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Abstract
In this paper, we continue the study of contractive conditions for mappings in
complete partial metric spaces. Concretely, we present fixed point results for weakly
contractive and weakly Kannan mappings in such a way that the classical metric
counterpart results are retrieved as a particular case. Special attention to the cyclical
case is paid. Moreover, the well-posedness of the fixed point problem associated to
weakly (cyclic) contractive and weakly (cyclic) Kannan mappings is discussed, and it is
shown that these contractive mappings are both good Picard operators and special
good Picard operators.

1 Introduction
Throughout this paper, the letters R, R+, N and Z+ will denote the set of real numbers,
the set of nonnegative real numbers, the set of positive integer numbers and the set of
nonnegative integer numbers, respectively.
The celebrated fixed point theorem of Banach asserts the following.

Theorem  If (X,d) is a complete metric space and f : X → X is a mapping such that

d
(
f (x), f (y)

) ≤ αd(x, y) (.)

for all x, y ∈ X and some α ∈ [, [, then f has a unique fixed point x∗ ∈ X. Moreover, the
Picard sequence of iterates {f n(x)}n∈N converges, for every x ∈ X, to x∗.

In [], Kannan obtained the following extension of the aforementioned fixed point the-
orem of Banach to a larger class of mappings, now known as Kannan mappings.

Theorem  Let (X,d) be a complete metric space and let f : X → X be a mapping such
that

d
(
f (x), f (y)

) ≤ α


[
d
(
x, f (x)

)
+ d

(
y, f (y)

)]
(.)

for all x, y ∈ X and some α ∈ [, [, then f has a unique fixed point x∗ ∈ X. Moreover, the
Picard sequence of iterates {f n(x)}n∈N converges, for every x ∈ X, to x∗.

Another extensions of Banach’s fixed point theorem were given by Kirk, Srinivasan and
Veeramani in []. They obtained general fixed point theorems for mappings satisfying
cyclical contractive conditions. Among other results, the following one was proven in [].
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Theorem  Let A, . . . ,Am be a collection of nonempty closed subsets of a complete metric
space (X,d) (m ∈ N and m > ). Suppose that there exists α ∈ [, [ such that a mapping
f :

⋃m
i=Ai → ⋃m

i=Ai satisfies the following conditions:
() f (Ai)⊆ Ai+ for all  ≤ i≤ m, where Am+ = A;
() d(f (x), f (y))≤ αd(x, y) for all x ∈ Ai, y ∈ Ai+ and  ≤ i≤ m.

Then f has a unique fixed point x∗ ∈ ⋂m
i=Ai and the Picard sequence of iterates {f n(x)}n∈N

converges, for every x ∈ X, to x∗.

Since Kirk, Srinivasan and Veeramani gave the aforementioned generalizations, inten-
sive research on this topic has provided awide number of works aboutmappings satisfying
cyclical contractive conditions in metric spaces (see [] for recent and complete bibliogra-
phy). In particular, in [] the following fixed point theorem,which generalizes the aforesaid
Kannan fixed point theorem (Theorem ), for Kannan cyclical contractive mappings was
proved.

Theorem  Let A, . . . ,Am be a collection of nonempty closed subsets of a complete metric
space (X,d) (m ∈ N and m > ). Suppose that there exists α ∈ [, [ such that a mapping
f :

⋃m
i=Ai → ⋃m

i=Ai satisfies the following conditions:
() f (Ai)⊆ Ai+ for all  ≤ i≤ m, where Am+ = A;
() d(f (x), f (y))≤ α

 [d(x, f (x)) + d(y, f (y))] for all x ∈ Ai, y ∈ Ai+ and  ≤ i≤ m.
Then f has a unique fixed point x∗ ∈ ⋂m

i=Ai and the Picard sequence of iterates {f n(x)}n∈N
converges, for every x ∈ X, to x∗.

Recently, a large number of fixed point results in the metric context, including The-
orems , ,  and , have been extended to the framework of partial metric spaces. Let
us recall that the notion of partial metric space was introduced by Matthews in  as
a part of the study of denotational semantics of dataflow networks (see [] and []) and
that, thenceforth, partial metric spaces play an important role in constructing models in
the theory of computation (for a fuller treatment we refer the reader to [–] and []).
Let us recall some pertinent definitions of partial metric spaces and some of their prop-

erties which can be found in [].

Definition  A partial metric on a nonempty set X is a function p : X×X → R+ such that
for all x, y, z,∈ X:

(p) x = y⇔ p(x,x) = p(x, y) = p(y, y),
(p) p(x,x)≤ p(x, y),
(p) p(x, y) = p(y,x),
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial
metric on X.
Note that from the preceding definition, concretely from statements (p) and (p), it

follows that p(x, y) =  implies that x = y. However, in general, the fact that x = y does
not necessarily imply that p(x, y) = . A typical example of this situation is provided by
the partial metric space (R+,pmax), where the function pmax :R+ ×R+ → R+ is defined by
pmax(x, y) =max{x, y} for all x, y ∈R+.

http://www.fixedpointtheoryandapplications.com/content/2012/1/175
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Other examples of partial metric spaces which are interesting from a computational
point of view may be found in [] and []. According to [], each partial metric p on X
generates a T topology τ (p) on X which has as a base the family of open p-balls {Bp(x, ε) :
x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x,x) + ε} for all x ∈ X and ε > . From
the preceding fact it immediately follows that a sequence {xn}n∈N in a partial metric space
(X,p) converges to a point x ∈ X if and only if p(x,x) = limn→∞ p(x,xn).
Following [], a sequence {xn}n∈N in a partial metric space (X,p) is called a Cauchy se-

quence if limn,m→∞ p(xn,xm) exists and is finite. Moreover, a partial metric space (X,p) is
said to be complete if every Cauchy sequence {xn}n∈N in X converges, with respect to τ (p),
to a point x ∈ X such that p(x,x) = limn,m→∞ p(xn,xm). An easy, but illustrative, example of
complete partial metric space is given by the pair (R+,pmax).
It is known (see []) that if p is a partial metric on X, then the function ps : X ×X →R+

given for all x, y ∈ X by

ps(x, y) = p(x, y) – p(x,x) – p(y, y)

is a metric on X.
Taking into account the preceding interesting relationship between partial metrics and

metrics, the following useful remarks were introduced in [] (compare []).
If a sequence converges in a partial metric space (X,p) with respect to τ (ps), then it

converges with respect to τ (p). Of course, the converse is not true.
A sequence {xn}n∈N in a partial metric space (X,p) is Cauchy if and only if it is a Cauchy

sequence in the metric space (X,ps). Moreover, a partial metric space (X,p) is complete if
and only if the metric space (X,ps) is complete. Furthermore, given a sequence {xn}n∈N in
a partial metric space (X,p) and x ∈ X, one has that

lim
n→∞ps(x,xn) =  ⇔ p(x,x) = lim

n→∞p(x,xn) = lim
n,m→∞p(xn,xm).

In [], Matthews obtained a generalization of Banach’s fixed point theorem for partial
metric spaces that can be stated as follows.

