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The purpose of this article is to introduce two iterative algorithms for finding a
common fixed point of a semigroup of asymptotically nonexpansive mappings which
is a unique solution of some variational inequality. We provide two algorithms, one
implicit and another explicit, from which strong convergence theorems are obtained
in a uniformly convex Banach space, which admits a weakly continuous duality
mapping. The results in this article improve and extend the recent ones announced
by Li et al. (Nonlinear Anal. 70:3065-3071, 2009), Zegeye et al. (Math. Comput. Model.
54:2077-2086, 2011) and many others.
MSC: 47H05; 47H09; 47H20; 47J25

Keywords: iterative approximation method; common fixed point; semigroup of
asymptotically nonexpansive mapping; strong convergence theorem; uniformly
convex Banach space

1 Introduction
Throughout this paper, we denote by N and R

+ the set of all positive integers and all pos-
itive real numbers, respectively. Let X be a real Banach space. A mapping T : X –→ X is
said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ X,

and T is asymptotically nonexpansive (see []) if there exists a sequence {kn} of positive
real numbers with limn–→∞ kn =  such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀n≥  and ∀x, y ∈ X.

We denote by Fix(T) the set of fixed points of T , i.e., Fix(T) = {x ∈ X : x = Tx}.
Recall that a self-mapping f : X –→ X is a contraction if there exists a constant α ∈ (, )

such that

∥∥f (x) – f (y)
∥∥ ≤ α‖x – y‖, ∀x, y ∈ X.

A one-parameter familyS = {T(t) : t ∈R
+} ofX into itself is said to be a strongly continuous

semigroup of Lipschitzian mappings if the following conditions are satisfied:
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(i) T()x = x for all x ∈ X ;
(ii) T(s + t) = T(s) ◦ T(t) for all s, t ∈R

+;
(iii) for each x ∈ X the mapping T(·)x from R

+ into X is continuous;
(iv) for each t > , there exists a bounded measurable function Lt : (,∞) –→ [,∞)

such that

∥∥T(t)x – T(t)y
∥∥ ≤ Lt‖x – y‖, ∀x, y ∈ X.

A strongly continuous semigroup of Lipschitzianmappings S is called strongly continuous
semigroup of nonexpansive mappings if Lt ≡  for all t >  and strongly continuous semi-
group of asymptotically nonexpansivemappings if lim supt–→∞ Lt ≤ . Note that for asymp-
totically nonexpansive semigroup S , we can always assume that the Lipschitzian constant
{Lt}t> is such that Lt ≥  for each t > , Lt is nonincreasing in t and limt–→∞ Lt = ; oth-
erwise, we replace Lt for each t >  with L̄t := max{sups≥t Ls, }. S is said to have a fixed
point if there exists x ∈ X such that T(t)x = x for all t ≥ . We denote by Fix(S) the set
of fixed points of S , i.e., Fix(S) =

⋂
t≥ Fix(T(t)) (for more details, see [–]).

A continuous operator of the semigroup S = {T(t) : t ∈ R
+} is said to be uniform-

ly asymptotically regular on X if for all h ≥  and any bounded subset C of X,
limt–→∞ supx∈C ‖T(h)T(t)tx–T(t)x‖ =  (see [] for examples of uniformly asymptotically
regular semigroups).
Recently, convergence theorems for commonfixed points of a strongly continuous semi-

group of nonexpansivemappings and their generalizations have been studied by numerous
authors (see, e.g., [–]). Construction of fixed points of nonexpansive mappings (and of
common fixed points of nonexpansive semigroups) is an important subject in the theory
of nonexpansive mappings and finds application in a number of applied areas, in partic-
ular, in image recovery and signal processing (see, e.g., [–]). In the last ten years, the
iterative methods for nonexpansive mappings have been applied to solve convex mini-
mization problems; see, e.g., [–]. Let H be a real Hilbert space, whose inner product
and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let A be a strongly positive bounded
linear operator on H ; that is, there is a constant γ̄ >  with the property

〈Ax,x〉 ≥ γ̄ ‖x‖ for all x ∈H . (.)

