
defined by

F(x, y) =

⎧⎨
⎩, x, y ∈ {, },
, otherwise.

It easy to see thatM = {, } ⊆ X is F-invariant, which satisfies the transitive property.

Example . Let X =R endowed with the usual metric and F : X ×X → X be defined by

F(x, y) =

⎧⎨
⎩x, x, y ∈ (–∞, –)∪ (,∞),

cos(x + y) sin(x – y), otherwise.

It easy to see thatM = [(–∞, –)∪ (,∞)] ⊆ X is F-invariant, which satisfies the transi-
tive property.

The following example plays a key role in the proof of our main results in a partially
ordered set.

Example . Let (X,d) be a metric space endowed with a partial order �. Let F : X ×
X → X be a mapping satisfying the mixed monotone property, that is, for all x, y ∈ X, we
have

x,x ∈ X, x � x =⇒ F(x, y) � F(x, y) (.)

and

y, y ∈ X, y � y =⇒ F(x, y) � F(x, y). (.)

Define a subsetM ⊆ X by

M =
{
(a,b, c,d) ∈ X : a� c,b � d

}
.
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ThenM is an F-invariant subset of X, which satisfies the transitive property.

3 Coupled fixed point theorems without themixedmonotone property
Theorem . Let (X,d) be a complete metric space and M be a nonempty subset of
X. Assume that there is a function ϕ : [,∞) → [,∞) with  = ϕ() < ϕ(t) < t and
limr→t+ ϕ(r) < t for each t > , and also suppose that F : X × X → X is a mapping such
that

d
(
F(x, y),F(u, v)

) ≤ ϕ

(
d(x,u) + d(y, v)



)
(.)

for all (x, y,u, v) ∈M. Suppose that either
(a) F is continuous or
(b) if for any two sequences {xn}, {yn} with (xn+, yn+,xn, yn) ∈ M,

{xn} → x, {yn} → y

for all n ≥ , then (x, y,xn, yn) ∈ M for all n≥ .
If there exists (x, y) ∈ X × X such that (F(x, y),F(y,x),x, y) ∈ M and M is an F-

invariant set which satisfies the transitive property, then there exists x, y ∈ X such that x =
F(x, y) and y = F(y,x), that is, F has a coupled fixed point.

Proof From F(X ×X) ⊆ X, we can construct two sequences {xn} and {yn} in X such that

xn = F(xn–, yn–), yn = F(yn–,xn–) (.)

for all n ∈N. If there exists n� ∈N such that xn�– = xn� and yn�– = yn� , then

xn�– = F(xn�–, yn�–), yn�– = F(yn�–,xn�–).

Thus, (xn�–, yn�–) is a coupled fixed point of F . This finishes the proof. Therefore, wemay
assume that xn– = xn or yn– = yn for all n ∈N.
Since (F(x, y),F(y,x),x, y) = (x, y,x, y) ∈M andM is an F-invariant set, we get

(
F(x, y),F(y,x),F(x, y),F(y,x)

)
= (x, y,x, y) ∈M.

Again, using the fact thatM is an F-invariant set, we have

(
F(x, y),F(y,x),F(x, y),F(y,x)

)
= (x, y,x, y) ∈ M.

By repeating this argument, we get

(
F(xn–, yn–),F(yn–,xn–),xn–, yn–

)
= (xn, yn,xn–, yn–) ∈M

for all n ∈N. Denote δn– := d(xn,xn–) + d(yn, yn–) >  for all n ∈N.
Now, we show that

δn ≤ ϕ
(

δn–



)

http://www.fixedpointtheoryandapplications.com/content/2012/1/170
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for all n ∈N. Since (xn, yn,xn–, yn–) ∈M for all n ∈N, from (.), it follows that

d(xn+,xn) = d
(
F(xn, yn),F(xn–, yn–)

)
≤ ϕ

(
d(xn,xn–) + d(yn, yn–)



)

= ϕ

(
δn–



)
. (.)