Theorem  Let (X,p) be a complete partial metric space and let f : X → X be a mapping
such that there exists α ∈ [, [ satisfying

p
(
f (x), f (y)

) ≤ αp(x, y),

for all x, y ∈ X. Then f has a unique fixed point x∗ ∈ X. Moreover, p(x∗,x∗) =  and the
Picard sequence of iterates {f n(x)}n∈N converges with respect to τ (ps), for every x ∈ X, to x∗.

As noted above, an intense research activity on fixed point results in partial metric
spaces has been developed in the past years. Thus, a large number of fixed point results in
the metric framework have been extended to the partial metric case in such references as
[, –] and [].
Inspired by the interest aroused by fixed point theory in partial metric spaces, in the

present paper, we focus our study on the possibility of extending some metric fixed point
theorems for the so-called weakly contractive mappings and weakly Kannan mappings to
the context of partial metric spaces.

http://www.fixedpointtheoryandapplications.com/content/2012/1/175
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Let us recall, for the sake of completeness, the both aforementionednotions in themetric
framework.

Definition  [] Let (X,d) be a metric space. A mapping f : X → X is said to be weakly
contractive provided that

d
(
f (x), f (y)

) ≤ α(x, y)d(x, y)

for all x, y ∈ X, where the function α : X ×X → [, [ holds, for every  < a ≤ b, that

θ (a,b) = sup
{
α(x, y) : a ≤ d(x, y) ≤ b

}
< .

Observe that the contractive condition in Definition , due to Dugundji and Granas, is
mainly based on replacing the constant α in (.) (see Theorem ) by the function α.

Definition  [] Let (X,d) be a metric space. A mapping f : X → X is said to be weakly
Kannan if there exists α : X × X → [, [ which satisfies for every  < a ≤ b and for all
x, y ∈ X that

θ (a,b) = sup
{
α(x, y) : a ≤ d(x, y) ≤ b

}
< 

and

d
(
f (x), f (y)

) ≤ α(x, y)


[
d
(
x, f (x)

)
+ d

(
y, f (y)

)]
.

Observe that the class of mappings, introduced by Ariza-Ruiz and Jimenez-Melando, in
Definition  is larger than the class of Kannanmappings (i.e., mappings satisfying inequal-
ity (.) in Theorem ) such as Example . in [] shows.
According to the exposed notions, the following fixed point theorems were proved in

[] and [], respectively.

Theorem  Let (X,d) be a complete metric space. If f : X → X is a weakly contractive
mapping, then f has a unique fixed point x∗ and the Picard sequence of iterates {f n(x)}n∈N
converges, for every x ∈ X, to x∗.

Theorem  Let (X,d) be a complete metric space. If f : X → X is a weakly Kannan map-
ping, then f has a unique fixed point x∗ and the Picard sequence of iterates {f n(x)}n∈N con-
verges, for every x ∈ X, to x∗.

As we have mentioned before, we are interested in extending metric fixed point theo-
rems for the so-called weakly contractive mappings and weakly Kannan mappings to the
context of partial metric spaces. In particular, and in the light of the both previous results,
our objective in this paper is threefold. We introduce the notions of a weakly contractive
mapping and a weakly Kannan mapping in the partial metric framework, and we present
a partial metric version of Theorems  and  in such a way that both aforesaid results
are retrieved as a particular case when the partial metric is, in fact, a metric. Moreover,
motivated in part by the fact that we have not come across a version of Theorems  and 
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for the cyclical case in the literature, we prove a cyclical version of both preceding results
in the partial metric context providing, as a particular case of our new results, the not
found cyclical version of Theorems  and  for the classical case when we consider again
that the partial metric is a metric. Finally, we show the well-posedness of our new fixed
point results in the sense of [] (and also []) and, in addition, we prove that the new
contractive mappings are good Picard operators and special Picard operators in the spirit
of Rus ([]).

2 Main results
2.1 Weakly contractive and weakly Kannanmappings in complete partial metric

spaces: new fixed point results
In this subsection, we prove an extension of Theorems  and  in complete partial metric
spaces. To do this, we first extend the notions of aweakly contractivemapping and aweakly
Kannan mapping to our new context.

Definition  Let (X,p) be a partial metric space. A mapping f : X → X is said to be
weakly contractive provided that there exists α : X × X → [, [ such that for every  ≤
a ≤ b,

θ (a,b) = sup
{
α(x, y) : a ≤ p(x, y) ≤ b

}
< ,

and for all x, y ∈ X,

p
(
f (x), f (y)

) ≤ α(x, y)p(x, y).

Notice that if there exists α ∈ [, [ such that the function α given in Definition  holds
α(x, y) = α for all x, y ∈ X, then we retrieve, as a particular case of our notion, the contrac-
tive one given by Matthews in [].

Definition  Let (X,p) be a partial metric space. A mapping f : X → X is said to be
weakly Kannan if there exists α : X×X → [, [ which satisfies for every  ≤ a≤ b and for
all x, y ∈ X that

θ (a,b) = sup
{
α(x, y) : a ≤ p(x, y) ≤ b

}
< 

and

p
(
f (x), f (y)

) ≤ α(x, y)


[
p
(
x, f (x)

)
+ p

(
y, f (y)

)]
.

Of course when the function α satisfies that there exists α ∈ [, [ such that α(x, y) = α

for all x, y ∈ X, we say that the mapping f is a Kannan mapping.

Observe that when the partial metric is exactly a metric, we obtain as a particular case
of our new notions those given in Definitions  and  and in Theorem .
The next example shows that there exist weakly contractive mappings in the sense of

Definition  that are not weakly contractive mappings in the sense of Definition .

http://www.fixedpointtheoryandapplications.com/content/2012/1/175
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Example  Let pmax|[,] represent the restriction of the partial metric pmax onR+ (intro-
duced in Section ) to the set [, ]. Consider the partial metric space ([, ],pmax|[,]).
Define the function f : [, ]→ [, ] by

f (x) =
x



for all x ∈ [, ], and the function α : [, ]× [, ] → [, [ by

α(x, y) =



for all x, y ∈ [, ].
It is immediate to check that the function α holds the requirements in Definition , that

is, θ (a,b) <  for every  ≤ a ≤ b.
It is routine to verify that the function f is a weakly contractive function, i.e., that

pmax|[,]
(
f (x), f (y)

) ≤ α(x, y)pmax|[,](x, y)

for all x, y ∈ [, ]. Observe that, in fact, the function f is contractive in the sense of
Matthews (see Theorem ) since α(x, y) = 

 for all x, y ∈ [, ].
However, the function f is not a weakly contractive function with respect to the metric

pmax|s[,] (i.e., that f is not weakly contractive with respect to the metric pmax|s[,] for any
choice of a function α satisfying all the requirements in Definition ). Indeed, assume
for the purpose of contradiction that there exists α : [, ] × [, ] → [, [ satisfying the
requirements in Definition  such that

∣∣∣∣x



–
y



∣∣∣∣ ≤ α(x, y)|x – y|

for all x, y ∈ [, ] (note that psmax(x, y) = |x – y| for all x, y ∈ [, ]). Then we obtain that

x + y


≤ α(x, y)

for all x, y ∈ [, ]. Whence we deduce that  ≤ α(, ) < , which provides a contradiction.

In the following example, we show that there exist mappings that are weakly Kannan
mappings in the sense of Definition  that are not weakly Kannan mappings in the sense
of Definition .

