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Łódź, Banacha 22, Łódź, 90-238,
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1 Introduction
Nadler [] extended Banach’s fixed point theorem [] for set-valued maps in complete
metric spaces.

Theorem . ([, Th. ]) Let (X,d) be a complete metric space, let Cl(X) denote the class
of all nonempty closed subsets of X, and let H : (Cl(X)) → [,∞] be defined by

∀A,B∈Cl(X){H(A,B) =max
{
sup
u∈A

d(u,B), sup
v∈B

d(v,A)
}
,

where, for each u ∈ X and V ∈ Cl(X), d(u,V ) = infv∈V d(u, v). If a set-valued map T : X →
Cl(X) is H-contractive, i.e., if T satisfies

∃<λ<∀x,y∈X
{
H

(
T(x),T(y)

) ≤ λd(x, y)
}
,

then T has a fixed point w in X, i.e., w ∈ T(w).

A number of authors introduce the new concepts of set-valued contractions of Nadler
type and study the problem concerning the existence of fixed points for such contractions;
see, e.g., Aubin and Siegel [], de Blasi et al. [], Ćirić [], Eldred et al. [], Feng and Liu
[], Frigon [], Al-Homidan et al. [], Jachymski [], Kaneko [], Klim and Wardowski
[], Latif and Al-Mezel [], Mizoguchi and Takahashi [], Pathak and Shahzad [],
Quantina and Kamran [], Reich [, ], Reich and Zaslavski [, ], Sintunavarat and
Kumam [–], Suzuki [], Suzuki and Takahashi [], Takahashi [] and Zhong et al.
[]. In particular, the significant fixed point existence results ofNadler typewere obtained
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by Suzuki [, Th. .] in metric spaces with τ -distances and by Wardowski [] in cone
metric spaces.
Recently,Włodarczyk andPlebaniak in [] have studied among others theJ -families of

generalized pseudodistances in cone uniform, uniformandmetric spaceswhich generalize
distances of Tataru [], w-distances of Kada et al. [], τ -distances of Suzuki [] and
τ -functions of Lin and Du [] in metric spaces and distances of Vályi [] in uniform
spaces.
In the present paper, we introduce the concept of contractive set-valued maps in cone

uniform spaces with generalized pseudodistances, and we show how in these spaces our
fixed point and endpoint existence theorem of Caristi type [, Th. .] yields the fixed
point and endpoint existence theorem for these contractive maps.
It is worth noticing that our fixed point and endpoint existence Theorem .: has a sim-

pler proof; is Nadler type; is new in cone uniform and cone locally convex spaces; is new
even in cone metric and metric spaces; and is different from those given in the previous
publications on this subject.
This paper is a continuation of [, –].

2 Definitions and notations
We define a real normed space to be a pair (L,‖ · ‖) with the understanding that a vector
space L over R carries the topology generated by the metric (a,b)→ ‖a – b‖, a,b ∈ L.
A nonempty closed convex set H ⊂ L is called a cone in L if it satisfies:
(H) ∀s∈(,∞){sH ⊂ H};
(H) H ∩ (–H) = {}; and
(H) H �= {}.
It is clear that each cone H ⊂ L defines, by virtue of

“a�H b iff b – a ∈H”,

an order of L under which L is an ordered normed space with a cone H .
We will write a ≺H b to indicate that a �H b, but a �= b. A cone H is said to be solid if

int(H) �=∅; int(H) denotes the interior of H . We will write a�H b to indicate that b – a ∈
int(H).
The cone H is normal if a real number M >  such that for each a,b ∈ H ,  �H a �H b

implies ‖a‖ ≤ M‖b‖ exists. The numberM satisfying above is called the normal constant
of H .
Let an element +∞ /∈ L be such that a �H +∞ for all a ∈ L.
Let X denote the family of all nonempty subsets of a space X. Recall that a set-valued

dynamic system is defined as a pair (X,T), where X is a certain space and T is a set-valued
map T : X → X ; in particular, a set-valued dynamic system includes the usual dynamic
system where T is a single-valued map. We say that a map ω : X → L ∪ {+∞} is proper if
its effective domain, dom(ω) = {x : ω(x) �= +∞}, is nonempty.

