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Abstract
We introduce a condition on mappings, namely condition (K ). In a uniformly convex
Banach space, the condition is weaker than quasi-nonexpansiveness and weaker than
asymptotic nonexpansiveness. We also present the existence theorem of common
fixed points for a commuting pair consisting of a mapping satisfying condition (K )
and a multivalued mapping satisfying conditions (E) and (Cλ) for some λ ∈ (0, 1).
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1 Introduction
In , Itoh and Takahashi [] established the existence of common fixed points of a
quasi-nonexpansive mapping and a multivalued nonexpansive mapping by an elementary
constructive method in a Hilbert space. In , Dhompongsa et al. [] obtained a com-
mon fixed point result for a commuting pair of single-valued and multivalued nonexpan-
sive mappings in uniformly convex Banach spaces. The analogy result in CAT() spaces
was also proved by Dhompongsa et al. []. Since then, Shahzad andMarkin [] studied an
invariant approximation problem and provided sufficient conditions for the existence of
z ∈ E ⊆ X such that d(z, y) = dist(y,E) and z = t(z) ∈ T(z), where y ∈ X, t and T are com-
muting nonexpansive mappings on E. In , Shahzad [] also obtained a common fixed
point and invariant approximation result in a CAT() space in which t and T are weakly
commuting.
Motivated by Suzuki’s result [], Garcia-Falset et al. [] introduced two kinds of general-

izations for condition (C), namely conditions (E) and (Cλ) and studied both the existence
of fixed points and their asymptotic behavior. Recently, Abkar and Eslamian [] proved
that if E is a nonempty closed convex and bounded subset of a complete CAT() space X,
t : E → E is a single-valued quasi-nonexpansive mapping, and T : E → KC(E) is a multi-
valued mapping satisfying conditions (E) and (Cλ) for some λ ∈ (, ) such that t and T
are weakly commuting, then there exists a point z ∈ E such that z = t(z) ∈ T(z). This result
was extended to the general setting of uniformly convex metric spaces by Laowang and
Panyanak [].
In this paper, we first introduce the following condition.

Definition . Let t be a mapping on a subset E of a Banach space X. Then t is said to
satisfy condition (K) if
. the fixed point set Fix(t) is nonempty closed and convex, and
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. for every x ∈ Fix(t), a closed convex subset A with t(A) ⊆ A, and y ∈ A such that
‖x – y‖ = dist(x,A), we have y ∈ Fix(t).

We show that, in a uniformly convex Banach space, condition (K) is weaker than quasi-
nonexpansiveness and weaker than asymptotic nonexpansiveness. We also present the
existence theorem of common fixed points for a commuting pair consisting of a mapping
satisfying condition (K) and a multivalued mapping satisfying conditions (E) and (Cλ) for
some λ ∈ (, ). Consequently, such a theorem extends many results in the literature.

2 Preliminaries
In this section, we give some preliminaries.
Amapping t on a subset E of a Banach space X is called an asymptotically nonexpansive

mapping if for each n ∈N, there exists a positive constant kn ≥  with limn→∞ kn =  such
that

∥∥tn(x) – tn(y)
∥∥ ≤ kn‖x – y‖ for all x, y ∈ E.

If kn ≡  for all n ∈ N, then t is called a nonexpansive mapping. We denote by Fix(t) the
set of fixed points of t, i.e., Fix(t) = {x ∈ E : x = t(x)}.
We shall denote by FB(E) the family of nonempty bounded closed subsets of E and by

KC(E) the family of nonempty compact convex subsets of E. Let H(·, ·) be the Hausdorff
distance on FB(X), i.e.,

H(A,B) =max
{
sup
a∈A

dist(a,B), sup
b∈B

dist(b,A)
}
, A,B ∈ FB(X),

where dist(a,B) = inf{‖a – b‖ : b ∈ B} is the distance from the point a to the subset B.
A multivalued mapping T : E → FB(X) is said to be nonexpansive if

H
(
T(x),T(y)

) ≤ ‖x – y‖ for all x, y ∈ E.

Definition . A multivalued mapping T : X → FB(X) is said to satisfy condition (Eμ)
provided that

dist
(
x,T(y)

) ≤ μdist
(
x,T(x)

)
+ ‖x – y‖, ∀x, y ∈ X.

We say that T satisfies condition (E) whenever T satisfies (Eμ) for some μ ≥ .

Definition . Amultivaluedmapping T : X → FB(X) is said to satisfy condition (Cλ) for
some λ ∈ (, ) provided that

λdist
(
x,T(x)

) ≤ ‖x – y‖ ⇒ H
(
T(x),T(y)

) ≤ ‖x – y‖, ∀x, y ∈ X.

A point x is called a fixed point for a multivalued mapping T if x ∈ T(x). A single valued
mapping t : E → E and a multivalued mapping T : E → FB(E) are said to be commute if
t(T(x))⊆ T(t(x)) for all x ∈ E.
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A Banach space X is said to be strictly convex if

‖x + y‖ < 

for all x, y ∈ X with ‖x‖ = ‖y‖ =  and x �= y. We recall that a Banach space X is called
uniformly convex (Clarkson []) if, for each ε > , there is a δ >  such that if ‖x‖ = ‖y‖ = 
then

∥∥∥∥ (x + y)


∥∥∥∥ ≤  – δ.