A typical problem is to minimize a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert space H :

min
x∈F



〈Ax,x〉 – 〈x,b〉, (.)

where C is the fixed point set of a nonexpansive mapping T on H and b is a given point
in H .
In , Xu [] proved that the sequence {xn} defined by the iterative method below,

with the initial guess x ∈H chosen arbitrarily,

xn+ = (I – αnA)Txn + αnu, ∀n≥ , (.)

converges strongly to the unique solution of the minimization problem (.) provided
the sequence {αn} satisfies certain conditions. Using the viscosity approximation method,
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Moudafi [] introduced the following iterative process for nonexpansive mappings (see
[] for further developments in both Hilbert and Banach spaces). Let f be a contraction
on H . Starting with an arbitrary initial x ∈H , we define the sequence {xn} recursively by

xn+ = σnf (xn) + ( – σn)Txn, ∀n≥ , (.)

where {σn} is a sequence in (, ). It is proved in [, ] that under certain appropriate
conditions imposed on {σn}, the sequence {xn} generated by (.) strongly converges to a
unique solution x* of the variational inequality

〈
(f – I)x*,x – x*

〉 ≤ , ∀x ∈ F(T). (.)

In , Marino and Xu [] combined the iterative method (.) with the viscosity ap-
proximation method (.) considering the following general iterative process:

xn+ = αnγ f (xn) + (I – αnA)Txn, ∀n≥ , (.)

where  < γ < γ̄

α
. They proved that the sequence {xn} generated by (.) converges strongly

to a unique solution x* of the variational inequality

〈
(γ f –A)x*,x – x*

〉 ≤ , ∀x ∈ F(T), (.)

which is the optimality condition for the minimization problem

min
x∈C



〈Ax,x〉 – h(x),

where h is a potential function for γ f (i.e., h′(x) = γ f (x) for x ∈H).
On the other hand, Li et al. [] considered the implicit and explicit viscosity iteration

processes for a nonexpansive semigroup S = {T(t) : t ∈ R
+} in a Hilbert space as follows:

xn = αnγ f (xn) + (I – αnA)

tn

∫ tn


T(s)xn ds, ∀n ∈ N, (.)

xn+ = αnγ f (xn) + (I – αnA)

tn

∫ tn


T(s)xn ds, ∀n ∈ N, (.)

where {αn} and {tn} are two sequences satisfying certain conditions. They proved the se-
quence {xn} defined by (.) and (.) converges strongly to x* ∈ Fix(S), which solves the
variational inequality (.). Under the framework of a uniformly convex Banach spacewith
a uniformly Gâteaux differentiable norm, Chen and Song [] studied the strong conver-
gence of the implicit and explicit viscosity iteration processes for a nonexpansive semi-
group S = {T(t) : t ∈R

+} with Fix(S) �= ∅ as follows:

xn = αnf (xn) + ( – αn)

tn

∫ tn


T(s)xn ds, ∀n ∈N, (.)

xn+ = αnf (xn) + ( – αn)

tn

∫ tn


T(s)xn ds, ∀n ∈N. (.)
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Very recently, Zegeye et al. [] introduced the implicit and explicit iterative processes for
a strongly continuous semigroup of asymptotically nonexpansive mappings S = {T(t) : t ∈
R

+} in a reflexive and strictly convex Banach spaces with a uniformly Gâteaux differen-
tiable norm as follows:

xn = αnu + ( – αn)

tn

∫ tn


T(s)xn ds, ∀n ∈N, (.)

xn+ = αnu + ( – αn)

tn

∫ tn


T(s)xn ds, ∀n ∈N. (.)

They proved that {xn} defined by (.) and (.) converges strongly to a common fixed
point of Fix(S) provided certain conditions are satisfied.
In this paper, motivated by the above results, we introduce two iterative algorithms for

finding a common fixed point of a semigroup of asymptotically nonexpansive mappings
which is a unique solution of some variational inequality. We establish the strong con-
vergence results in a uniformly convex Banach space which admits a weakly continuous
dualitymapping. The results in this article improve and extend the recent ones announced
by Li et al. [], Zegeye et al. [] and many others.

