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Abstract
In this paper, we prove some coupled fixed point results for (φ ,ϕ)-weakly contractive
mappings in ordered partial metric spaces. As an application, we establish coupled
coincidence results without any type of commutativity of the concerned maps.
Consequently, the results of Luong and Thuan (Nonlinear Anal. 74:983-992, 2011),
Alotaibi and Alsulami (Fixed Point Theory Appl. 2011:44, 2011) and many others are
extended to the class of ordered partial metric spaces.
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1 Introduction
The Banach contraction principle is the most celebrated fixed point theorem. Afterward
many authors obtained various important extensions of this principle (see []). The con-
cept of partial metric spaces was introduced by Matthews [] in . A partial metric
space is a generalized metric space in which each object does not necessarily have to
have a zero distance from itself. A motivation behind introducing the concept of a par-
tial metric was to obtain appropriate mathematical models in the theory of computation
and, in particular, to give a modified version of the Banach contraction principle [, ].
Subsequently, several authors studied the problem of existence and uniqueness of a fixed
point for mappings satisfying different contractive conditions on partial metric spaces
(e.g., [–]).
Recently, Bhaskar and Lakshmikantham [] presented coupled fixed point theorems for

contractions in partially ordered metric spaces. Luong and Thuan [] presented nice gen-
eralizations of these results. Alotaibi andAlsulami [] further extended thework of Luong
and Thuan to coupled coincidences. For more related work on coupled coincidences we
refer the readers to recent work in [–]. Our main aim in this paper is to extend Luong
and Thuan [] results to ordered partial metric spaces.We shall also establish coupled co-
incidence results and show that main results in [] hold in ordered partial metric spaces
without the compatibility of maps.

2 Basic concepts
We start by recalling some definitions and properties of partial metric spaces.

Definition . A partial metric on a nonempty set X is a function p : X ×X –→R
+ such

that for all x, y, z ∈ X,
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p. x = y⇔ p(x,x) = p(x, y) = p(y, y).
p. p(x,x)≤ p(x, y).
p. p(x, y) = p(y,x).
p. p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).
A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial

metric on X.

From the above definition, if p(x, y) =  , then x = y. But if x = y, p(x, y) may not be  in
general. A trivial example of a partial metric space is the pair (R+,p) , where p :R+ ×R

+ →
R

+ is defined as p(x, y) =max{x, y}. For some more examples of partial metric spaces, we
refer to [, ].
Each partial metric p on X generates a T topology τp on X which has as a base the

family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x,x) + ε}
for all x ∈ X and ε > . A sequence {xn} in X converges to a point x ∈ X, with respect to τp

if and only if p(x,x) = limn→∞ p(x,xn). A sequence {xn} in X is called a Cauchy sequence if
limn,m→∞ p(xn,xm) exists and is finite.
If p is a partial metric on X, then the function ps : X ×X –→R

+ given by

ps(x, y) = p(x, y) – p(x,x) – p(y, y)

is a metric on X.

Lemma . [, ] Let (X,p) be a partial metric space. Then
(a) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric

space (X,ps).
(b) (X,p) is complete if and only if the metric space (X,ps) is complete. Furthermore,

limn→∞ ps(xn,x) =  if and only if

p(x,x) = lim
n→∞p(xn,x) = lim

n,m→∞p(xn,xm).

Let (X,p) be a partial metric.We endow the product space X×X with the partial metric
q defined as follows:

for (x, y), (u, v) ∈ X ×X, q
(
(x, y), (u, v)

)
= p(x,u) + p(y, v).

A mapping F : X × X → X is said to be continuous at (x, y) ∈ X × X if for each ε > ,
there exists δ >  such that F(Bq((x, y), δ))⊆ Bp(F(x, y), ε).