SinceM is an F-invariant set and (xn, yn,xn–, yn–) ∈ M for all n ∈ N, we get (yn–,xn–, yn,
xn) ∈ M for all n ∈N. From (.) and (yn–,xn–, yn,xn) ∈M for all n ∈ N, we get

d(yn+, yn) = d
(
F(yn,xn),F(yn–,xn–)

)
= d

(
F(yn–,xn–),F(yn,xn)

)
≤ ϕ

(
d(yn–, yn) + d(xn–,xn)



)

= ϕ

(
δn–



)
. (.)

Adding (.) and (.), we get

δn ≤ ϕ
(

δn–



)
(.)

for all n ∈N. From (.) and ϕ(t) < t for all t > , we have

δn ≤ ϕ
(

δn–



)
< δn–

for all n ∈N, that is, {δn} is a monotone decreasing sequence. Therefore, limn→∞ δn = δ for
some δ ≥ .
Now, we show that δ = . Suppose that δ > . Taking n→ ∞ of both sides of (.), from

limr→t+ ϕ(r) < t for all r > , it follows that

δ = lim
n→∞ δn ≤  lim

n→∞ϕ

(
δn–



)
=  lim

δn–→δ+
ϕ

(
δn–



)
< 

(
δ



)
= δ,

which is a contradiction. Thus, δ =  and

lim
n→∞ δn = lim

n→∞
[
d(xn+,xn) + d(yn+, yn)

]
= . (.)

Next, we prove that {xn} and {yn} are Cauchy sequences. Suppose that at least one, {xn}
or {yn}, is not a Cauchy sequence. Then there exists ε >  and two subsequences of integers
nk andmk with nk >mk ≥ k such that

rk := d(xmk ,xnk ) + d(ymk , ynk ) ≥ ε (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/170
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for all k ∈ {, , . . .}. Further, corresponding to mk , we can choose nk in such a way that it
is the smallest integer with nk >mk ≥ k satisfying (.). Then we have

d(xmk ,xnk–) + d(ymk , ynk–) < ε. (.)

Using (.), (.) and the triangle inequality, we have

ε ≤ rk

= d(xmk ,xnk ) + d(ymk , ynk )

≤ d(xmk ,xnk–) + d(xnk–,xnk ) + d(ymk , ynk–) + d(ynk–, ynk )

=
[
d(xmk ,xnk–) + d(ymk , ynk–)

]
+

[
d(xnk ,xnk–) + d(ynk , ynk–)

]
< ε + δnk–. (.)

Letting k → ∞ and using (.), we have limk→∞ rk = ε > .
Since nk >mk andM satisfies the transitive property, we get

(xnk , ynk ,xmk , ymk ) ∈M and (ymk ,xmk , ynk ,xnk ) ∈M. (.)

From (.) and (.), we get

d(xmk+,xnk+) = d
(
F(xmk , ymk ),F(xnk , ynk )

)
= d

(
F(xnk , ynk ),F(xmk , ymk )

)
≤ ϕ

(
d(xnk ,xmk ) + d(ynk , ymk )



)

= ϕ

(
rk


)
(.)

and

d(ymk+, ynk+) = d
(
F(ymk ,xmk ),F(ynk ,xnk )

)
≤ ϕ

(
d(ymk , ynk ) + d(xmk ,xnk )



)

= ϕ

(
rk


)
. (.)

Adding (.) and (.), we get

rk+ ≤ ϕ
(
rk


)
(.)

for all k ∈ {, , . . .}. Taking k → ∞ of both sides of (.), from limr→t+ ϕ(r) < t for all r > ,
it follows that

ε = lim
k→∞

rk+ ≤  lim
k→∞

ϕ

(
rk


)
=  lim

rk→ε+
ϕ

(
rk


)
< 

(
ε



)
= ε,

http://www.fixedpointtheoryandapplications.com/content/2012/1/170
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which is a contradiction. Therefore, {xn} and {yn} are Cauchy sequences. Since X is com-
plete, there exists x, y ∈ X such that

lim
n→∞xn = x, lim

n→∞ yn = y. (.)