2 Preliminaries
Throughout this paper, we write xn ⇀ x (respectively xn ⇀* x) to indicate that the se-
quence {xn} weakly (respectively weak*) converges to x; as usual xn –→ x will symbolize
strong convergence; also, a mapping I will denote the identity mapping. Let X be a real
Banach space, X* be its dual space. Let U = {x ∈ X : ‖x‖ = }. A Banach space X is said to
be uniformly convex if, for each ε ∈ (, ], there exists a δ >  such that for each x, y ∈ U ,
‖x – y‖ ≥ ε implies ‖x+y‖

 ≤  – δ. It is know that a uniformly convex Banach space is re-
flexive and strictly convex (see also []). A Banach space is said to be smooth if the limit
limt–→

‖x+ty‖–‖x‖
t exists for each x, y ∈ U . It is also said to be uniformly smooth if the limit

is attained uniformly for x, y ∈U .
Let ϕ : [,∞) –→ [,∞) be a continuous strictly increasing function such that ϕ() = 

and ϕ(t) –→ ∞ as t –→ ∞. This function ϕ is called a gauge function. The dualitymapping
Jϕ : X –→ X* associated with a gauge function ϕ is defined by

Jϕ(x) =
{
f * ∈ X* :

〈
x, f *

〉
= ‖x‖ϕ(‖x‖),∥∥f *∥∥ = ϕ

(‖x‖),∀x ∈ X
}
,

where 〈·, ·〉 denotes the generalized duality paring. In particular, the duality mapping with
the gauge function ϕ(t) = t, denoted by J is referred to as the normalized duality mapping.
Clearly, the relation Jϕ(x) = ϕ(‖x‖)

‖x‖ J(x) holds for each x �=  (see []).
Browder [] initiated the study of certain classes of nonlinear operators by means of

the duality mapping Jϕ . Following Browder [], we say a Banach space X has a weakly
continuous duality mapping if there exits a gauge function ϕ for which the duality map-
ping Jϕ(x) is single-valued and continuous from the weak topology to the weak* topology;
that is, for each {xn} with xn ⇀ x, the sequence {J(xn)} converges weakly* to Jϕ(x). It is
known that lp has a weakly continuous duality mapping with a gauge function ϕ(t) = tp–

for all  < p < ∞. Set 	(t) =
∫ t
 ϕ(τ )dτ , ∀t ≥ , then Jϕ(x) = ∂	(‖x‖), where ∂ denotes the

subdifferential in the sense of convex analysis (recall that the subdifferential of the convex
function φ : X –→R at x ∈ X is the set ∂φ(x) = {x* ∈ X;φ(y) ≥ φ(x) + 〈x*, y – x〉,∀y ∈ X}).
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In a Banach space X which admits a duality mapping Jϕ with a gauge function ϕ, we say
that an operator A is strongly positive (see []) if there exists a constant γ̄ >  with the
property

〈
Ax, Jϕ(x)

〉 ≥ γ̄ ‖x‖ϕ(‖x‖) (.)

and

‖aI – bA‖ = sup
‖x‖≤

∣∣〈(aI – bA)x, Jϕ(x)
〉∣∣, a ∈ [, ],b ∈ [–, ]. (.)

As special cases of (.), we have the following results.
() If X is a smooth Banach space and ϕ(t) = t for all t ∈ X (see []), then the inequality

(.) reduces to

〈
Ax, J(x)

〉 ≥ γ̄ ‖x‖. (.)

() If X :=H is a real Hilbert space, then the inequality (.) reduces to (.).
The first part of the next lemma is an immediate consequence of the subdifferential

inequality and the proof of the second part can be found in [].

Lemma . ([]) Assume that a Banach space X has a weakly continuous duality map-
ping Jϕ with a gauge ϕ.

(i) For all x, y ∈ X , the following inequality holds:

	
(‖x + y‖) ≤ 	

(‖x‖) + 〈
y, Jϕ(x + y)

〉
.

(ii) Assume that a sequence {xn} in X converges weakly to a point x ∈ X . Then the
following identity holds:

lim sup
n–→∞

	
(‖xn – y‖) = lim sup

n–→∞
	

(‖xn – x‖) +	
(‖y – x‖), ∀x, y ∈ X.

Lemma . ([]) Assume that a Banach space X admits a duality mapping Jϕ with a
gauge ϕ. Let A be a strongly positive linear bounded operator on X with a coefficient γ̄ > 
and  < ρ ≤ ϕ()‖A‖–. Then ‖I – ρA‖ ≤ ϕ()( – ργ̄ ).