Definition . (Mixed monotone property) Let (X,�) be a partially ordered set and
F : X×X → X.We say that themapping F has themixedmonotone property if F is mono-
tone non-decreasing in its first argument and is monotone non-increasing in its second
argument. That is, for any x, y ∈ X,

x,x ∈ X, x � x ⇒ F(x, y) � F(x, y) ()

and

y, y ∈ X, y � y ⇒ F(x, y) 
 F(x, y). ()
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Definition . [] Let F : X ×X → X. We say that (x, y) ∈ X ×X is a coupled fixed point
of F if F(x, y) = x and F(y,x) = y.

Definition . (Mixed g-monotone property []) Let (X,�) be a partially ordered set
and F : X × X → X. We say that the mapping F has the mixed g-monotone property if F
is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in
its second argument. That is, for any x, y ∈ X,

x,x ∈ X, gx � gx ⇒ F(x, y) � F(x, y)

and

y, y ∈ X, gy � gy ⇒ F(x, y)
 F(x, y).

Definition . [] Let F : X × X → X and g : X → X. We say that (x, y) ∈ X × X is a
coupled coincidence point of F and g if F(x, y) = gx and F(y,x) = gy.

3 Coupled fixed point results
Let � denote all functions φ : [,∞)→ [,∞) which satisfy

(φ) φ is continuous and non-decreasing,
(φ) φ(t) =  if and only if t = ,
(φ) φ(t + s)≤ φ(t) + φ(s), ∀t, s ∈ [,∞),
(φ) φ(αx)≤ αφ(x) for α ∈ (,∞),

and let 	 denote all functions ψ : [,∞) → (,∞) which satisfy limt→r ψ(t) >  for all
r >  and limt→+ ψ(t) = .
Now, we state and prove our main result.

Theorem . Let (X,�) be a partially ordered set and suppose there is a partial metric p
on X such that (X,d) is a complete partial metric space. Let F : X × X → X be a mapping
having the mixed monotone property on X. Assume that there exist two elements x, y ∈ X
with

x � F(x, y) and y 
 F(y,x).

Suppose there exist φ ∈ � and ψ ∈ 	 such that

φ
(
p
(
F(x, y),F(u, v)

)) ≤ 

φ
(
p(x,u) + p(y, v)

)
–ψ

(
p(x,u) + p(y, v)



)
()

for all x, y,u, v ∈ X with x
 u and y � v. Suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn � x, for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn, for all n.
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Then there exist x, y ∈ X such that

x = F(x, y) and y = F(y,x),

that is, F has a coupled fixed point in X.

Proof Let x, y ∈ X be such that x � F(x, y) and y 
 F(y,x).We construct sequences
{xn} and {yn} in X as

xn+ = F(xn, yn) and yn+ = F(yn,xn) for all n≥ . ()

We are to prove that

xn � xn+ for all n≥  ()

and

yn 
 yn+ for all n≥ . ()

For this we shall use mathematical induction.
Let n = . Since x � F(x, y) and y 
 F(y,x) and as x = F(x, y) and y = F(y,x),

we have x � x and y 
 y. Thus () and () hold for n = .
Suppose now that () and () hold for some fixed n ≥ , then, since xn � xn+ and yn 


yn+, we have

xn+ = F(xn+, yn+) 
 F(xn, yn+) 
 F(xn, yn) = xn+ ()

and

yn+ = F(yn+,xn+) � F(yn,xn+)� F(yn,xn) = yn+. ()

Using () and (), we get

xn+ � xn+ and yn+ 
 yn+.