Finally, we show that x = F(x, y) and y = F(y,x). If the assumption (a) holds, then we
have

x = lim
n→∞xn+ = lim

n→∞F(xn, yn) = F
(
lim
n→∞xn, limn→∞ yn

)
= F(x, y) (.)

and

y = lim
n→∞ yn+ = lim

n→∞F(yn,xn) = F
(
lim
n→∞ yn, limn→∞xn

)
= F(y,x). (.)

Therefore, x = F(x, y) and y = F(y,x), that is, F has a coupled fixed point.
Suppose that (b) holds. We obtain that a sequence {xn} converges to x and a sequence

{yn} converges to y for some x, y ∈ X. By the assumption, we have (x, y,xn, yn) ∈ M for
all n ∈ N. Since (x, y,xn, yn) ∈ M for all n ∈ N, by the triangle inequality and (.), we
get

d
(
F(x, y),x

) ≤ d
(
F(x, y),xn+

)
+ d(xn+,x)

= d
(
F(x, y),F(xn, yn)

)
+ d(xn+,x)

≤ ϕ

(
d(x,xn) + d(y, yn)



)
+ d(xn+,x). (.)

Taking n → ∞, we have d(F(x, y),x) = , and so x = F(x, y). Similarly, we can con-
clude that y = F(x, y). Therefore, F has a coupled fixed point. This completes the
proof. �

Now, we give an example to validate Theorem ..

Example . Let X = R endowed with the usual metric d(x, y) = |x – y| for all x, y ∈ X
and endowed with the usual partial order defined by x � y ⇐⇒ y – x ∈ [,∞). Define a
continuous mapping F : X ×X → X by

F(x, y) =
x + y + 



for all (x, y) ∈ X × X. Let y =  and y = . Then we have y � y, but F(x, y) � F(x, y),
and so the mapping F does not satisfy the mixed monotone property.
Now, let ϕ : [,∞) → [,∞) be a function defined by ϕ(t) = 

 t for all t ∈ [,∞). Then
we obtain  = ϕ() < ϕ(t) < t and limr→t+ ϕ(r) < t for any t > . By simple calculation, we
see that for all x, y,u, v ∈ X,

d
(
F(x, y),F(u, v)

)
=

∣∣∣∣x + y + 


–
u + v + 



∣∣∣∣
≤ 


(
d(x,u) + d(y, v)

)

http://www.fixedpointtheoryandapplications.com/content/2012/1/170
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=



(
d(x,u) + d(y, v)



)

= ϕ

(
d(x,u) + d(y, v)



)
.

Therefore, if we apply Theorem . with M = X, we know that F has a unique coupled
fixed point, that is, a point (, ) is a unique coupled fixed point.

Remark . Although the mixed monotone property is an essential tool in the partially
ordered metric spaces to show the existence of coupled fixed points, the mappings do not
have the mixed monotone property in a general case as in the above example. Therefore,
Theorem . is interesting, as a new auxiliary tool, in showing the existence of a coupled
fixed point.

If we take the mapping ϕ(t) = kt for some k ∈ [, ) in Theorem ., then we get the
following:

Corollary . Let (X,d) be a complete metric space and M be a nonempty subset of X.
Suppose that F : X ×X → X is a mapping such that there exists k ∈ [, ) such that

d
(
F(x, y),F(u, v)

) ≤ k
(
d(x,u) + d(y, v)



)
(.)

for all (x, y,u, v) ∈M. Suppose that either
(a) F is continuous or
(b) for any two sequences {xn}, {yn} with (xn+, yn+,xn, yn) ∈M, if

{xn} → x, {yn} → y

for all n ∈N, then (x, y,xn, yn) ∈ M for all n ∈N.
If there exists (x, y) ∈ X × X such that (F(x, y),F(y,x),x, y) ∈ M and M is an F-

invariant set which satisfies the transitive property, then there exists x, y ∈ X such that x =
F(x, y) and y = F(y,x), that is, F has a coupled fixed point.

Now, from Theorem ., we have the following question:

(Q) Is it possible to guarantee the uniqueness of the coupled fixed point of F?

Now, we give positive answers to this question.