Example  Consider the partial metric space ([, ],pmax|[,]) and the function f :
[, ] → [, ] given by

f (x) =
x

x + 

for all x ∈ [, ]. Define the function α : [, ]× [, ] → [, [ by

α(x, y) =

⎧⎨
⎩

pmax|[,](f (x),f (y))
pmax|[,](x,y) if max{x, y} 	= ,

 if max{x, y} = 

http://www.fixedpointtheoryandapplications.com/content/2012/1/175
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for all x, y ∈ [, ]. It is clear that α(x, y) ≤ 
 for all x, y ∈ [, ]. Whence we immediately

deduce that the function α holds all the requirements in Definition , i.e., θ (a,b) <  for
every  ≤ a ≤ b.Moreover, it is a simplematter to show that f is aweaklyKannanmapping,
i.e.,

pmax|[,]
(
f (x), f (y)

) ≤ α(x, y)


[
pmax|[,]

(
x, f (x)

)
+ pmax|[,]

(
y, f (y)

)]

for all x, y ∈ [, ]. Nevertheless, the function f is not aweaklyKannanmapping in the sense
of Definition  with respect to the metric pmax|s[,] (i.e., that f is not weakly Kannan with
respect to themetric pmax|s[,] for any choice of a function α satisfying all the requirements
in Definition ). To see this, take x =  and y = . Assume for the purpose of contradiction
that there exists α : [, ]× [, ]→ [, [ which holds all the requirements in Definition .
Then



=

∣∣f () – f ()
∣∣ ≤ α(, )


[∣∣ – f ()

∣∣ + ∣∣ – f ()
∣∣] = α(, )


.

It follows that ≤ α(, ), which contradicts the fact that α(x, y) ≤  for all x, y ∈ [, ].

In order to present the announced partialmetric versions ofTheoremandTheorem,
we prove the following fixed point resultwherewe introduce a contractive conditionwhich
mixes the contractive conditions in Definitions  and .

Theorem  Let (X,p) be a complete partial metric space and let f : X → X be a mapping
such that there exists α : X ×X → [, ] with

θ (a,b) = sup
{
α(x, y) : a ≤ p(x, y) ≤ b

}
< 

for every ≤ a ≤ b, and such that

p
(
f (x), f (y)

) ≤ α(x, y)max

{
p(x, y),



[
p
(
x, f (x)

)
+ p

(
y, f (y)

)]}
(.)

for all x, y ∈ X. Then f has a unique fixed point x∗ ∈ X and the Picard sequence of iter-
ates {f n(x)}n∈N converges with respect to τ (ps), for every x ∈ X, to x∗. Moreover, p(x∗,
x∗) = .

Proof Consider x ∈ X and define the Picard sequence of iterates by

xn = f (xn–) = f n(x) (n ∈ N).

Assume xn 	= xn+ for all n ∈ N because otherwise we have the existence of a fixed point
guaranteed. By (.), we have

p(xn,xn+) = p
(
f (xn–), f (xn)

)
≤ α(xn–,xn)M(xn–,xn),

http://www.fixedpointtheoryandapplications.com/content/2012/1/175
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where

M(xn–,xn) = max

{
p(xn–,xn),



[
p
(
xn–, f (xn–)

)
+ p

(
xn, f (xn)

)]}

= max

{
p(xn–,xn),



[
p(xn–,xn) + p(xn,xn+)

]}
.

Now, we prove that for all n ∈N, the following inequality holds:

p(xn,xn+) ≤ α(xn–,xn)p(xn–,xn). (.)

We consider the following two cases:
Case . IfM(xn–,xn) = p(xn–,xn), then

p(xn,xn+) ≤ α(xn–,xn)p(xn–,xn).

Case . IfM(xn–,xn) = 
 [p(xn–,xn) + p(xn,xn+)], then

p(xn,xn+) ≤ α(xn–,xn)


[
p(xn–,xn) + p(xn,xn+)

]
,

and so

(
 –

α(xn–,xn)


)
p(xn,xn+) ≤ α(xn–,xn)


p(xn–,xn),

i.e.,

p(xn,xn+) ≤ α(xn–,xn)
 – α(xn–,xn)

p(xn–,xn)

≤ α(xn–,xn)p(xn–,xn).

Then (.) holds for all n ∈N. It follows that the sequence {p(xn,xn+)}n∈N is nonincreasing
since  ≤ α(xn–,xn) ≤ , and then it is convergent to a real number

p = inf
{
p(xn–,xn) : n ∈N

}
.

For the purpose of contradiction, assume that p > . Then for all n ∈N, we have

 < p≤ p(xn,xn+) ≤ p(xn–,xn) ≤ · · · ≤ p(x,x),

and from the definition of θ = θ (p,p(x,x)), we obtain that α(xn–,xn) ≤ θ . Thus,

p≤ p(xn,xn+)≤ α(xn–,xn)p(xn–,xn) ≤ θnp(x,x) (.)

for all n ∈N. Whence we obtain a contradiction since  ≤ θ < , and hence limn→∞ θn = .
Therefore, p =  and limn→∞ p(xn,xn+) = . This last fact implies, in turn, that

http://www.fixedpointtheoryandapplications.com/content/2012/1/175
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limn→∞ ps(xn,xn+) =  since ps(xn,xn+) ≤ p(xn,xn+) for all n ∈ N. Moreover, since for
all n ∈N,

p(xn,xn) ≤ p(xn,xn+), (.)

we obtain that limn→∞ p(xn,xn) = .
For k ∈N, we have

ps(xn,xn+k) ≤ ps(xn,xn+) + · · · + ps(xn+k–,xn+k)

≤ θnp(x,x) + · · · + θn+k–p(x,x)

≤ 
n+k–∑
t=n

θ tp(x,x)

≤ 
θn

 – θ
p(x,x),

where θ = θ (,p(x,x)).
This shows that {xn} is a Cauchy sequence in the metric space (X,ps). Since (X,p) is

complete, we have that (X,ps) is complete. So, the sequence {xn} is convergent in themetric
space (X,ps), say to x∗ ∈ X, i.e., limn→∞ ps(xn,x∗) = . It follows that

p
(
x∗,x∗) = lim

n→∞p
(
xn,x∗) = lim

n,m→∞p(xn,xm). (.)

This shows that {xn} is a convergent sequence in (X,p) with respect to τ (ps).
Since {xn} is a Cauchy sequence in the metric space (X,ps), we have that limn,m→∞ ps(xn,

xm) = . Moreover, from (.), we have limn→∞ p(xn,xn) = , and then from the definition
of ps, we have limn,m→∞ p(xn,xm) = . Therefore, from (.), we have

p
(
x∗,x∗) = lim

n→∞p
(
xn,x∗) = lim

n,m→∞p(xn,xm) = .