Hence, by the inductionmethod we conclude that () and () hold for all n≥ . Therefore,

x � x � x � · · · � xn � xn+ � · · · ()

and

y 
 y 
 y 
 · · · 
 yn 
 yn+ 
 · · · . ()

Since xn 
 xn– and yn � yn–, using () and (), we have

φ
(
p(xn+,xn)

)
= φ

(
p
(
F(xn, yn),F(xn–, yn–)

))

≤ 

φ
(
p(xn,xn–) + p(yn, yn–)

)
–ψ

(
p(xn,xn–) + p(yn, yn–)



)
. ()
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Similarly, since yn– 
 yn and xn– � xn, using () and (), we also have

φ
(
p(yn, yn+)

)
= φ

(
p
(
F(yn–,xn–),F(yn,xn)

))

≤ 

φ
(
p(yn–, yn) + p(xn–,xn)

)
–ψ

(
p(yn–, yn) + p(xn–,xn)



)
. ()

Using () and (), we have

φ
(
p(xn+,xn)

)
+ φ

(
p(yn+, yn)

) ≤ φ
(
p(xn,xn–) + p(yn, yn–)

)

– ψ
(
p(xn,xn–) + p(yn, yn–)



)
. ()

By property (φ), we have

φ
(
p(xn+,xn) + p(yn+, yn)

) ≤ φ
(
p(xn+,xn)

)
+ φ

(
p(yn+, yn)

)
. ()

Using () and (), we have

φ
(
p(xn+,xn) + p(yn+, yn)

) ≤ φ
(
p(xn,xn–) + p(yn, yn–)

)

– ψ
(
p(xn,xn–) + p(yn, yn–)



)
, ()

which implies, since ψ is a non-negative function,

φ
(
p(xn+,xn) + p(yn+, yn)

) ≤ φ
(
p(xn,xn–) + p(yn, yn–)

)
.

Using the fact that φ is non-decreasing, we get

p(xn+,xn) + p(yn+, yn) ≤ p(xn,xn–) + p(yn, yn–).

Set

δn = p(xn+,xn) + p(yn+, yn).

Now, we show that δn →  as n → ∞. It is clear that the sequence {δn} is decreasing.
Therefore, there is some δ ≥  such that

lim
n→∞ δn = lim

n→∞
[
p(xn+,xn) + p(yn+, yn)

]
= δ. ()

We shall prove that δ = . Suppose, to the contrary, that δ > . Then taking the limit as
n → ∞ (equivalently, δn → δ) of both sides of () and remembering limt→r ψ(t) >  for
all r >  and φ is continuous, we have

φ(δ) = lim
n→∞φ(δn) ≤ lim

n→∞

[
φ(δn–) – ψ

(
δn–



)]

= φ(δ) –  lim
δn–→δ

ψ

(
δn–



)
< φ(δ),
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a contradiction. Thus δ = , that is,

lim
n→∞ δn = lim

n→∞
[
p(xn+,xn) + p(yn+, yn)

]
= . ()

Let

δsn = ps(xn,xn+) + ps(yn, yn+)

for all n ∈N. From the definition of ps, it is clear that δsn ≤ δn for all n ∈N. Using (), we
get

lim
n→+∞ δsn = lim

n→+∞ps(xn,xn+) + ps(yn, yn+) = .

Now, we prove that {xn} and {yn} are Cauchy sequences in the partial metric space (X,p).
From Lemma ., it is sufficient to prove that {xn} and {yn} are Cauchy sequences in the
metric space (X,ps). Suppose, to the contrary, that at least one of {xn} or {yn} is not a
Cauchy sequence. Then there exists an ε >  for which we can find subsequences {xn(k)},
{xm(k)} of {xn} and {yn(k)}, {ym(k)} of {yn} with n(k) >m(k)≥ k such that

ps(xn(k),xm(k)) + ps(yn(k), ym(k)) ≥ ε. ()

Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) >m(k) and satisfying (). Then

ps(xn(k)–,xm(k)) + ps(yn(k)–, ym(k)) < ε. ()

Using (), () and the triangle inequality, we have

ε ≤ rsk := ps(xn(k),xm(k)) + ps(yn(k), ym(k))

≤ ps(xn(k),xn(k)–) + ps(xn(k)–,xm(k)) + ps(yn(k), yn(k)–) + ps(yn(k)–, ym(k))

≤ ps(xn(k),xn(k)–) + ps(yn(k), yn(k)–) + ε.