Theorem. In addition to the hypotheses of Theorem ., suppose that for all (x, y), (z, t) ∈
X ×X, there exists (u, v) ∈ X ×X such that (x, y,u, v) ∈M and (z, t,u, v) ∈M. Then F has a
unique coupled fixed point.

Proof FromTheorem., we know that F has a coupled fixed point. Suppose that (x, y) and
(z, t) are coupled fixed points of F , that is, x = F(x, y), y = F(y,x), z = F(z, t) and t = F(t, z).
Now, we show that x = z and y = t. By the hypothesis, there exists (u, v) ∈ X×X such that

(x, y,u, v) ∈ M and (z, t,u, v) ∈ M. We put u = u and v = v and construct two sequences

http://www.fixedpointtheoryandapplications.com/content/2012/1/170
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{un} and {vn} by

un = F(un–, vn–), vn = F(vn–,un–)

for all n ∈N.
SinceM is F-invariant and (x, y,u, v) = (x, y,u, v) ∈M, we have

(
F(x, y),F(y,x),F(u, v),F(v,u)

) ∈M,

that is,

(x, y,u, v) ∈M.

From (x, y,u, v) ∈M, if we use again the property of F-invariant, then it follows that

(
F(x, y),F(y,x),F(u, v),F(v,u)

) ∈M

and so

(x, y,u, v) ∈M.

By repeating this process, we get

(x, y,un, vn) ∈ M (.)

for all n ∈N. From (.) and (.), we have

d(x,un+) = d
(
F(x, y),F(un, vn)

) ≤ ϕ

(
d(x,un) + d(y, vn)



)
. (.)

SinceM is F-invariant and (x, y,un, vn) ∈M for all n ∈ N, we have

(vn,un, y,x) ∈ M (.)

for all n ∈N. From (.) and (.), we get

d(vn+, y) = d
(
F(vn,un),F(y,x)

) ≤ ϕ

(
d(vn, y) + d(un,x)



)
. (.)

Thus, from (.) and (.), we have

d(x,un+) + d(y, vn+)


≤ ϕ

(
d(x,un) + d(y, vn)



)
(.)

for all n ∈N. By repeating this process, we get

d(x,un+) + d(y, vn+)


≤ ϕn
(
d(x,u) + d(y, v)



)
(.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/170
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for all n ∈ N. From ϕ(t) < t and limr→t+ ϕ(r) < t, it follows that limn→∞ ϕn(t) =  for each
t > . Therefore, from (.), we have

lim
n→∞

[
d(x,un+) + d(y, vn+)

]
= . (.)

Similarly, we can prove that

lim
n→∞

[
d(z,un+) + d(t, vn+)

]
= . (.)

By the triangle inequality, for all n ∈ N, we have

d(x, z) + d(y, t) ≤ [
d(x,un+) + d(un+, z)

]
+

[
d(y, vn+) + d(vn+, t)

]
=

[
d(x,un+) + d(y, vn+)

]
+

[
d(z,un+) + d(t, vn+)

]
. (.)

Taking n → ∞ in (.) and using (.) and (.), we have d(x, z) + d(y, t) = , and so
x = z and y = t. Therefore, F has a unique coupled fixed point. This completes the proof.�

Next, we give a simple application of our results to coupled fixed point theorems in
partially ordered metric spaces.

Corollary . Let (X,�) be a partially ordered set and suppose that there is a metric d on
X such that (X,d) is a complete metric space. Assume that there is a function ϕ : [,∞) →
[,∞) with  = ϕ() < ϕ(t) < t and limr→t+ ϕ(r) < t for each t >  and also suppose that
F : X ×X → X is a mapping such that F has the mixed monotone property and

d
(
F(x, y),F(u, v)

) ≤ ϕ

(
d(x,u) + d(y, v)



)
(.)

for all x, y,u, v ∈ X for which x � u and y� v. Suppose that either
(a) F is continuous or
(b) X has the following property:

(i) if {xn} is a non-decreasing sequence with {xn} → x, then xn � x for all n ∈N,
(ii) if {yn} is a non-increasing sequence with {yn} → y, then y � yn for all n ∈ N.