Definition . ([, Def. .]) Let X be a nonempty set, and let L be an ordered normed
space with a cone H .

(i) The family P = {pα : X → L,α ∈A}, A-index set, is said to be a P-family of cone
pseudometrics on X (P-family for short) if the following three conditions hold:

http://www.fixedpointtheoryandapplications.com/content/2012/1/176
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(P) ∀α∈A∀x,y∈X{�H pα(x, y)∧ x = y⇒ pα(x, y) = };
(P) ∀α∈A∀x,y∈X{pα(x, y) = pα(y,x)}; and
(P) ∀α∈A∀x,y,z∈X{pα(x, z)�H pα(x, y) + pα(y, z)}.

(ii) If P is a P-family, then the pair (X,P) is called a cone uniform space.
(iii) A P-family P is said to be separating if

(P) ∀x,y∈X{x �= y⇒ ∃α∈A{ ≺H pα(x, y)}}.
(iv) If a P-family P is separating, then the pair (X,P) is called a Hausdorff cone uniform

space.

Definition . ([, Def. .]) Let L be an ordered normed space with a solid coneH , and
let (X,P) be a Hausdorff cone uniform space with a cone H .

(i) We say that a sequence (wm :m ∈N) in X is a P-convergent in X (convergent in X
for short) if there exists w ∈ X such that

∀α∈A∀cα∈L,�cα∃n=n(α,cα )∈N∀m∈N;n≤m
{
pα(wm,w) �H cα

}
.

(ii) We say that a sequence (wm :m ∈N) in X is a P-Cauchy sequence in X (Cauchy
sequence in X , for short) if

∀α∈A∀cα∈L,�cα∃n=n(α,cα )∈N∀m,n∈N;n≤m<n
{
pα(wm,wn) �H cα

}
.

(iii) If every Cauchy sequence in X is convergent in X , then (X,P) is called a
P-sequentially complete cone uniform space (sequentially complete for short).

Theorem. ([, Th. .]) Let L be an ordered Banach space with a normal solid cone H ,
and let (X,P) be a Hausdorff cone uniform space with a cone H . The following hold:
(P) The sequence (wm :m ∈N) in X converges to w ∈ X iff

∀α∈A∀εα>∃n∈N∀m∈N;m≥n
{∥∥pα(wm,w)

∥∥ < εα

}
.

(P) The sequence (wm :m ∈N) in X is a Cauchy sequence in X iff

∀α∈A∀εα>∃n∈N∀m,n∈N;m>n≥n
{∥∥pα(wm,wn)

∥∥ < εα

}
.

Definition . Let L be an ordered Banach space with a cone H .
(i) A subset D ⊂ L is said to have aminimal (maximal) element if there exists a ∈ D

such that a �H b (b�H a) for all b ∈D, and we write then that a =min(D)
(a =max(D)). It is clear that if D has a minimal (maximal) element, then the
minimal (maximal) element is unique.

(ii) We say that a ∈ L is an infimum (supremum) for set D⊂ L if clL(D) has the minimal
(maximal) element and a =min(clL(D)) (a =max(clL(D))), and we write then that
a = inf(D) (a = sup(D)); here clL(D) denotes the closure of D in L.

Definition . Let L be an ordered normed space with a solid cone H . The cone H is
called regular if for every increasing (decreasing) sequence (cm : m ∈ N) in L which is

http://www.fixedpointtheoryandapplications.com/content/2012/1/176
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bounded from above (below),

(
i.e., c �H c �H · · · �H cm �H · · · �H b

(b �H · · · �H cm �H · · · �H c �H c) for some b ∈ L
)
,

there exists c ∈ L such that limm→∞ ‖cm – c‖ = . Every regular cone is normal.

Definition . ([, Def. .]) Let L be an ordered normed space with a normal solid
cone H , and let (X,P) be a Hausdorff cone uniform space with a cone H .