Definition. LetC be a closed convex subset of a real Banach spaceX. LetS = {T(t) : t ∈
R

+} be a strongly continuous semigroup of asymptotically nonexpansive mappings from
C into itself such that Fix(S) �= ∅. Then S is said to be almost uniformly asymptotically
regular (in short a.u.a.r.) on C, if for all h≥ ,

lim
t–→∞ sup

x∈C

∥∥∥∥t
∫ t


T(s)xds – T(h)

(

t

∫ t


T(s)xds

)∥∥∥∥ = .

Lemma . ([]) Let C be a closed convex subset of a uniformly convex Banach space X
and S = {T(t) : t ∈R

+} be a strongly continuous semigroup of asymptotically nonexpansive

http://www.fixedpointtheoryandapplications.com/content/2012/1/177
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mappings from C into itself with a sequence {Lt} ⊂ [,∞) such that Fix(S) �= ∅. Then for
each r >  and h ≥ ,

lim
t–→∞ sup

x∈C∩Br

∥∥∥∥t
∫ t


T(s)xds – T(h)

(

t

∫ t


T(s)xds

)∥∥∥∥ = .

Lemma . ([]) Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – σn)an + δn,

where {σn} is a sequence in (, ) and {δn} is a sequence in R such that
(i)

∑∞
n= σn = ∞;

(ii) lim supn–→∞
δn
σn

≤  or
∑∞

n= |δn| <∞.
Then limn–→∞ an = .

3 Implicit iteration scheme
Theorem . Let X be a uniformly convex Banach space which admits a weakly contin-
uous duality mapping Jϕ with a gauge ϕ such that ϕ is invariant on [, ]. Let S = {T(t) :
t ∈R

+} be a strongly continuous semigroup of asymptotically nonexpansive mappings from
X into itself with a sequence {Lt} ⊂ [,∞) such that Fix(S) �= ∅. Let f : X –→ X be a con-
traction mapping with a constant α ∈ (, ) and A : X –→ X be a strongly positive linear
bounded operator with a constant γ̄ ∈ (, ) such that  < γ < γ̄ ϕ()

α
. Let {xn} be a sequence

defined by

xn = αnγ f (xn) + (I – αnA)

tn

∫ tn


T(s)xn ds, ∀n≥ , (.)

where {αn} is a sequence in (, ) and {tn} is a positive real divergent sequence which satisfy
the following conditions:
(C) limn–→∞ αn = ;
(C) limn–→∞

( 
tn

∫ tn
 Ls ds)–

αn
= .

Then the sequence {xn} defined by (.) converges strongly to x* ∈ Fix(S), where x* is the
unique solution of the variational inequality

〈
γ f

(
x*

)
–Ax*, Jϕ

(
v – x*

)〉 ≤ , ∀v ∈ Fix(S). (.)

Proof First, we show that {xn} defined by (.) is well defined. For all n ∈ N, let us define
the mapping

Tf
n := αnγ f + (I – αnA)


tn

∫ tn


T(s)ds.

Indeed, for all x, y ∈ X, we have

∥∥Tf
nx – Tf

ny
∥∥ =

∥∥∥∥αnγ
(
f (x) – f (y)

)
+ (I – αnA)

(

tn

∫ tn



(
T(s)x – T(s)y

)
ds

)∥∥∥∥
≤ αnγ

∥∥f (x) – f (y)
∥∥ + ‖I – αnA‖

(

tn

∫ tn



∥∥T(s)x – T(s)y
∥∥ds

)

http://www.fixedpointtheoryandapplications.com/content/2012/1/177
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≤ αnγα‖x – y‖ + ϕ()( – αnγ̄ )
(

tn

∫ tn


Ls ds

)
‖x – y‖

≤
[

tn

∫ tn


Ls ds – ϕ()γ̄

(

tn

∫ tn


Ls ds

)
αn + γααn

]
‖x – y‖.

Since limn–→∞
( 
tn

∫ tn
 Ls ds)–

αn
=  implies

( 
tn

∫ tn
 Ls ds) – 

αn
< ϕ()γ̄ – γα ≤ ϕ()γ̄

(

tn

∫ tn


Ls ds

)
– γα,

for sufficiently large n≥ , that is,


tn

∫ tn


Ls ds – ϕ()γ̄

(

tn

∫ tn


Ls ds

)
αn + γααn < .