If there exists x, y ∈ X such that

x � F(x, y), y � F(y,x),

then there exists x, y ∈ X such that x = F(x, y) and y = F(y,x), that is, F has a coupled fixed
point.

Proof First, we define a subsetM ⊆ X by

M =
{
(a,b, c,d) ∈ X : a� c,b � d

}
.

From Example ., we can conclude that M is an F-invariant set which satisfies the
transitive property. By (.), we have

d
(
F(x, y),F(u, v)

) ≤ ϕ

(
d(x,u) + d(y, v)



)
(.)
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for all x, y,u, v ∈ X with (x, y,u, v) ∈M. Since x, y ∈ X such that

x � F(x, y), y � F(y,x),

we get

(
F(x, y),F(y,x),x, y

) ∈M.

For the assumption (b), for any two sequences {xn}, {yn} such that {xn} is a non-
decreasing sequence in X with xn → x and {yn} is a non-increasing sequence in X with
yn → y, we have

x � x � · · · � xn � · · · � x

and

y � y � · · · � yn � · · · � y

for all n ∈ N. Therefore, we have (x, y,xn, yn) ∈ M for all n ∈ N, and so the assumption (b)
of Theorem . holds.
Now, since all the hypotheses of Theorem . hold, F has a coupled fixed point. This

completes the proof. �

Corollary . In addition to the hypotheses of Corollary ., suppose that for all (x, y), (z,
t) ∈ X ×X, there exists (u, v) ∈ X ×X such that x � u, y� v and z � u, t � v. Then F has a
unique coupled fixed point.

Proof First, we define a subsetM ⊆ X by

M =
{
(a,b, c,d) ∈ X : a� c,b � d

}
.

From Example ., we can conclude thatM is an F-invariant set which satisfies the tran-
sitive property. Thus, the proof of the existence of a coupled fixed point is straightforward
by following the same lines as in the proof of Corollary ..
Next, we show the uniqueness of a coupled fixed point of F . Since for all (x, y), (z, t) ∈

X ×X, there exists (u, v) ∈ X ×X such that x � u, y � v and z � u, t � v, we can conclude
that (x, y,u, v) ∈ M and (z, t,u, v) ∈ M. Therefore, since all the hypotheses of Theorem .
hold, F has a unique coupled fixed point. This completes the proof. �

Corollary . (Bhaskar and Lakshmikantham []) Let (X,�) be a partially ordered set
and suppose that there is a metric d on X such that (X,d) is a complete metric space. Let
F : X×X → X be a continuousmapping having themixedmonotone property on X.Assume
that there exists k ∈ [, ) with

d
(
F(x, y),F(u, v)

) ≤ k
(
d(x,u) + d(y, v)



)
(.)
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for all x, y,u, v ∈ X for which x � u and y� v. If there exists x, y ∈ X such that

x � F(x, y), y � F(y,x),

then there exists x, y ∈ X such that x = F(x, y) and y = F(y,x).

Proof Taking ϕ(t) = kt for some k ∈ [, ) in Corollary .(a), we can get the conclusion.�

Corollary . (Bhaskar and Lakshmikantham []) Let (X,�) be a partially ordered set
and suppose that there is a metric d on X such that (X,d) is a complete metric space. Sup-
pose that X has the following property:

(i) if {xn} is a non-decreasing sequence with {xn} → x, then xn � x for all n ∈N,
(ii) if {yn} is a non-increasing sequence with {yn} → y, then yn � y for all n ∈N.

Let F : X × X → X be a continuous mapping having the mixed monotone property on X.
Assume that there exists k ∈ [, ) with

d
(
F(x, y),F(u, v)

) ≤ k
(
d(x,u) + d(y, v)



)
(.)

for all x, y,u, v ∈ X for which x � u and y� v. If there exists x, y ∈ X such that

x � F(x, y), y � F(y,x),

then there exists x, y ∈ X such that x = F(x, y) and y = F(y,x).