(i) The family J = {Jα : X → L,α ∈A} is said to be a J -family of cone pseudodistances
on X (J -family on X for short) if the following three conditions hold:

(J ) ∀α∈A∀x,y∈X{�H Jα(x, y)};
(J ) ∀α∈A∀x,y,z∈X{Jα(x, z) �H Jα(x, y) + Jα(y, z)}; and
(J ) For any sequence (wm :m ∈N) in X such that

∀α∈A∀εα>∃n=n(α,εα )∈N∀m,n∈N;n≤m≤n
{∥∥Jα(wm,wn)

∥∥ < εα

}
,

if there exists a sequence (vm :m ∈N) in X satisfying

∀α∈A∀εα>∃n=n(α,εα )∈N∀m∈N;n≤m
{∥∥Jα(wm, vm)

∥∥ < εα

}
,

then

∀α∈A∀εα>∃n=n(α,εα )∈N∀m∈N;n≤m
{∥∥pα(wm, vm)

∥∥ < εα

}
.

(ii) Each P-family is a J -family.
(iii) If J = {Jα : X → L : α ∈A} is a J -family, then X = X

J ∪X+
J where

X
J =

{
x ∈ X : ∀α∈A

{
 = Jα(x,x)

}}

and

X+
J =

{
x ∈ X : ∃α∈A

{
 ≺H Jα(x,x)

}}
.

Let (X,P) be a sequentially complete cone uniform space. We say that a set Y ∈ X is
closed in X if Y = clX(Y ) where clX(Y ), the closure of Y in X, denotes the set of all w ∈ X
for which there exists a sequence (wm :m ∈ N) in Y which converges to w. If a set Y ∈ X

is closed in X, then (Y ,P) is a sequentially complete cone uniform space with a cone H .
DefineCl(X) = {Y ∈ X : Y = clX(Y )}; that is,Cl(X) denotes the class of all nonempty closed
subsets of X.

Definition . Let L be an ordered Banach space with a normal solid cone H , let (X,P)
be a Hausdorff sequentially complete cone uniform space with a cone H , and let J = {Jα :
X → L,α ∈A} be a J -family.

(i) Let A,B ∈ Cl(X). We say that a pair (A,B) is J -admissible if:

http://www.fixedpointtheoryandapplications.com/content/2012/1/176


Włodarczyk and Plebaniak Fixed Point Theory and Applications 2012, 2012:176 Page 5 of 15
http://www.fixedpointtheoryandapplications.com/content/2012/1/176

(a) For each α ∈A, x ∈ A and y ∈ B, the set clL({Jα(x, v) : v ∈ B}) has a minimal
element, say Jα(x,B) (i.e., Jα(x,B) = infv∈B Jα(x, v)), and the set
clL({Jα(y,u) : u ∈ A}) has a minimal element, say Jα(y,A) (i.e.,
Jα(y,A) = infu∈A Jα(y,u));

(b) The sets clL({Jα(u,B) : u ∈ A}) and clL({Jα(v,A) : v ∈ B}) have maximal elements,
say Jα(A,B) and Jα(B,A), respectively (i.e.,

Jα(A,B) = sup
u∈A

Jα(u,B) = sup
u∈A

inf
v∈B Jα(u, v)

and

Jα(B,A) = sup
v∈B

Jα(v,A) = sup
v∈B

inf
u∈A

Jα(v,u),

respectively); and
(c) For each α ∈A, the elements Jα(A,B) and Jα(B,A) are comparable.

(ii) Let A,B ∈ Cl(X), and let a pair (A,B) be J -admissible. For each α ∈A, we define
HJ = {HJ

α (A,B),α ∈A} where

∀α∈A
{
HJ

α (A,B) =max
{
Jα(A,B), Jα(B,A)

}}
.

Here, for each α ∈A, HJ
α (A,B) ∈ L∪ {+∞} and by (J ) and since H is closed,

 �H HJ
α (A,B).