Now, we prove that p(x∗, f (x∗)) = . Indeed, assume that p(x∗, f (x∗)) > . Then from (.),
we have

p
(
x∗, f

(
x∗)) ≤ p

(
x∗, f (xn)

)
+ p

(
f (xn), f

(
x∗)) – p

(
f (xn), f (xn)

)
≤ p

(
x∗,xn+

)
+ p

(
f (xn), f

(
x∗))

≤ p
(
x∗,xn+

)
+ α

(
xn,x∗)max

{
p
(
xn,x∗), 


[
p
(
xn, f (xn)

)
+ p

(
x∗, f

(
x∗))]}

≤ p
(
x∗,xn+

)
+max

{
p
(
xn,x∗), 


[
p(xn,xn+) + p

(
x∗, f

(
x∗))]}

for all n ∈N. Letting n→ ∞ in the preceding inequality, we obtain

p
(
x∗, f

(
x∗)) ≤ 


p
(
x∗, f

(
x∗)),

which is a contradiction. Whence p(x∗, f (x∗)) = , and hence p(f (x∗), f (x∗)) = . So, we
have, by statement (p) in Definition , that x∗ = f (x∗). Therefore, we have shown the ex-

http://www.fixedpointtheoryandapplications.com/content/2012/1/175
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istence of a fixed point such that p(x∗,x∗) =  and that the Picard sequence of iterates
{f n(x)}n∈N converges to x∗ with respect to τ (ps).
To conclude the proof, we only need to prove that uniqueness of a fixed point. To this

end, suppose for the purpose of contradiction that there exists another fixed point z ∈ X
of f with z 	= x∗. Thus, r = p(x∗, z) > , and we immediately obtain

α
(
x∗, z

) ≤ θ

(
r

, r

)
< ,

where r = p(x∗, z) > . Now, by (.) and by the fact that

 = p
(
x∗,x∗) < p

(
x∗, z

)
and p(z, z) ≤ p

(
x∗, z

)
,

we have

p
(
x∗, z

)
= p

(
f
(
x∗), f (z))

≤ α
(
x∗, z

)
max

{
p
(
x∗, z

)
,


[
p
(
x∗, f

(
x∗)) + p

(
z, f (z)

)]}

= α
(
x∗, z

)
max

{
p
(
x∗, z

)
,


[
p
(
x∗,x∗) + p(z, z)

]}

≤ α
(
x∗, z

)
p
(
x∗, z

)

≤ θ

(
r

, r

)
p
(
x∗, z

)
,

which is a contradiction. Thus, x∗ = z. �

As a consequence of the preceding theorem, we obtain the following one.

Corollary  Let (X,p) be a complete partial metric space and let f : X → X be amapping
such that there exists α : X ×X → [, [ with

θ (a,b) = sup
{
α(x, y) : a ≤ p(x, y) ≤ b

}
< 

for every ≤ a ≤ b, and such that

p
(
f (x), f (y)

) ≤ α


(x, y)

(
p(x, y) +



[
p
(
x, f (x)

)
+ p

(
y, f (y)

)])

for all x, y ∈ X. Then f has a unique fixed point x∗ ∈ X and the Picard sequence of iterates
{f n(x)}n∈N converges with respect to τ (ps), for every x ∈ X, to x∗.Moreover, p(x∗,x∗) = .

As a consequence of Theorem , we obtain the announced partial metric versions of
Theorems  and .

Corollary  Let (X,p) be a complete partial metric space and let f : X → X be a weakly
contractive mapping. Then f has a unique fixed point x∗ ∈ X and the Picard sequence
of iterates {f n(x)}n∈N converges with respect to τ (ps), for every x ∈ X, to x∗. Moreover,
p(x∗,x∗) = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/175


Alghamdi et al. Fixed Point Theory and Applications 2012, 2012:175 Page 11 of 25
http://www.fixedpointtheoryandapplications.com/content/2012/1/175

Corollary  Let (X,p) be a complete partial metric space and let f : X → X be a weakly
Kannanmapping.Then f has a unique fixed point x ∈ X and the Picard sequence of iterates
{f n(x)}n∈N converges with respect to τ (ps), for every x ∈ X, to x∗.Moreover, p(x∗,x∗) = .

It is clear that Theorems  and  follow as special cases of Corollaries  and , re-
spectively, when the partial metric is a metric.
We end this subsection by stressing, on the one hand, that in all above results, we have

proved that the Picard sequences of iterates are convergent to the fixed point with respect
to τ (ps), and thus we immediately conclude that such a convergence is also with respect
to τ (p). On the other hand, it is clear that when, in the statements of the aforementioned
results, we replace the partial metric by a metric, we retrieve the classical fixed points
results for weakly contractive mappings, Theorem , and for weakly Kannan mappings,
Theorem .

2.2 Weakly contractive and weakly Kannanmappings in complete partial metric
spaces: the cyclical case

In this section, we present the extensions of Corollaries  and  to the cyclical case, i.e.,
when we consider a cyclical representation of a complete partial metric space and either
weakly cyclic contractive mappings or weakly cyclic Kannan mappings.
Inspired, in part, by Theorem  (and other results given in []), Rus introduced the no-

tion of a cyclic representation in [] (see also [] and []). According toDefinition . in
[], given a nonempty setX and amapping f : X → X, a collectionA, . . . ,Am of nonempty
subsets of X (m ∈ N) is said to be a cyclic representation of X with respect to f provided
that the following conditions are satisfied:
() X =

⋃m
i=Ai;

() f (Ai)⊆ Ai+ for all  ≤ i≤ m, where Am+ = A.
From now on, for our subsequent work convenience, given a topological space (X, τ ),

a nonempty subset Y ⊆ X and f : Y → Y , we will say that a collection A, . . . ,Am of
nonempty subsets of X (m ∈ N) is a closed cyclic representation of Y with respect to f
and τ provided that the following conditions are satisfied:
() A, . . . ,Am is a cyclic representation of Y with respect to f ;
() Ai is closed with respect to τ for all  ≤ i≤ m.
In the sequel, given a topological space (X, τ ) and a nonempty subset Y ⊆ X which is

closed with respect to τ , we will say, for short, that Y is a τ -closed subset of X. Thus, a
collectionA, . . . ,Am of nonempty subsets ofX (m ∈N) will be called a τ -closed cyclic rep-
resentation of Y with respect to f provided thatA, . . . ,Am is a closed cyclic representation
of Y with respect to f and τ .
Notice that if (X,p) is a partial metric space and Y ⊆ X is τ (p)-closed, then Y is τ (ps)-

closed. Hence, if (X,p) is a complete partial metric space and Y ⊆ X, then (Y ,p) is a com-
plete partial metric space provided that Y is τ (p)-closed.
Next, we extend the notions of a weakly contractivemapping and a weakly Kannanmap-

ping to the cyclical context in the spirit of Definition . in [].

Definition  Let (X,p) be a complete partial metric space and A, . . . ,Am (m ∈ N) be
a collection of nonempty subsets of X. A mapping f : Y → Y is called a weakly cyclic
contractive mapping if the following conditions are satisfied:

http://www.fixedpointtheoryandapplications.com/content/2012/1/175
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() A, . . . ,Am is a τ (p)-cyclic representation of Y with respect to f ,
() there exists α : Y × Y → [, [ such that for every  ≤ a≤ b

θ (a,b) = sup
{
α(x, y) : a≤ p(x, y) ≤ b

}
< ,

and for any x ∈ Ai, y ∈ Ai+

p
(
f (x), f (y)

) ≤ α(x, y)p(x, y).