Letting k → ∞ and using (), we get

lim
k→∞

rsk = lim
k→∞

[
ps(xn(k),xm(k)) + ps(yn(k), ym(k))

]
= ε. ()

By the triangle inequality,

rsk = ps(xn(k),xm(k)) + ps(yn(k), ym(k))

≤ ps(xn(k),xn(k)+) + ps(xn(k)+,xm(k)+) + ps(xm(k)+,xm(k))

+ ps(yn(k), yn(k)+) + ps(yn(k)+, ym(k)+) + ps(ym(k)+, ym(k))

= δsn(k) + δsm(k) + ps(xn(k)+,xm(k)+) + ps(yn(k)+, ym(k)+).

http://www.fixedpointtheoryandapplications.com/content/2012/1/173
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Using the properties of φ, we have

φ
(
rsk

) ≤ φ
(
δsn(k) + δsm(k) + ps(xn(k)+,xm(k)+) + ps(yn(k)+, ym(k)+)

)
≤ φ

(
δsn(k) + δsm(k)

)
+ φ

(
ps(xn(k)+,xm(k)+)

)
+ φ

(
ps(yn(k)+, ym(k)+)

)
. ()

Now, let

rk = p(xn(k),xm(k)) + p(yn(k), ym(k)).

By the definition of rsk , we have

rsk = ps(xn(k),xm(k)) + ps(yn(k), ym(k))

= p(xn(k),xm(k)) – p(xn(k),xn(k)) – p(xm(k),xm(k))

+ p(yn(k), ym(k)) – p(yn(k), yn(k)) – p(ym(k), ym(k))

= rk – p(xn(k),xn(k)) – p(xm(k),xm(k))

– p(yn(k), yn(k)) – p(ym(k), ym(k)). ()

In view of property (p) and (), we have

lim
k→+∞

p(xn(k),xn(k)) = lim
k→+∞

p(xm(k),xm(k))

= lim
k→+∞

p(yn(k), yn(k))

= lim
k→+∞

p(ym(k), ym(k)) = .

Therefore, letting k → +∞ in () and using (), we get

lim
k→+∞

rk =
ε


.

Since xn(k) 
 xm(k) and yn(k) � ym(k), we have

φ
(
ps(xn(k)+,xm(k)+)

) ≤ φ
(
p(xn(k)+,xm(k)+)

)
≤ φ

(
p(xn(k)+,xm(k)+)

)
= φ

(
p
(
F(xn(k), yn(k))

)
,p

(
F(xm(k), ym(k))

))
≤ φ

(
p(xn(k),xm(k)) + p(yn(k), ym(k))

)

– ψ
(
p(xn(k),xm(k)) + p(yn(k), ym(k))



)

= φ(rk) – ψ
(
rk


)
. ()

Similarly,

φ
(
ps(yn(k)+, ym(k)+)

) ≤ φ
(
p(yn(k)+, ym(k)+)

)
≤ φ

(
p(yn(k)+, ym(k)+)

)

http://www.fixedpointtheoryandapplications.com/content/2012/1/173
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= φ
(
p
(
F(yn(k),xn(k))

)
,p

(
F(ym(k),xm(k))

))
≤ φ

(
p(yn(k), ym(k)) + p(xn(k),xm(k))

)

– ψ
(
p(yn(k), ym(k)) + p(xn(k),xm(k))



)

= φ(rk) – ψ
(
rk


)
. ()

Adding () and (), we get

φ
(
ps(xn(k)+,xm(k)+)

)
+ φ

(
ps(yn(k)+, ym(k)+)

) ≤ φ(rk) – ψ

(
rk


)
.

Thus, from (), we have

φ
(
rsk

) ≤ φ
(
δsn(k) + δsm(k)

)
+ φ(rk) – ψ

(
rk


)
.