(iii) Let a set-valued dynamic system (X,T) satisfy T : X → Cl(X). We say that (X,T) is
J -admissible if for each x, y ∈ X , a pair (T(x),T(y)) is J -admissible.

(iv) Let (X,T) satisfy T : X → Cl(X), and let (X,T) be J -admissible. If there exists the
family � = {λα ∈ (, ),α ∈A} such that

∀α∈A∀x,y∈X
{
HJ

α

(
T(x),T(y)

) �H λαJα(x, y)
}
,

then we say that (X,T) isHJ
� -contractive.

(v) Let E ⊆ X , E �=∅. The map F : E →H ∪ {+∞} is lower semicontinuous on E with
respect to X (written: F is (E,X)-lsc when E �= X and F is lsc when E = X) if the set
{y ∈ E : F(y) �H c} is a closed subset in X for each c ∈ H . Equivalently, for each
x ∈ E,

F(x) �H lim inf
x→x,x∈X

F(x).

(vi) We say that the family J is continuous in X if for each x ∈ X and for each
sequence (xm :m ∈N) in X converging to x, we have

∀α∈A
{
lim

m→∞ Jα(xm,x) = lim
m→∞ Jα(x,xm) = 

}
.

If J =P , then J is continuous in X .

http://www.fixedpointtheoryandapplications.com/content/2012/1/176
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3 Statement of result
Let (X,T) be a set-valued dynamic system. By Fix(T) and End(T) we denote the sets of all
fixed points and endpoints ofT , respectively, i.e., Fix(T) = {w ∈ X : w ∈ T(w)} andEnd(T) =
{w ∈ X : {w} = T(w)}. A dynamic process or a trajectory starting at w ∈ X or a motion of
the system (X,T) atw is a sequence (wm :m ∈ {}∪N) defined bywm ∈ T(wm–) form ∈N

(see, Aubin-Siegel [] and Yuan []).
The aimof this paper is to prove the following fixed point and endpoint existence general

result of Nadler type.

Theorem . (i) Assume that:
(A) L is an ordered Banach space with a regular solid cone H ;
(A) (X,P) is a Hausdorff sequentially complete cone uniform space with a cone H ;
(A) J = {Jα : X → L,α ∈A} is a J -family on X such that X

J �= ∅;
(A) The set-valued dynamic system (X,T) satisfies T : X → Cl(X) and is J -admissible;
(A) There exists the family � = {λα ∈ (, ),α ∈A} such that (X,T) isHJ

� -contractive;
(A) For each x ∈ X , the set QJ ;T (x) is of the form:

QJ ;T (x) =
{
y ∈ T(x)∩X

J : ∀α∈A
{
Jα

(
y,T(y)

)
+ (γα – λα)Jα(x, y) �H Jα

(
x,T(x)

)}}
,

where the family 	 = {γα ∈ (, ),α ∈A} satisfies ∀α∈A{λα < γα};
(A) For each x ∈ X

J , the set QJ ;T (x) is a nonempty subset in X ; and
(A) For each x ∈ X

J , the set QJ ;T (x) is a closed subset in X .
Then the following hold:

(a) Fix(T) �=∅; and
(a) For each w ∈ Fix(T), ∀α∈A{Jα(w,w) = }.
(ii) Assume, in addition, that:
(A) For each x ∈ X

J , each dynamic process (wm :m ∈ {} ∪N) starting at w = x and
satisfying ∀m∈{}∪N{wm+ ∈ T(wm)} satisfies ∀m∈{}∪N{wm+ ∈QJ ;T (wm)}.

Then the assertions (a) and (a) are of the forms:

(a′
) End(T) �=∅; and

(a′
) For each w ∈ End(T), ∀α∈A{Jα(w,w) = }.

Remark . (i) Assume that:
(A) ∀x∈X

J
{{y ∈ T(x)∩X

J : ∀α∈A{γαJα(x, y)�H Jα(x,T(x))}} �=∅}.
Then (A) holds.