It is obvious that uniform convexity implies strict convexity.
In , Xu [] proved the characterization of uniform convexity as follows.

Theorem . [] A Banach space X is uniformly convex if and only if for each fixed num-
ber r > , there exists a continuous function ϕ : [,∞) → [,∞), ϕ(s) =  ⇔ s = , such
that

∥∥λx + ( – λ)y
∥∥ ≤ λ‖x‖ + ( – λ)‖y‖ – λ( – λ)ϕ

(‖x – y‖)

for all λ ∈ [, ] and all x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r.

Let E be a nonempty closed and convex subset of a Banach space X and {xn} be a
bounded sequence in X. For x ∈ X, define the asymptotic radius of {xn} at x as the number

r
(
x, {xn}

)
= lim sup

n→∞
‖xn – x‖.

Let

r ≡ r
(
E, {xn}

)
:= inf

{
r
(
x, {xn}

)
: x ∈ E

}

and

A≡ A
(
E, {xn}

)
:=

{
x ∈ E : r

(
x, {xn}

)
= r

}
.

The number r and the set A are, respectively, called the asymptotic radius and asymptotic
center of {xn} relative to E. It is known that A(E, {xn}) is as nonempty, weakly compact and
convex as E is []. The sequence {xn} is called regular relative to E if r(E, {xn}) = r(E, {xnk })
for each subsequence {xnk } of {xn}.
Goebel [] and Lim [] proved the following lemma.

Lemma . Let {xn} be a bounded sequence in X, and let E be a nonempty closed convex
subset of X. Then {xn} has a subsequence which is regular relative to E.

The following result was proved by Goebel and Kirk [].

Lemma. Let {zn} and {wn} be bounded sequences in a Banach space X, and let  < λ < .
If, for every natural number n,we have zn+ = λwn+(–λ)zn and ‖wn+ –wn‖ ≤ ‖zn+ – zn‖,
then limn→∞ ‖wn – zn‖ = .
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3 Main results
We recall that a mapping t on a subset E of a Banach space X is called quasi-nonexpansive
[] if ‖x – t(y)‖ ≤ ‖x – y‖ for all y ∈ E and x ∈ Fix(t). From the definition, we can see that
nonexpansive mappings with a fixed point are quasi-nonexpansive.
We first show that a quasi-nonexpansive mapping defined on a strictly convex Banach

space X satisfies condition (K).

Proposition . Let E be a strictly convex subset of a Banach space. If t : E → E is a quasi-
nonexpansive mapping, then t satisfies condition (K).

Proof It is known that Fix(t) is nonempty closed and convex [, Theorem ]. Let x ∈ Fix(t)
and A be a closed convex subset with t(A) ⊆ A. Let y ∈ A be such that ‖x – y‖ = dist(x,A).
Quasi-nonexpansiveness of t implies that

∥∥x – t(y)
∥∥ ≤ ‖x – y‖.

SinceE is strictly convex and t(A)⊆ A, itmust be the case that t(y) = y. Therefore, t satisfies
condition (K). �

An asymptotically nonexpansive mapping defined on a uniformly convex Banach space
also satisfies condition (K).

Proposition . Let X be a uniformly convex Banach space and E be a nonempty subset
of X. If t : E → E is an asymptotically nonexpansivemappingwith Fix(t) �=∅, then t satisfies
condition (K).

Proof The set Fix(t) is closed and convex [, Theorem ]. Let x ∈ Fix(t), A be a closed
convex subset of E with t(A) ⊆ A, and y ∈ A be such that ‖x – y‖ = dist(x,A). By Theo-
rem ., there exists a continuous function ψ such that for all integers l,m≥ ,

∥∥∥∥x –
(
tl(y) + tm(y)



)∥∥∥∥


≤ 

∥∥x – tl(y)

∥∥ +


∥∥x – tm(y)

∥∥ –



ϕ
(∥∥tl(y) – tm(y)

∥∥)

≤ 

kl ‖x – y‖ + 


km‖x – y‖ – 


ϕ
(∥∥tl(y) – tm(y)

∥∥)
. (.)

Since ‖x – y‖ = dist(x,A) and A is convex, we have

‖x – y‖ ≤
∥∥∥∥x –

(
tl(y) + tm(y)



)∥∥∥∥


.

Thus,

ϕ
(∥∥tl(y) – tm(y)

∥∥) ≤ 
((
kl + km

)
/ – 

)‖x – y‖.

Since t is asymptotically nonexpansive, the right-hand side of the inequality tends to zero
as l, m tend to infinity. Hence, {ti(y)} is a Cauchy sequence. Let limi→∞ ti(y) = z ∈ A. We
have

∥∥t(z) – ti+(y)
∥∥ ≤ k

∥∥z – ti(y)
∥∥.
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By letting i → ∞, we can conclude that ‖t(z) – z‖ ≤ , that is z ∈ Fix(t). Now, letting
l,m→ ∞ in (.) yields

‖x – z‖ ≤ ‖x – y‖.