Letting k → +∞, and using the properties of φ and ψ together with the inequalities es-
tablished above, we have

φ(ε) ≤ φ() + φ
(

ε



)
–  lim

k→+∞
ψ

(
rk


)
≤ φ(ε) –  lim

rk
 → ε



ψ

(
rk


)

≤ φ(ε) –  lim
t→ ε


ψ(t) < φ(ε), ()

which is a contradiction. Therefore, {xn} and {yn} are Cauchy sequences in the complete
metric space (X,ps). Thus, there are x, y ∈ X such that

lim
n→+∞ps(xn,x) = lim

n→+∞ps(yn, y) = , ()

which implies that

lim
n→+∞F(xn, yn) = lim

n→+∞xn = x,

lim
n→+∞F(yn,xn) = lim

n→+∞ yn = y.
()

Therefore, from Lemma ., using () and the property (p), we have

p(x,x) = lim
n→+∞p(xn,x) = lim

n→+∞p(xn,xn) = , ()

p(y, y) = lim
n→+∞p(yn, y) = lim

n→+∞p(yn, yn) = . ()

We now show that x = F(x, y) and y = F(y,x). Suppose that the assumption (a) holds.
As F is continuous at (x, y), so for any ε >  , there exists δ >  such that if (u, v) ∈ X ×X

with ν((x, y), (u, v)) < ν((x, y), (x, y)) + δ = δ, meaning that

p(x,u) + p(y, v) < p(x,x) + p(y, y) + δ = δ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/173
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because p(x,x) = p(y, y) = . Then we have

p
(
F(x, y),F(u, v)

)
< p

(
F(x, y),F(x, y)

)
+

ε


.

Since limn→+∞ p(xn,x) = limn→+∞ p(yn, y) =  , for η =min( δ
 ,

ε
 ) > , there exist n,m ∈

N such that, for n≥ n,m≥ m,

p(xn,x) < η and p(ym, y) < η.

Then for n ∈N, n≥ max(n,m), we have p(xn,x) + p(yn, y) < η < δ, so we get

p
(
F(x, y),F(xn, yn)

)
< p

(
F(x, y),F(x, y)

)
+

ε


. ()

Further, for any n≥ max(n,m), by using (), we have

p
(
F(x, y),x

) ≤ p
(
F(x, y),xn+

)
+ p(xn+,x)

= p
(
F(x, y),F(xn, yn)

)
+ p(xn+,x)

≤ p
(
F(x, y),F(x, y)

)
+

ε


+ η

≤ p
(
F(x, y),F(x, y)

)
+ ε. ()

On utilizing p(x,x) = p(y, y) =  in (), we get

φ
(
p
(
F(x, y),F(x, y)

)) ≤ 

φ
(
p(x,x) + p(y, y)

)
–ψ

(
p(x,x) + p(y, y)



)

=


φ() –ψ() = –ψ()≤ ,

which implies p(F(x, y),F(x, y)) = . Hence, for any ε > , () implies that

p
(
F(x, y),x

)
< ε.

Thus, we have F(x, y) = x. Similarly, we can show that F(y,x) = y.
Finally, suppose that (b) holds. By (), () and (), we have {xn} is a non-decreasing

sequence, xn → x and {yn} is a non-increasing sequence, yn → y as n→ ∞. Hence, by the
assumption (b), we have for all n≥ ,

xn � x and yn 
 y. ()

By property (p), we have

p
(
x,F(x, y)

) ≤ p(x,xn+) + p
(
xn+,F(x, y)

)
= p(x,xn+) + p

(
F(xn, yn),F(x, y)

)
.