Definition  Let (X,p) be a complete partial metric space and A, . . . ,Am (m ∈ N) be a
collection of nonempty subsets ofX. Amapping f : Y → Y is called aweakly cyclic Kannan
mapping if the following conditions are satisfied:
() A, . . . ,Am is a τ (p)-cyclic representation of Y with respect to f ,
() there exists α : Y × Y → [, [ such that for every  ≤ a≤ b

θ (a,b) = sup
{
α(x, y) : a≤ p(x, y) ≤ b

}
< ,

and for any x ∈ Ai, y ∈ Ai+

p
(
f (x), f (y)

) ≤ α(x, y)


[
p
(
x, f (x)

)
+ p

(
y, f (y)

)]
.

When we consider the partial metric as a metric in Definition , we retrieve as a par-
ticular case the well-known notion of cyclic Kannan mappings in metric spaces, i.e., the
mapping satisfying the contractive condition inTheorem in Section . In addition, notice
that when the partial metric is in fact a metric, the preceding notion of a weakly Kannan
mapping differs from the one for metric spaces given by Petric in [].
We prove the following result with the aim of extending the aforesaid corollaries to the

new context.

Theorem  Let (X,p) be a complete partial metric space and A, . . . ,Am (m ∈ N) be a
collection of nonempty subsets of X and Y ⊆ X. Let f : Y → Y be a mapping such that:
() A, . . . ,Am is a τ (p)-cyclic representation of Y with respect to f ,
() there exists α : Y × Y → [, [ with

θ (a,b) = sup
{
α(x, y) : a≤ p(x, y) ≤ b

}
< 

such that for every  ≤ a≤ b, and such that

p
(
f (x), f (y)

) ≤ α(x, y)max

{
p(x, y),



[
p
(
x, f (x)

)
+ p

(
y, f (y)

)]}
(.)

for any x ∈ Ai, y ∈ Ai+.
Then f has a unique fixed point x∗ ∈ ⋂m

i=Ai and the Picard sequence of iterates {f n(x)}n∈N
converges with respect to τ (ps), for every x ∈ Y , to x∗.Moreover, p(x∗,x∗) = .
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Proof Let x ∈ Y =
⋃m

i=Ai, and set

xn = f (xn–) = f n(x) (n ∈ N).

For any n ∈N, there is in ∈ {i, . . . ,m} such that xn ∈ Ain and xn+ ∈ Ain+. Then by (.), we
have

p(xn,xn+) = p
(
f (xn–), f (xn)

)
≤ α(xn–,xn)M(xn–,xn),

where M(xn–,xn) is given as in the proof of Theorem . Now, following exactly the
same arguments as those given in the proof of Theorem , we obtain the following
facts:
() For all n ∈N,

p(xn,xn+) ≤ α(xn–,xn)p(xn–,xn),

and thus the sequence {p(xn,xn+)}n∈N is nonincreasing converging to
p = inf{p(xn–,xn) : n ∈N}.

()

lim
n→∞ps(xn,xn+) = lim

n→∞p(xn,xn+) = lim
n→∞p(xn,xn) = p = .

() For all k ∈ N,

ps(xn,xn+k) ≤ 
θn

 – θ
p(x,x),

where θ = θ (,p(x,x)).
The inequality given in assertion () guarantees that the sequence {xn}n∈N is Cauchy
in the metric subspace (Y ,ps). Since Y is τ (p)-closed, the subspace (Y ,ps) is com-
plete. So, the sequence {xn}n∈N is convergent in (Y ,ps) to any y∗ ∈ Y . Whence we have
that

lim
n→∞ps

(
xn, y∗) = .

It follows that

p
(
y∗, y∗) = lim

n→∞p
(
xn, y∗) = lim

n,m→∞p(xn,xm). (.)

Since {xn}n∈N is a Cauchy sequence in (Y ,ps), we obtain that

lim
n,m→∞ps(xn,xm) = .

Thus, from the equality in the above assertion (), we have limn→∞ p(xn,xn) = , and then
from the definition of ps, we have limn,m→∞ p(xn,xm) = . Therefore, from (.), we deduce

http://www.fixedpointtheoryandapplications.com/content/2012/1/175
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that

p
(
y∗, y∗) = lim

n→∞p
(
xn, y∗) = lim

n,m→∞p(xn,xm) = .

This shows that the Picard sequence of iterates {xn}n∈N converges to a point y∗ ∈ Y with
respect to τ (ps) such that p(y∗, y∗) = .
Next, we show that y∗ ∈ ⋂m

i=Ai.
It is clear that the sequence {xn}n∈N has an infinite number of terms in each Ai, i =

, . . . ,m. Since {xn}n∈N converges to y∗ in (Y ,ps), we can construct in each Ai, i = , . . . ,m, a
subsequence of {xn}n∈N which converges to y∗. Moreover, the fact that eachAi, i = , . . . ,m,
is τ (ps)-closed yields that y∗ ∈ Ai for all i = , . . . ,m. Thus,

y∗ ∈
m⋂
i=

Ai.

Then
⋂m

i=Ai 	= ∅, and we can consider the restriction of the mapping f to
⋂m

i=Ai,

f |⋂m
i= Ai :

m⋂
i=

Ai →
m⋂
i=

Ai,

which satisfies the conditions of Theorem  as (
⋂m

i=Ai,p) is also complete because⋂m
i=Ai is τ (ps)-closed and (Y ,ps) is complete. According to the aforementioned result,

f |⋂m
i= Aihas a unique fixed point x∗ ∈ ⋂m

i=Ai such that p(x∗,x∗) = .
Next, we claim that for any initial value y ∈ Y , the Picard sequence of iterates {f n(y)}n∈N

has the same limit point x∗ ∈ ⋂m
i=Ai. Indeed, let y ∈ Y =

⋃m
i=Ai. Then the same argu-

ments as those applied to the Picard sequence of iterates {f n(x)}n∈N run to show that
limn→∞ p(f n(y), f n(y)) = . Moreover, there exists i ∈ {, . . . ,m} such that y ∈ Ai . Since
x∗ ∈ ⋂m

i=Ai, it follows that x∗ ∈ Ai+. We obtain from (.) that

p
(
f (y), f

(
x∗)) ≤ α

(
y,x∗)M(

y,x∗),
where

M
(
y,x∗) = max

{
p
(
y,x∗), 


[
p
(
y, f (y)

)
+ p

(
x∗, f

(
x∗))]}

= max

{
p
(
y,x∗), 


p
(
y, f (y)

)}
.

Now, we show that the following inequality holds:

p
(
f (y), f

(
x∗)) ≤ α

(
y,x∗)p(y,x∗).

We consider the following two cases with this aim:
Case . IfM(y,x∗) = p(y,x∗), then

p
(
f (y), f

(
x∗)) ≤ α

(
y,x∗)p(y,x∗).
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Case . IfM(y,x∗) = 
p(y, f (y)), then

p
(
f (y), f

(
x∗)) ≤ α(y,x∗)


p
(
y, f (y)

)

≤ α(y,x∗)


[
p
(
y,x∗) + p

(
x∗, f (y)

)]
,

i.e.,

p
(
f (y), f

(
x∗)) ≤ α(y,x∗)

 – α(y,x∗)
p
(
y,x∗)

≤ α
(
y,x∗)p(y,x∗).