Thus, by the Banach contraction mapping principle, there exits a unique fixed point xn ∈
X, that is, {xn} defined by (.) is well defined.
Next, we show the uniqueness of a solution of the variational inequality (.). Suppose

that x̃,x* ∈ F(S) are solutions of (.), then

〈
γ f

(
x*

)
–Ax*, Jϕ

(
x̃ – x*

)〉 ≤  (.)

and

〈
γ f (x̃) –Ax̃, Jϕ

(
x* – x̃

)〉 ≤ . (.)

Adding up (.) and (.), we obtain

 ≥ 〈(
γ f

(
x*

)
–Ax*

)
–

(
γ f (x̃) –Ax̃

)
, Jϕ

(
x̃ – x*

)〉
=

〈
A

(
x̃ – x*

)
, Jϕ

(
x̃ – x*

)〉
– γ

〈
f (x̃) – f

(
x*

)
, Jϕ

(
x̃ – x*

)〉
≥ γ̄

∥∥x̃ – x*
∥∥ϕ

(∥∥x̃ – x*
∥∥)

– γ
∥∥f (x̃) – f

(
x*

)∥∥∥∥Jϕ(
x̃ – x*

)∥∥
≥ γ̄ 	

(∥∥x̃ – x*
∥∥)

– γα	
(∥∥x̃ – x*

∥∥)
= (γ̄ – γα)	

(∥∥x̃ – x*
∥∥)

≥ (
ϕ()γ̄ – γα

)
	

(∥∥x̃ – x*
∥∥)
,

which is a contradiction.Wemust have x̃ = x* and the uniqueness is proved. Below, we use
x̃ to denote the unique solution of the variational inequality (.).
Next, we show that {xn} is bounded. Take p ∈ Fix(S). Then from (.), we get that

‖xn – p‖ =
∥∥∥∥αn

(
γ f (xn) –Ap

)
+ (I – αnA)

(

tn

∫ tn


T(s)xn ds – p

)∥∥∥∥
≤ αn

∥∥γ f (xn) –Ap
∥∥ + ϕ()( – αnγ̄ )

∥∥∥∥ 
tn

∫ tn


T(s)xn ds – p

∥∥∥∥
≤ αnγ

∥∥f (xn) – f (p)
∥∥ + αn

∥∥γ f (p) –Ap
∥∥

+ ϕ()( – αnγ̄ )
(

tn

∫ tn


Ls ds

)
‖xn – p‖

http://www.fixedpointtheoryandapplications.com/content/2012/1/177
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≤
[

tn

∫ tn


Ls ds –

(
ϕ()γ̄

(

tn

∫ tn


Ls ds

)
– γα

)
αn

]
‖xn – p‖

+ αn
∥∥γ f (p) –Ap

∥∥.
It follows that

‖xn – p‖ ≤ 

ϕ()γ̄
(


tn

∫ tn
 Ls ds

)
– γα – dn

∥∥γ f (p) –Ap
∥∥,

where dn =
( 
tn

∫ tn
 Ls ds)–

αn
. Thus, there exists n≥  such that

‖xn – p‖ ≤ 
ϕ()γ̄ – γα

∥∥γ f (p) –Ap
∥∥.

Hence, {xn} is bounded, so are {f (xn)} and {A( 
tn

∫ tn
 T(s)xn ds)}.

Next, we show that ‖xn – T(h)xn‖ –→  as n –→ ∞. From (.), we note that

∥∥∥∥xn – 
tn

∫ tn


T(s)xn ds

∥∥∥∥ = αn

∥∥∥∥γ f (xn) –A
(

tn

∫ tn


T(s)xn ds

)∥∥∥∥.

By the condition (C), we obtain

lim
n–→∞

∥∥∥∥xn – 
tn

∫ tn


T(s)xn ds

∥∥∥∥ = . (.)

For all h≥ , we note that

∥∥xn – T(h)xn
∥∥ ≤

∥∥∥∥xn – 
tn

∫ tn


T(s)xn ds

∥∥∥∥
+

∥∥∥∥ 
tn

∫ tn


T(s)xn ds – T(h)

(

tn

∫ tn


T(s)xn ds

)∥∥∥∥
+

∥∥∥∥T(h)
(

tn

∫ tn


T(s)xn ds

)
– T(h)xn

∥∥∥∥
≤

∥∥∥∥xn – 
tn

∫ tn


T(s)xn ds

∥∥∥∥
+

∥∥∥∥ 
tn

∫ tn


T(s)xn ds – T(h)

(

tn

∫ tn


T(s)xn ds

)∥∥∥∥
+ Lh

∥∥∥∥xn – 
tn

∫ tn


T(s)xn ds

∥∥∥∥.