Therefore,

φ
(
p
(
x,F(x, y)

)) ≤ φ
(
p(x,xn+)

)
+ φ

(
p
(
F(xn, yn),F(x, y)

))

≤ φ
(
p(x,xn+)

)
+


φ
(
p(xn,x) + p(yn, y)

)
–ψ

(
p(xn,x) + p(yn, y)



)
.
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Taking limit as n → ∞ in the above inequality, using () and () and the properties
of φ and ψ , we get φ(p(x,F(x, y))) = , which implies p(x,F(x, y)) = . Hence, x = F(x, y).
Similarly, we can show that y = F(y,x). Thus F has a coupled fixed point. �

Remark . Note that the property (φ) is utilized only to get the inequality (). Thus
the conclusion of Theorem . holds if we drop property (φ) and assume the additivity
in (φ), i.e., φ(t + s) = φ(t) + φ(s), ∀t, s ∈ [,∞).

As an immediate consequence of the above theorem, by taking φ(t) = t, we have:

Corollary . Let (X,�) be a partially ordered set and suppose there is a partial metric p
on X such that (X,d) is a complete partial metric space. Let F : X × X → X be a mapping
having the mixed monotone property on X. Assume that there exist two elements x, y ∈ X
with

x � F(x, y) and y 
 F(y,x).

Suppose there exist φ ∈ � and ψ ∈ 	 such that

p
(
F(x, y),F(u, v)

) ≤ 

(
p(x,u) + p(y, v)

)
–ψ

(
p(x,u) + p(y, v)



)

for all x, y,u, v ∈ X with x
 u and y � v. Suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

Then there exist x, y ∈ X such that

x = F(x, y) and y = F(y,x),

that is, F has a coupled fixed point in X.

Moreover, if we take ψ(t) = –k
 t where k ∈ [, ) in Corollary ., we get:

Corollary . Let (X,�) be a partially ordered set and suppose there is a partial metric p
on X such that (X,d) is a complete partial metric space. Let F : X × X → X be a mapping
having the mixed monotone property on X. Assume that there exist two elements x, y ∈ X
with

x � F(x, y) and y 
 F(y,x).

Suppose there exist φ ∈ � and ψ ∈ 	 such that

p
(
F(x, y),F(u, v)

) ≤ k

(
p(x,u) + p(y, v)

)

for all x, y,u, v ∈ X with x
 u and y � v. Suppose either
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(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

Then there exist x, y ∈ X such that

x = F(x, y) and y = F(y,x),

that is, F has a coupled fixed point in X.

Recently, Alotaibi andAlsulami [] extended Luong and Thuan’s []main result to cou-
pled coincidences using the notion of compatible maps. Here we extend these results to
partial metric spaces without the condition of compatible maps.We shall need the follow-
ing lemma.

Lemma. (see [–]) Let X be a nonempty set and g : X → X be amapping.Then there
exists a subset E ⊆ X such that g(E) = g(X) and g : E → X is one-to-one.

Theorem . Let (X,�) be a partially ordered set and suppose there is a partial metric
p on X such that (X,d) is a partial metric space. Let g : X → X and F : X × X → X be a
mapping having the mixed g-monotone property on X such that there exist two elements
x, y ∈ X with

gx � F(x, y) and gy 
 F(y,x).

Suppose there exist φ ∈ � and ψ ∈ 	 such that

φ
(
p
(
F(x, y),F(u, v)

)) ≤ 

φ
(
p(gx, gu) + p(gy, gv)

)
–ψ

(
p(gx, gu) + p(gy, gv)



)
()

for all x, y,u, v ∈ X with gx
 gu and gy � gv. Suppose F(X×X) ⊆ g(X), g is continuous and
g(X) is complete and also suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

Then there exist x, y ∈ X such that

gx = F(x, y) and gy = F(y,x),

that is, F and g have a coupled coincidence point in X.