(ii) Assume that one of the following conditions holds:
(A) For each (x,α) ∈ X

J ×A, the map

Jα
(·,T(·)) + (γα – λα)Jα(x, ·) : T(x)∩X

J →H ∪ {+∞}

is (T(x)∩X
J ,X)-lsc;

(A) The family J is continuous in X .
Then (A) holds.

http://www.fixedpointtheoryandapplications.com/content/2012/1/176
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4 Proof of Theorem 3.1
Wewill use the following fixed point and endpoint existence general result of Caristi type.

Theorem . ([, Th. . ]) (i) Assume that:
(C) L is an ordered Banach space with a regular solid cone H ;
(C) (X,P) is a Hausdorff sequentially complete cone uniform space with a cone H ;
(C) The family J = {Jα : X → L,α ∈A} is a J -family on X such that X

J �= ∅;
(C) The family 
 = {ωα : X →H ∪ {+∞},α ∈A} satisfies D
 =

⋂
α∈A dom(ωα) �=∅;

(C) (X,T) is a set-valued dynamic system;
(C) {εα ,α ∈A} is a family of finite positive numbers;
(C) For each x ∈ X , the set QJ ,
;T (x) is of the form:

QJ ,
;T (x) =
{
y ∈ T(x)∩X

J : ∀α∈A
{
ωα(y) + εαJα(x, y)�H ωα(x)

}}
;

(C) For each x ∈ X
J , the set QJ ,
;T (x) is a nonempty subset of X ; and

(C) For each x ∈ X
J , the set QJ ,
;T (x) is a closed subset in X .

Then there exists w ∈D
 ∩X
J such that

(c) w ∈ T(w).
(ii) Assume, in addition, that:
(C) For each x ∈ X

J , each dynamic process (wm :m ∈ {} ∪N) starting at w = x and
satisfying ∀m∈{}∪N{wm+ ∈ T(wm)} satisfies ∀m∈{}∪N{wm+ ∈QJ ,
;T (wm)}.

Then assertion (c) is of the form:

(c′) {w} = T(w).

Remark . ([, Remark . ]) (i) A special case of condition (C) is a condition (C′)
defined by:

(C′) For each (x,α) ∈ X
J ×A, the map

ωα(·) + εαJα(x, ·) : T(x)∩X
J →H ∪ {+∞}

is (T(x)∩X
J ,X)-lsc.

(ii) If J =P , then a special case of condition (C) is a condition (C′′) defined by:

(C′′) For each (x,α) ∈ X ×A, the map

ωα(·) + εαpα(x, ·) : T(x)→H ∪ {+∞}

is (T(x),X)-lsc.

The proof will be broken into seven steps.
Step . Let 
 = {ωα : X → L,α ∈A} where

∀α∈A∀x∈X
{
ωα(x) = Jα

(
x,T(x)

)}
.

The following hold:

∀α∈A∀x∈X
{{
y ∈ T(x) : ωα(y) �H λαJα(x, y)

}
= T(x)

}
; (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/176


Włodarczyk and Plebaniak Fixed Point Theory and Applications 2012, 2012:176 Page 8 of 15
http://www.fixedpointtheoryandapplications.com/content/2012/1/176

∀α∈A∀x∈X
{
Uα(x) =

{
y ∈ T(x) : γαJα(x, y)�H ωα(x)

} �=∅
}
; (.)

∀α∈A∀x∈X
{
Uα(x)⊂ Vα(x) =

{
y ∈ T(x) : ωα(y) + (γα – λα)Jα(x, y) �H ωα(x)

}}
; (.)

and

∀α∈A∀x∈X∀y∈T(x)
{
 �H ωα(x) –ωα(y) �H ωα(x) +ωα(y)

�H ( + λα)Jα(x, y)
}
. (.)

Indeed, by (A), (A) and (iii) and (iv) of Definition ., we obtain

∀α∈A∀x,y∈X
{
sup

u∈T(x)
Jα

(
u,T(y)

) �H HJ
α

(
T(x),T(y)

) �H λαJα(x, y)
}
.