Therefore, in any case,

p
(
f (y), f

(
x∗)) ≤ α

(
y,x∗)p(y,x∗).

Suppose that y 	= x∗ because otherwisewe get the desired conclusion. Then r = p(y,x∗) >
, and hence

α
(
y,x∗) ≤ θ

(
r

, r

)
< .

It follows that

p
(
f (y), f

(
x∗)) ≤ θ

(
r

, r

)
p
(
y,x∗).

Moreover, it is easily seen that

p
(
f n(y),x∗) ≤ α

(
f n–(y),x∗)p(f n–(y),x∗)

for all n ∈N. Since α(f n–(y),x∗)≤ , we obtain that

p
(
f n(y),x∗) ≤ p

(
f n–(y),x∗)

for all n ∈N. It follows that the sequence {p(f n(y),x∗)}n∈N is nonincreasing, and then it is
convergent to a real number

p = inf
{
p
(
f n(y),x∗) : n ∈N

}
.

For the purpose of contradiction, assume that p > . Then for all n ∈N, we have

 < p≤ p
(
f n(y),x∗) ≤ p

(
f n–(y),x∗) ≤ · · · ≤ p

(
y,x∗),

and from the definition of θ = θ (p,p(y,x∗)), we obtain that α(f n(y),x∗) ≤ θ for all n ∈ N.
Thus,

p≤ p
(
f n(y),x∗) ≤ α

(
f n(y),x∗)p(f n–(y),x∗) ≤ θnp

(
y,x∗)
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for all n ∈N. Whence we obtain a contradiction, since  ≤ θ < , and hence limn→∞ θn = .
Therefore, p =  and limn→∞ p(f n(y),x∗) = .
Taking into account that limn→∞ p(f n(y), f n(y)) = , we deduce that

lim
n→∞ps

(
f n(y),x∗) = .

Thus, the Picard iteration converges, with respect to τ (ps), to x∗ for any initial point
y ∈ Y .
Finally, we prove the uniqueness of a fixed point. Assume that there exists y∗ ∈ Y such

that f (y∗) = y∗ and y∗ 	= x∗. Then r = p(x∗, y∗) > , and thus

α
(
x∗, y∗) ≤ θ

(
r

, r

)
< .

Moreover, there exists i ∈ {, . . . ,m} such that y∗ ∈ Ai . Since x∗ ∈ ⋂m
i=Ai we have that

x∗ ∈ Ai+. Then from (.) and the fact that

p
(
x∗,x∗) < p

(
x∗, y∗) and p

(
y∗, y∗) ≤ p

(
x∗, y∗),

we have that

p
(
x∗, y∗) = p

(
f
(
x∗), f (y∗))

≤ α
(
x∗, y∗)M(

x∗, y∗)

= α
(
x∗, y∗)max

{
p
(
x∗, y∗), 


[
p
(
x∗,x∗) + p

(
y∗, y∗)]}

= α
(
x∗, y∗)p(x∗, y∗)

≤ θ

(
r

, r

)
p
(
x∗, y∗),

which is a contradiction. Thus, x∗ is the unique fixed point of f . This concludes the proof.
�

Theorem  yields as a particular case the following result.

Corollary  Let (X,p) be a complete partial metric space and A, . . . ,Am (m ∈ N) be a
collection of nonempty subsets of X and Y ⊆ X. Let f : Y → Y be a mapping such that:
() A, . . . ,Am is a τ (p)-cyclic representation of Y with respect to f ,
() there exists α : Y × Y → [, [ with

θ (a,b) = sup
{
α(x, y) : a≤ p(x, y) ≤ b

}
< 

such that for every  ≤ a≤ b, and such that

p
(
f (x), f (y)

) ≤ α


(x, y)

(
p(x, y) +



[
p
(
x, f (x)

)
+ p

(
y, f (y)

)])

for any x ∈ Ai, y ∈ Ai+.
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Then f has a fixed point x∗ ∈ ⋂m
i=Ai and the Picard sequence of iterates {f n(x)}n∈N con-

verges with respect to τ (ps), for every x ∈ Y , to x∗.Moreover, p(x∗,x∗) = .

As a consequence of Theorem , we obtain the following fixed point results which ex-
tend Corollaries  and  to the cyclic case.

Corollary  Let (X,p) be a complete partial metric space and A, . . . ,Am (m ∈ N) be
a collection of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly
cyclic contractive mapping. Then f has a unique fixed point x∗ ∈ ⋂m

i=Ai and the Picard
sequence of iterates {f n(x)}n∈N converges with respect to τ (ps), for every x ∈ Y , to x∗.More-
over, p(x∗,x∗) = .

Corollary  Let (X,p) be a complete partialmetric space andA, . . . ,Am (m ∈N) be a col-
lection of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly cyclic Kan-
nanmapping. Then f has a unique fixed point x∗ ∈ ⋂m

i=Ai and the Picard sequence of iter-
ates {f n(x)}n∈N converges with respect to τ (ps), for every x ∈ Y , to x∗.Moreover, p(x∗,x∗) = .

As in the case of the results given in Section ., we want to remark that in all above
results, we have obtained that the Picard sequences of iterates are convergent to the fixed
point with respect to τ (ps), and thus the convergence is also with respect to τ (p).
Note that if we replace the partial metric by a metric in the statements of Corollaries 

and , we obtain the following metric fixed point results, the publication of which in the
literature so far we are not aware of.

Corollary  Let (X,d) be a complete metric space and A, . . . ,Am (m ∈N) be a collection
of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly cyclic contractive
mapping. Then f has a unique fixed point x∗ ∈ ⋂m

i=Ai and the Picard sequence of iterates
{f n(x)}n∈N converges with respect to τ (d), for every x ∈ Y , to x∗.

Corollary  Let (X,d) be a complete metric space and A, . . . ,Am (m ∈N) be a collection
of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly cyclic Kannan
mapping. Then f has a unique fixed point x∗ ∈ ⋂m

i=Ai and the Picard sequence of iterates
{f n(x)}n∈N converges with respect to τ (d), for every x ∈ Y , to x∗.

Furthermore, fromCorollary , we obtain exactly the fixed point for Kannanmappings
given in [], i.e., Theorem  in Section .

Corollary  Let (X,d) be a complete metric space and A, . . . ,Am (m ∈N) be a collection
of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a cyclic Kannan mapping.
Then f has a unique fixed point x∗ ∈ ⋂m

i=Ai and the Picard sequence of iterates {f n(x)}n∈N
converges with respect to τ (d), for every x ∈ Y , to x∗.

2.3 Weakly contractive and weakly Kannanmappings in complete partial metric
spaces: a Picard operator perspective

According to [], given a partial metric space (X,p), a mapping f : X → X is a Picard
operator provided that f has a unique fixed point and that the Picard sequence of iterates
{f n(x)}n∈N is convergent, for every x ∈ X, to the fixed point with respect to τ (ps).
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In the light of the theory exposed in Sections . and ., in particular as a consequence
of Theorem  and Theorem , every weakly contractivemapping and every weakly Kan-
nan mapping defined in partial metric spaces are Picard operators in the sense of [].
However, in partial metric spaces, we can relax the preceding notion as follows.