Since z ∈ A and ‖x – y‖ = dist(x,A), thus y = z. Therefore, y ∈ Fix(t). �

The following example shows that the class of mappings satisfying condition (K) is
strictly wider than the class of quasi-nonexpansive mappings and asymptotically nonex-
pansive mappings.

Example . Let f be a function on [, ] defined by

f (x) =

⎧⎨
⎩
x, x≤ 

 ;

, x > 
 .

Then f is neither quasi-nonexpansive nor asymptotically nonexpansive. However, f sat-
isfies condition (K).

We are now in a position to state our main theorem.

Theorem . Let E be a nonempty bounded closed convex subset of a uniformly convex
Banach space X.Let t : E → E be amapping satisfying condition (K), and let T : E →KC(E)
be a multivalued mapping satisfying conditions (E) and (Cλ) for some λ ∈ (, ). If t and T
are commute, then they have a common fixed point, that is, there exists a point z ∈ E such
that z = t(z) ∈ T(z).

Proof Commutative property of t andT implies that t(T(x))⊆ T(x) for all x ∈ Fix(t). Then
we have Fix(t)∩ T(x) �=∅ for all x ∈ Fix(t) since t satisfies condition (K).
Now, we find an approximate fixed point sequence in Fix(t) forT . Take x ∈ Fix(t). Since

Fix(t)∩ T(x) �=∅, we choose y ∈ Fix(t)∩ T(x). Define

x = ( – λ)x + λy.

Since Fix(t) is convex, we have x ∈ Fix(t). Let y ∈ T(x) such that ‖y – y‖ =
dist(y,T(x)). We get y ∈ Fix(t) since t satisfies condition (K). Put

x = ( – λ)x + λy.

Again, choose y ∈ T(x) such that ‖y – y‖ = dist(y,T(x)). Similarly, we get y ∈ Fix(t).
We have a sequence {xn} ⊆ Fix(t) such that

xn+ = ( – λ)xn + λyn,

where yn ∈ T(xn) ∩ Fix(t) and ‖yn– – yn‖ = dist(yn–,T(xn)). For every natural number
n≥ , we have

‖xn+ – xn‖ = λ‖xn – yn‖.
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It follows that

λdist
(
xn,T(xn)

) ≤ λ‖xn – yn‖ = ‖xn+ – xn‖.

Since T satisfies condition (Cλ), we have

H
(
T(xn),T(xn+)

) ≤ ‖xn – xn+‖.

Hence, for each n ≥ , we have

‖yn – yn+‖ = dist
(
yn,T(xn+)

) ≤H
(
T(xn),T(xn+)

) ≤ ‖xn – xn+‖.

We now apply Lemma . to conclude that limn→∞ ‖xn – yn‖ = . That is, as n→ ∞,

dist
(
xn,T(xn)

) ≤ ‖xn – yn‖ → .

Passing through a subsequence, if necessary, we can assume that {xn} is regular. Let
A(Fix(t), {xn}) = {z}. For each n≥ , we choose zn ∈ T(z) such that ‖xn–zn‖ = dist(xn,T(z)).
Since t satisfies condition (K), we have zn ∈ Fix(t). The compactness of T(z) implies that
the sequence {zn} has a convergent subsequence {znk } with the limit point w ∈ T(z). We
also obtain w ∈ Fix(t) since Fix(t) is closed. By the condition (E) of T , we have for some
μ ≥ ,

dist
(
xnk ,T(z)

) ≤ μdist
(
xnk ,T(xnk )

)
+ ‖xnk – z‖.

Note that

‖xnk –w‖ ≤ ‖xnk – znk‖ + ‖znk –w‖ ≤ μdist
(
xnk ,T(xnk )

)
+ ‖xnk – z‖ + ‖znk –w‖.

These entail

lim sup
k→∞

‖xnk –w‖ ≤ lim sup
k→∞

‖xnk – z‖.

Since {xn} is regular, and an asymptotic center of a bounded sequence in a uniformly
convex Banach space is a singleton set, these show that z = w ∈ T(z). Hence, z = t(z) ∈
T(z). �

As a consequence of Proposition ., Proposition ., and Theorem ., we obtain the
following corollaries.

Corollary . Let E be a nonempty bounded closed convex subset of a uniformly convex
Banach space X. Let t : E → E be a quasi-nonexpansive mapping, and let T : E → KC(E)
be a multivalued mapping satisfying conditions (E) and (Cλ) for some λ ∈ (, ). If t and T
are commute, then they have a common fixed point, that is, there exists a point z ∈ E such
that z = t(z) ∈ T(z).
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Corollary . Let E be a nonempty bounded closed convex subset of a uniformly convex
Banach space X.Let t : E → E be an asymptotically nonexpansivemapping, and let T : E →
KC(E) be a multivalued mapping satisfying conditions (E) and (Cλ) for some λ ∈ (, ). If
t and T are commute, then they have a common fixed point, that is, there exists a point
z ∈ E such that z = t(z) ∈ T(z).
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