Hence, in particular, for u = y, we get

∀α∈A∀x∈X∀y∈T(x)
{
ωα(y) �H λαJα(x, y)

}
.

This implies (.).
Note that

∀α∈A∀x∈X
{
Jα

(
x,T(x)

)
= inf

y∈T(x)
Jα(x, y)

}
. (.)

This, by (A) (recall that ∀α∈A{γα ∈ (, )}), implies (.).
By (.) and (.), we have

∀α∈A∀x∈X
{
Uα(x)⊂ Vα(x) =

{
y ∈ T(x) : (γα – λα)Jα(x, y)

�H Jα
(
x,T(x)

)
– Jα

(
y,T(y)

)}}
,

i.e., (.) holds.
By (.) and (J ),

∀α∈A∀x∈X∀y∈T(x)
{
 �H ωα(x) –ωα(y)

}

and, by (.) and (.), we have

∀α∈A∀x∈X∀y∈T(x)
{
ωα(x) –ωα(y) �H ωα(x) +ωα(y)

= Jα
(
x,T(x)

)
+ Jα

(
y,T(y)

) �H ( + λα)Jα(x, y)
}
.

Consequently, (.) holds.
Step . The family 
 defined in Step  satisfies (C).
Indeed, by (.),

∀x∈X
{{
y ∈ T(x) : ∀α∈A

{
ωα(y) �H λαJα(x, y)

}}
= T(x)

}
.

Also, by Definition ., J = {Jα : X → L,α ∈A}, (J ) holds and, by (A), ∀x∈X{∅ �= T(x)}.
Hence, we conclude that ∀x∈X{∅ �= T(x)⊂D
}.

http://www.fixedpointtheoryandapplications.com/content/2012/1/176
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Step . Assumptions (C) and (C) hold where ∀α∈A{εα = γα – λα} and 
 is defined in
Step .
By (.) and (.), in particular,

∀x∈X
J

∀α∈A
{
∅ �= {

y ∈ T(x) : ωα(y) + (γα – λα)Jα(x, y) �H ωα(x)
}}

and, by (A) and (A), the following property concerning intersection of these sets holds:
for each x ∈ X

J ,

{
y ∈ T(x)∩X

J : ∀α∈A
{
ωα(y) + (γα – λα)Jα(x, y) �H ωα(x)

}}
=QJ ,
;T (x)

is a nonempty closed subset in X.
Step . The assertions of Theorem . hold.
This follows from Assumptions (A)-(A), Steps -, definition of X

J and Theorem ..
Step . Assumption (A) implies (A).
Indeed, denote

∀x∈X
{
UJ (x) =

⋂
α∈A

Uα(x)
}

and

∀x∈X
{
VJ (x) =

⋂
α∈A

Vα(x)
}
.

By (.) and (.),

∀x∈X
J

{
UJ (x)∩X

J ⊂ VJ (x)∩X
J ⊂QJ ;T (x)

}
.

Hence, we conclude that for each x ∈ X
J , the set QJ ;T (x) is nonempty whenever

∀x∈X
J

{UJ (x)∩X
J �=∅}.

Step . Assumption (A) implies (A).
This follows from Remark .(i)
Step . Assumption (A) implies (A).
Let x be arbitrary andfixed, and let a sequence (xm :m ∈N) inX be convergent to x, i.e.,

let ∀α∈A{limm→∞ pα(x,xm) = } (see Definition . and Theorem .). Ifm ∈N, v ∈ T(xm)
and α ∈A are arbitrary and fixed, then by (J ),

ωα(x) = Jα
(
x,T(x)

) �H Jα(x,xm) + Jα(xm, v) + Jα
(
v,T(x)

)
.

Since v ∈ T(xm) and T satisfy (A), this implies

ωα(x) �H Jα(x,xm) + Jα
(
xm,T(xm)

)
+ sup

v∈T(xm)
Jα

(
v,T(x)

)

�H Jα(x,xm) + Jα
(
xm,T(xm)

)
+HJ

α

(
T(xm),T(x)

)
�H Jα(x,xm) +ωα(xm) + λαJα(xm,x),
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that is,

 �H Jα(x,xm) +ωα(xm) + λαJα(xm,x) –ωα(x).