Definition  Let (X,p) be a partial metric. We will say that a mapping f : X → X is a
Picard operator with respect to p (or p-Picard operator for short) provided that f has a
unique fixed point and that the Picard sequence of iterates {f n(x)}n∈N is convergent, for
every x ∈ X, to the fixed point with respect to τ (p).

Of course, Theorem  and Theorem  guarantee that every weakly contractive map-
ping and every weakly Kannan mapping defined in partial metric spaces are examples of
p-Picard operators. It follows that every mapping satisfying the original contractive con-
dition of Matthews given in Theorem  is also a p-Picard operator.
Following [], given a partial metric space (X,p) and a p-Picard operator f : X → X

with fixed point x∗ ∈ X, we will say that the fixed point problem for such a mapping is well
posed with respect to p whenever the following property holds:

If {xn}n∈N is a sequence in X such that limn→∞ p(xn, f (xn)) = , then {xn}n∈N converges
to x∗ with respect to τ (p).

The next result yields the well-posedness of the fixed point problem for weakly (cyclic)
contractive mappings and for weakly (cyclic) Kannan mappings in our sense.

Theorem  Let (X,p) be a complete partial metric space and let f : X → X be amapping
satisfying all the requirements in the statement of Theorem , then the fixed point problem
for f is well posed with respect to p if and only if for every sequence {xn}n∈N in X such
that limn→∞ p(xn, f (xn)) = , there exists a subsequence {xnk }k∈N with limk→∞ α(xnk ,x

∗) < ,
where x∗ is the unique fixed point of f .

Proof First of all, we prove that the following inequality holds for all x ∈ X with x 	= x∗:

p
(
x,x∗) ≤ 

 – α(x,x∗)
p
(
x, f (x)

)
, (.)

where x∗ is the fixed point of f provided by Theorem .
Since p(x∗, f (x∗)) = , we have

max

{
p
(
x,x∗), 


[
p
(
x, f (x)

)
+ p

(
x∗, f

(
x∗))]} =max

{
p
(
x,x∗), 


p
(
x, f (x)

)}
,

for all x ∈ X.
Next, we distinguish two cases:
Case . Suppose that x ∈ X with x 	= x∗ such thatmax{p(x,x∗), p(x, f (x))} = p(x,x∗). Then

p
(
x,x∗) ≤ p

(
x, f (x)

)
+ p

(
f (x), f

(
x∗))

≤ p
(
x, f (x)

)
+ α

(
x,x∗)p(x,x∗).

It follows that

p
(
x,x∗) ≤ 

 – α(x,x∗)
p
(
x, f (x)

)
.
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Case . Suppose that x ∈ X with x 	= x∗ such that max{p(x,x∗), p(x, f (x))} = 
p(x, f (x)).

Then

p
(
x,x∗) ≤ p

(
x, f (x)

)
+ p

(
f (x), f

(
x∗))

≤ p
(
x, f (x)

)
+ α

(
x,x∗) 


p
(
x, f (x)

)

=
(
 +

α(x,x∗)


)
p
(
x, f (x)

)
.

Since

 +
α(x,x∗)


≤ 

 – α(x,x∗)
,

we obtain that

p
(
x,x∗) ≤ 

 – α(x,x∗)
p
(
x, f (x)

)
.

So, we have shown that inequality (.) holds for all x ∈ X with x 	= x∗.
Now, we assume that the fixed point problem is well posed and consider a sequence

{xn}n∈N in X such that limn→∞ p(xn, f (xn)) = . Then it is clear that there exists a subse-
quence {xnk }k∈N of {xn}n∈N such that limk→∞ α(xnk ,x

∗) = L with  ≤ L ≤  (observe that
the sequence {α(xnk ,x∗)}k∈N ⊆ [, [). Next, we prove that L < . To this end, suppose that
L = .
Since the fixed problem is well posed, we have that limn→∞ p(xn,x∗) = . Then there

exists k ∈N such that p(xnk ,x
∗) <  and

 < α
(
xnk ,x

∗) +  – θ (, )

for all k ≥ k. It follows that θ (, ) < α(xnk ,x
∗) ≤ θ (, ) which is a contradiction. We con-

clude that limk→∞ α(xnk ,x
∗) < .

Next, assume that given a sequence {xn}n∈N in X with limn→∞ p(xn, f (xn)) = , we will
show the well-posedness of the fixed point problem. To this end, consider, for the propose
of contradiction, that the sequence {p(xn,x∗) – p(x∗,x∗)}n∈N does not converge to . Then
there existsM >  and a subsequence {xnk }k∈N of {xn}n∈N such that

M ≤ p
(
xnk ,x

∗) – p
(
x∗,x∗)

for all k ∈N.
By (.), we have that

p
(
xnk ,x

∗) – p
(
x∗,x∗) ≤ 

 – α(xnk ,x∗)
p
(
xnk , f (xnk )

)

for all k ∈ N. Since limk→∞ p(xnk , f (xnk )) = , we have guaranteed by the hypothesis the
existence of a subsequence {xnkm }m∈N of {xnk }k∈N such that limm→∞ α(xnkm ,x

∗) < .
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Thus, we obtain that

 <M ≤ 
 – limm→∞ α(xnkm ,x

∗)
lim

m→∞p
(
xnkm , f (xnkm )

)
= ,

which is impossible. So, limn→∞ p(xn,x∗) – p(x∗,x∗) = , and thus the sequence {xn}n∈N is
convergent to x∗ with respect to τ (p). Therefore, the fixed point problem is well posed.

�

Notice that the well-posedness yielded by Theorem  is in fact with respect to ps since

p
(
xn,x∗) – p(xn,xn) ≤ p

(
xn,x∗)

for all n ∈N and limn→∞ p(xn,x∗) = .

Corollary  Let (X,p) be a complete partial metric space and let f : X → X be a weakly
contractive mapping. Then the fixed point problem for f is well posed with respect to p if
and only if for every sequence {xn}n∈N in X such that limn→∞ p(xn, f (xn)) = , there exists a
subsequence {xnk }k∈N with limk→∞ α(xnk ,x

∗) < , where x∗ is the unique fixed point of f .

Corollary  Let (X,d) be a complete metric space and let f : X → X be a weakly contrac-
tive mapping. Then the fixed point problem for f is well posed with respect to d if and only if
for every sequence {xn}n∈N in X such that limn→∞ d(xn, f (xn)) = , there exists a subsequence
{xnk }k∈N with limk→∞ α(xnk ,x

∗) < , where x∗ is the unique fixed point of f .

From Case  in the proof of Theorem , we obtain the following results.

Corollary  Let (X,p) be a complete partial metric space and let f : X → X be a weakly
Kannan contractive mapping. Then the fixed point problem for f is well posed with respect
to p.

Corollary  Let (X,d) be a complete metric space and let f : X → X be a weakly Kannan
contractive mapping. Then the fixed point problem for f is well posed with respect to d.

The next result, whose proof we omit because it follows the same method as in Theo-
rem , is an extension of the previous one to the cyclical case.