Proof Taking ϕ(t) = kt for some k ∈ [, ) in Corollary .(b), we can get the conclusion.�

4 Applications
In this section, we apply our theorem to the existence theorem for a solution of the fol-
lowing nonlinear integral equations:

x(t) =
∫ T


f
(
t,x(s), y(s)

)
ds, t ∈ [,T];

y(t) =
∫ T


f
(
t, y(s),x(s)

)
ds, t ∈ [,T],

(.)

where T is a real number such that T >  and f : [,T]×R×R →R.
Let X = C([,T],R) denote the space of R-valued continuous functions on the interval

[,T]. We endowed X with the metric d : X ×X →R defined by

d(x, y) = sup
t∈[,T]

|x(t) – y(t)|, ∀x, y ∈ X.

It is clear that (X,d) is a complete metric space.
Now, we consider the following assumptions:

Definition . An element α,β ∈ C([,T],R)×C([,T],R) is called a coupled lower and
upper solution of the integral equation (.) if α(t)≤ β(t) and

α(t)≤
∫ T


f (t,α(s),β(s))ds

http://www.fixedpointtheoryandapplications.com/content/2012/1/170
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and

β(t)≥
∫ T


f (t,β(s),α(s))ds

for all t ∈ [,T].

(�) f : [,T]×R×R →R is continuous;
(�) for all t ∈ [,T] and for all x, y,u, v ∈R for which x ≥ u and y≤ v, we have

 ≤ f (t,x, y) – f (t,u, v)≤ 
T

ϕ

(
x – u + v – y



)
,

where ϕ : [,∞) → [,∞) is continuous, non-decreasing and satisfies  = ϕ() <
ϕ(t) < t and limr→t+ ϕ(r) < t for each t > .

Next, we give the existence theorem for a unique solution of the integral equations (.).

Theorem . Suppose that (�) and (�) hold. Then the integral equations (.) have the
unique solution (̃x, ỹ) ∈ C([,T],R)×C([,T],R) if there exists a coupled lower and upper
solution for (.).

Proof Define the mapping F : C([,T],R)×C([,T],R)→ C([,T],R) by

F(x, y)(t) =
∫ T


f
(
t,x(s), y(s)

)
ds, x, y ∈ C

(
[,T],R

)
, t ∈ [,T].

Let M = {(x, y,u, v) ∈ X : x(t) ≥ u(t) and y(t) ≤ v(t) for all t ∈ [,T]}. It is obvious that M
is an F-invariant subset of X which satisfies the transitive property. It is easy to see that
(b) given in Theorem . is satisfied.
Next, we prove that F has a coupled fixed point (̃x, ỹ) ∈ C([,T],R)×C([,T],R).
Now, let (x, y,u, v) ∈M. Using (�), for all t ∈ [,T], we have

∣∣F(x, y)(t) – F(u, v)(t)
∣∣ = ∫ T



[
f
(
t,x(s), y(s)

)
– f

(
t,u(s), v(s)

)]
ds

≤ 
T

∫ T


ϕ

(
x(s) – u(s) + v(s) – y(s)



)
ds

≤ 
T

∫ T


ϕ

(
supz∈[,T] |x(z) – u(z)| + supz∈[,T] |y(z) – v(z)|



)
ds

= ϕ

(
supz∈[,T] |x(z) – u(z)| + supz∈[,T] |y(z) – v(z)|



)
,

which implies that

sup
t∈[,T]

∣∣F(x, y)(t) – F(u, v)(t)
∣∣

≤ ϕ

(
supz∈[,T] |x(z) – u(z)| + supz∈[,T] |y(z) – v(z)|



)
. (.)
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Therefore, we get

d
(
F(x, y),F(u, v)

) ≤ ϕ

(
d(x,u) + d(y, v)



)

for all (x, y,u, v) ∈ M. This implies that the condition (.) of Theorem . is satisfied.
Moreover, it is easy to see that there exists (x, y) ∈ C([,T],R) × C([,T],R) such that
(F(x, y),F(y,x),x, y) ∈ M and all conditions in Theorem . are satisfied. Therefore,
we apply Theorem . and then we get the solution (̃x, ỹ) ∈ C([,T],R)×C([,T],R). �
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