Hence, by (A), since H is closed, using the fact that J is continuous and taking the limit
asm → ∞, we get

 �H lim inf
m→∞ ωα(xm) –ωα(x).

Therefore, for each α ∈A,

ωα(x) �H lim inf
m→∞ ωα(xm),

i.e., ωα is lsc in X. Moreover, if m ∈ N, x ∈ X and α ∈ A are arbitrary and fixed, then by
(J ),

Jα(x,x) �H Jα(x,xm) + Jα(xm,x),

that is,

 �H Jα(x,xm) + Jα(xm,x) – Jα(x,x).

Since H is closed and J is continuous, this implies

 �H lim inf
m→∞ Jα(x,xm) – Jα(x,x),

that is, for each (x,α) ∈ X×A, themap Jα(x, ·) is lsc in X. Hence, in particular, we conclude
that for each (x,α) ∈ X

J ×A, the map

ωα(·) + (γα – λα)Jα(x, ·) : T(x)∩X
J → H ∪ {+∞}

is (T(x)∩X
J ,X)-lsc, that is, (C′) holds.

5 Remarks, examples and comparisons
Remark . Examples . and . illustrate a fixed point version and an endpoint version
of Theorem ., respectively, in conemetric spaces withJ -family whereJ = {J} and J �= p.

Example . If

X =
{
N = (n,n) : n ∈ {, , , , , }} = {,,,,,},

L = R
, H = {(x, y) ∈ L : x, y ≥ } ⊂ R

 and, for each β > , p : X → L is defined by the
formula

p(N,M) =
(|n –m|,β|n –m|), N = (n,n),M = (m,m) ∈ X,

then (X,P), P = {p} is a cone metric space; let in the sequel β = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/176
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Let T : X → Cl(X) be of the form:

T(N) =

⎧⎨
⎩

{,} if N ∈ X \ {},
{,} if N = .

LetW = {,,,}, and let J : X → L be of the form:

J(N,M) =

⎧⎨
⎩
p(N,M) if {N,M} ∩W = {N,M},
(, ) =  if {N,M} ∩W �= {N,M},

N,M ∈ X. Clearly, J = {J} is a J -family on X (see [, Ex. .]).
We observe that X

J = {,,,} �= ∅.
We show that (X,T) is J -admissible andHJ

/-contractive on X where

∀A,B∈Cl(X)
{
HJ (A,B) =max

{
sup
N∈A

J(N,B), sup
M∈B

J(M,A)
}}

.

Indeed, let λ = /, and let N,M ∈ X be arbitrary and fixed.
We consider three cases:
Case . IfN,M ∈ X \ {}, then by definition of T , we have that T(N) = T(M) = {,} and

HJ(T(N),T(M)
)
= (, ) = �H (/)J(N,M) = λJ(N,M).

Case . IfN ∈ X \{} andM = , then by definition ofT ,T(N) = {,} andT(M) = {,}.
Hence, by definition of J , we calculate:

(i) J(,T(M)) = p(, {,}) = (, ), J(,T(M)) = p(, {,}) = (, ) and

sup
{
J
(
U,T(M)

)
:U ∈ T(N)

}
= (, );

(ii) J(,T(N)) = p(, {,}) = (, ), J(,T(N)) = p(, {,}) = (, ) and

sup
{
J
(
V,T(N)

)
:V ∈ T(M)

}
= (, );

(iii) By (i) and (ii),

HJ(T(N),T(M)
)
= max

{
sup

{
J
(
U,T(M)

)
:U ∈ T(N)

}
,

sup
{
J
(
V,T(N)

)
:V ∈ T(M)

}}
= (, ).