Theorem  Let (X,p) be a complete partial metric space, A, . . . ,Am (m ∈ N) be a col-
lection of nonempty subsets of X and Y ⊆ X. Let f : Y → Y be a mapping satisfying
all the requirements in the statement of Theorem , then the fixed point problem for f
is well posed with respect to p if and only if for every sequence {xn}n∈N in Y such that
limn→∞ p(xn, f (xn)) = , there exists a subsequence {xnk }k∈N with limk→∞ α(xnk ,x

∗) < ,
where x∗ is the unique fixed point of f .

Corollary  Let (X,p) be a complete partial metric space and A, . . . ,Am (m ∈ N) be a
collection of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly cyclic
contractive mapping. Then the fixed point problem for f is well posed with respect to p if
and only if for every sequence {xn}n∈N in Y such that limn→∞ p(xn, f (xn)) = , there exists a
subsequence {xnk }k∈N with limk→∞ α(xnk ,x

∗) < , where x∗ is the unique fixed point of f .

http://www.fixedpointtheoryandapplications.com/content/2012/1/175


Alghamdi et al. Fixed Point Theory and Applications 2012, 2012:175 Page 21 of 25
http://www.fixedpointtheoryandapplications.com/content/2012/1/175

Corollary  Let (X,p) be a complete partial metric space and A, . . . ,Am (m ∈ N) be a
collection of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly cyclic
Kannan mapping. Then the fixed point problem for f is well posed with respect to p.

Corollary  Let (X,d) be a complete metric space and A, . . . ,Am (m ∈ N) be a collection
of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly cyclic contractive
mapping. Then the fixed point problem for f is well posed with respect to d if and only if for
every sequence {xn}n∈N in Y such that limn→∞ d(xn, f (xn)) = , there exists a subsequence
{xnk }k∈N with limk→∞ α(xnk ,x

∗) < , where x∗ is the unique fixed point of f .

Corollary  Let (X,d) be a complete metric space and A, . . . ,Am (m ∈N) be a collection
of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly cyclic Kannan
mapping. Then the fixed point problem for f is well posed with respect to d.

On account of [] (see also []), given a metric space (X,d), a mapping f : X → X is
said to be a good Picard operator if f is a Picard operator such that

∞∑
n=

d
(
f n(x), f n+(x)

)
< ∞

for any x ∈ X. Moreover, if x∗ is the unique fixed point of the good Picard operator f and

∞∑
n=

d
(
f n(x),x∗) < ∞

for any x ∈ X, then the mapping f is called a special good Picard operator. Notice that we
are assuming that f (x) = x for all x ∈ X.
Recently, the both preceding notions have been extended to the context of partial metric

spaces in []. Concretely, given a partial metric space (X,p), a mapping f : X → X is said
to be a good Picard operator if f is a Picard operator such that

∞∑
n=

p
(
f n(x), f n+(x)

)
< ∞

for any x ∈ X. In case x∗ is the unique fixed point of the good Picard operator f and

∞∑
n=

p
(
f n(x),x∗) < ∞

for any x ∈ X, then the mapping f is called a special good Picard operator.

Theorem  Let (X,p) be a complete partial metric space and let f : X → X be a mapping
satisfying all the requirements in the statement of Theorem , then f is a special good
Picard operator.

Proof We have to prove that

∞∑
n=

p
(
f n(x),x∗) < ∞
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for any x ∈ X, where x∗ is the fixed point of f . Let x ∈ X. There is no loss of generality in
assuming that x 	= x∗ and that f n(x) 	= x∗ for all n ∈N.
Now, we show that the following inequality holds:

p
(
f (x), f

(
x∗)) ≤ α

(
x,x∗)p(x,x∗).

We consider the following two cases with this aim:
Case . IfM(x,x∗) = p(x,x∗), then

p
(
f (x), f

(
x∗)) ≤ α

(
x,x∗)p(x,x∗).

Case . IfM(x,x∗) = 
p(x, f (x)), then

p
(
f (x), f

(
x∗)) ≤ α(x,x∗)


p
(
x, f (x)

)

≤ α(x,x∗)


[
p
(
x,x∗) + p

(
x∗, f (x)

)]
,

i.e.,

p
(
f (x), f

(
x∗)) ≤ α(x,x∗)

 – α(x,x∗)
p
(
x,x∗)

≤ α
(
x,x∗)p(x,x∗).

Therefore, in any case,

p
(
f (x), f

(
x∗)) ≤ α

(
x,x∗)p(x,x∗).

Furthermore, it is easily seen that

p
(
f n(x),x∗) ≤ α

(
f n–(x),x∗)p(f n–(x),x∗)

for all n ∈N. Since limn→ p(f n(x),x∗) =  and

p
(
f n(x),x∗) ≤ p

(
f n–(x),x∗) ≤ · · · ≤ p

(
x,x∗),

we have that

α
(
f n–(x),x∗) ≤ θ (rn, r) ≤ θ (, r)

with rn = p(f n–(x),x∗) for all n ∈N.
Since p(f n(x),x∗) 	=  for all n ∈N, we deduce that

p
(
f n(x),x∗) ≤ θ (, r)p

(
f n–(x),x∗) < p

(
f n–(x),x∗)

for all n ∈N. It follows that

p(f n(x),x∗)
p(f n–(x),x∗)

≤ θ (, r) < 
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for all n ∈N. Then by the D’Alembert criterion, we obtain that

∞∑
n=

p
(
f n(x),x∗) < ∞.

Therefore, f is a special Picard operator. �

Corollary  Let (X,p) be a complete partial metric space and let f : X → X be a weakly
contractive mapping, then f is a special good Picard operator.

Corollary  Let (X,p) be a complete partial metric space and let f : X → X be a weakly
Kannan mapping, then f is a special good Picard operator.

Corollary  Let (X,p) be a complete metric space and let f : X → X be a weakly contrac-
tive mapping, then f is a special good Picard operator.

Corollary  Let (X,p) be a complete metric space and let f : X → X be a weakly Kannan
mapping, then f is a special good Picard operator.

The next result is an extension of Theorem  to the cyclical case. We omit its proof
because it follows the same method as in the aforesaid theorem.

Theorem  Let (X,p) be a complete partial metric space, Y ⊆ X and A, . . . ,Am (m ∈ N)
be a collection of nonempty subsets of X. Let f : Y → Y be a mapping satisfying all the
requirements in the statement of Theorem , then f is a special good Picard operator.

Corollary  Let (X,d) be a complete partial metric space and A, . . . ,Am (m ∈ N) be a
collection of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly cyclic
contractive mapping. Then f is a special good Picard operator.

Corollary  Let (X,d) be a complete partial metric space and A, . . . ,Am (m ∈ N) be a
collection of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly cyclic
Kannan mapping. Then f is a special good Picard operator.

Corollary  Let (X,d) be a complete metric space and A, . . . ,Am (m ∈N) be a collection
of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly cyclic contractive
mapping. Then f is a special good Picard operator.

Corollary  Let (X,d) be a complete metric space and A, . . . ,Am (m ∈N) be a collection
of nonempty subsets of X and Y ⊆ X. Suppose that f : Y → Y is a weakly cyclic Kannan
contractive mapping. Then f is a special good Picard operator.
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47. Păcurar, M, Rus, IA: Fixed point theory for cyclic ϕ-contractions. Nonlinear Anal. 72, 1181-1187 (2010)
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