Proof Using Lemma ., there exists E ⊆ X such that g(E) = g(X) and g : E → X is one-to-
one. We define a mapping G : g(E)× g(E)→ X by

G(gx, gy) = F(x, y), ()
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for all gx, gy ∈ g(E). As g is one-to-one on g(E), so G is well defined. Thus, it follows from
() and () that

φ
(
p
(
G(gx, gy),G(gu, gv)

))
= φ

(
p
(
F(x, y),F(u, v)

))

≤ 

φ
(
p(gx, gu) + p(gy, gv)

)
–ψ

(
p(gx, gu) + p(gy, gv)



)
()

for all gx, gy, gu, gv ∈ g(X) for which g(x) � g(u) and g(y) 
 g(v). Since F has the mixed
g-monotone property, for all gx, gy ∈ g(X),

gx, gx ∈ g(X), g(x) � g(x) implies G(gx, gy) � G(gx, gy) ()

and

gy, gy ∈ g(X), g(y)� g(y) implies G(gx, gy) 
 G(gx, gy), ()

which implies that G has the mixed monotone property. Also, there exist x, y ∈ X such
that

g(x)� F(x, y) and g(y) 
 F(y,x).

This implies there exist gx, gy ∈ g(X) such that

g(x)� G(gx, gy) and g(y) 
 G(gy, gx).

Suppose that the assumption (a) holds. SinceF is continuous,G is also continuous.Using
Theorem . with themappingG, it follows thatG has a coupled fixed point (u, v) ∈ g(X)×
g(X).
Suppose that the assumption (b) holds. We conclude similarly that the mapping G has

a coupled fixed point (u, v) ∈ g(X) × g(X). Finally, we prove that F and g have a coupled
coincidence point. Since (u, v) is a coupled fixed point of G, we get

u =G(u, v) and v =G(v,u). ()

Since (u, v) ∈ g(X)× g(X), there exists a point (u, v) ∈ X ×X such that

u = gu and v = gv. ()

It follows from () and () that

gu =G(gu, gv) and gv =G(gv, gu). ()

Combining () and (), we get

gu = F(u, v) and gv = F(v,u). ()
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Thus, (u, v) is a required coupled coincidence point of F and g . This completes the
proof. �

The following coupled coincidence point theorems are obtained respectively from
Corollaries . and . in a similar way as Theorem . from Theorem ..

Theorem . Let (X,�) be a partially ordered set, and suppose there is a partial metric
p on X such that (X,p) is a partial metric space. Let g : X → X and F : X × X → X be a
mapping having the mixed g-monotone property on X such that there exist two elements
x, y ∈ X with

gx � F(x, y) and gy 
 F(y,x).

Suppose there exist φ ∈ � and ψ ∈ 	 such that

φ
(
p
(
F(x, y),F(u, v)

)) ≤ 

(
p(gx, gu) + p(gy, gv)

)
–ψ

(
p(gx, gu) + p(gy, gv)



)
()

for all x, y,u, v ∈ X with gx
 gu and gy � gv. Suppose F(X×X) ⊆ g(X), g is continuous and
g(X) is complete and also suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

Then there exist x, y ∈ X such that

gx = F(x, y) and gy = F(y,x),

that is, F and g have a coupled coincidence point in X.

Theorem . Let (X,�) be a partially ordered set and suppose there is a partial metric p
on X such that (X,d) is a complete partialmetric space.Let g : X → X and F : X×X → X be
a mapping having the mixed g-monotone property on X such that there exist two elements
x, y ∈ X with

gx � F(x, y) and gy 
 F(y,x).

Suppose there exist φ ∈ � and ψ ∈ 	 such that

φ
(
p
(
F(x, y),F(u, v)

)) ≤ k

(
p(gx, gu) + p(gy, gv)

)
()

for all x, y,u, v ∈ X with gx
 gu and gy � gv. Suppose F(X×X) ⊆ g(X), g is continuous and
g(X) is complete and also suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.
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Then there exist x, y ∈ X such that

gx = F(x, y) and gy = F(y,x),

that is, F and g have a coupled coincidence point in X.

Remark . From the proof of Theorem . we conclude that Theorems ., . and .
in [] hold without the compatibility of the maps (F , g).
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