Consequently,

HJ(T(N),T(M)
)
= (, ) �H  = (/) ·  = λJ(N,M)

for N ∈ X \ {} andM = .
Case . If N =  andM ∈ X \ {}, then by analogous considerations as in Case , we get

HJ(T(N),T(M)
)
= (, ) �H  = (/) ·  = λJ(N,M).
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Thus, T is J -admissible andHJ
/-contractive on X.

Let now γ = /. Then for eachN ∈ X
J = {,,,}, we have T(N) = {,} and using the

fact that T(X
J )⊂ X

J , we obtain

QJ ;T (N) =
{
M ∈ {,} : J(M,T(M)

)
+ (/)J(N,M) �H J

(
N,T(N)

)}
=

{
M ∈ {,} : (/)p(N,M) �H p

(
N, {,})}.

This implies that

QJ ;T () =
{
M ∈ {,} : (/)p(,M) �H 

}
= {},

QJ ;T () =
{
M ∈ {,} : (/)p(,M) �H 

}
= {}

and

QJ ;T (N) =
{
M ∈ {,} : (/)p(N,M) �H (n – , n – )

}
= {,}

for N = (n,n) ∈ {,}.
Assumptions (A)-(A) of Theorem . hold, Fix(T) = {(, ), (, )} and J((, ), (, )) =

J((, ), (, )) = .

Example . Let X,W , J , λ and γ be such as in Example ., and let T : X → Cl(X) be of
the form:

T(N) =

⎧⎪⎪⎨
⎪⎪⎩

{} if N ∈ {,,},
{} if N ∈ {,},
{,} if N ={}.

Then X
J = {,,,} and

QJ ;T (N) =
{
M ∈ T(N) : J

(
M,T(M)

)
+ (/)J(N,M) �H J

(
N,T(N)

)}

for N ∈ X
J since T(X

J ) ⊂ X
J . Hence:

QJ ;T () =
{
M ∈ {} : J(,) + (/)J(,)�H J(,)

}
= {};

QJ ;T () =
{
M ∈ {} : J(,) + (/)J(,)�H J(,)

}
= {};

QJ ;T () =
{
M ∈ {} : J(,) + (/)J(,) �H J(,)

}
= {};

and

QJ ;T () =
{
M ∈ {} : J(,) + (/)J(,) �H J(,)

}
= {}.

Assumptions (A)-(A) of Theorem . hold, End(T) = {(, ), (, )} and J((, ), (, )) =
J((, ), (, )) = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/176
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Remark . In Example ., we show that in our concept of HJ
� -contractive set-valued

dynamic systems, the existence of J -family such that J �= D is essential; from Exam-
ple ., it follows that formaps defined in Examples . and ., we cannot use Theorem.
when J = {p}.

Example . (a) LetX andT be such as in Example ..We observe that for each λ ∈ (, ),
T is notHp

λ-contractive on X.
Otherwise, J = p, X

p = X and

∃λ∈(,)∀N,M∈X
{
Hp(T(N),T(M)

) ≤ λp(N,M)
}
.

However, for N =  andM =  from X, we obtain:
(i) T(N) = {,} and T(M) = {,};
(ii) p(,T(M)) = p(, {,}) = (, ), p(,T(M)) = p(, {,}) = (, ) and

sup
{
p
(
U,T(M)

)
:U ∈ T(N)

}
= (, );

(iii) p(,T(N)) = p(, {,}) = (, ), p(,T(N)) = p(, {,}) = (, ) and

sup
{
p
(
V,T(N)

)
:V ∈ T(M)

}
= (, );

(iv) By (i)-(iii),

Hp(T(N),T(M)
)
= max

{
sup

{
p
(
U,T(M)

)
:U ∈ T(N)

}
,

sup
{
p
(
V,T(N)

)
:V ∈ T(M)

}}
= (, ).

Consequently, for each λ ∈ (, ),

(, ) = Hp(T(N),T(M)
) �H λp(N,M) ≺H p(N,M)

= p(,) = (, ).

It is absurd.
(b) LetX andT be such as in Example .. By similar argumentation as in (a), we observe

that for each λ ∈ (, ), T is notHp
λ-contractive on X.
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