By Lemma . and (.), we obtain

lim
n–→∞

∥∥xn – T(h)xn
∥∥ =  for all h≥ . (.)

Next, we show that x̃ ∈ Fix(S). By reflexivity of X and boundedness of {xn}, there exists a
weakly convergent subsequence {xnj} of {xn} such that xnj ⇀ x̃ ∈ X as j –→ ∞. Since Jϕ is

http://www.fixedpointtheoryandapplications.com/content/2012/1/177
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weakly continuous, we have by Lemma . that

lim sup
j–→∞

	
(‖xnj – x‖) = lim sup

j–→∞
	

(‖xnj – x̃‖) +	
(‖x – x̃‖) for all x ∈ X.

Let H(x) = lim supj–→∞ 	(‖xnj – x‖) for all x ∈ X. It follows that

H(x) =H(x̃) +	
(‖x – x̃‖) for all x ∈ X.

Since 	 is continuous and limh–→∞ Lh = , it follows from (.) that

H
(
lim

h–→∞
T(h)x̃

)
= lim

h–→∞
H

(
T(h)x̃

)

= lim
h–→∞

lim sup
j–→∞

	
(∥∥xnj – T(h)x̃

∥∥)

= lim
h–→∞

lim sup
j–→∞

	
(∥∥T(h)xnj – T(h)x̃

∥∥)

≤ lim
h–→∞

lim sup
j–→∞

	
(
Lh‖xnj – x̃‖)

= lim sup
j–→∞

	
(‖xnj – x̃‖)

=H(x̃). (.)

On the other hand, we note that

H
(
lim

h–→∞
T(h)x̃

)
= lim

h–→∞
lim sup
j–→∞

	
(‖xnj – x̃‖) + lim

h–→∞
	

(∥∥T(h)x̃ – x̃
∥∥)

= lim sup
j–→∞

	
(‖xnj – x̃‖) +	

(
lim

h–→∞
∥∥T(h)x̃ – x̃

∥∥)
. (.)

Combining (.) and (.), we obtain 	(limh–→∞ ‖T(h)x̃ – x̃‖) ≤ . The property of 	

implies that limh–→∞ T(h)x̃ = x̃. In fact, since T(t + h)x = T(t)T(h)x for all x ∈ X and t ≥ ,
then we have

x̃ = lim
h–→∞

T(h)x̃ = lim
h–→∞

T(h + t)x̃ = lim
h–→∞

T(h)T(t)x̃

= T(t) lim
h–→∞

T(h)x̃ = T(t)x̃,

for all t ≥ . Hence, x̃ ∈ Fix(S).
Next, we show that {xn} is sequentially compact. Since 	(t) =

∫ t
 ϕ(τ )dτ , ∀t ≥  and

ϕ : [,∞) –→ [,∞) is the gauge function, then for ≥ k ≥ , ϕ(ky) ≤ ϕ(y) and

	(kt) =
∫ kt


ϕ(τ )dτ = k

∫ t


ϕ(ky)dy≤ k

∫ t


ϕ(y)dy = k	(t).
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By Lemma ., we have

	
(‖xn – x̃‖) = 	

(∥∥∥∥αn
(
γ f (xn) –Ax̃

)
+ (I – αnA)

(

tn

∫ tn


T(s)xn ds – x̃

)∥∥∥∥
)

≤ 	

(∥∥∥∥(I – αnA)
(

tn

∫ tn


T(s)xn ds – x̃

)∥∥∥∥
)
+ αn

〈
γ f (xn) –Ax̃, Jϕ(xn – x̃)

〉

= 	

(∥∥∥∥(I – αnA)
(

tn

∫ tn


T(s)xn ds – x̃

)∥∥∥∥
)
+ αnγ

〈
f (xn) – f (x̃), Jϕ(xn – x̃)

〉

+ αn
〈
γ f (x̃) –Ax̃, Jϕ(xn – x̃)

〉

≤
[

tn

∫ tn


Ls ds –

(
ϕ()γ̄ – γα

)
αn

]
	

(‖xn – x̃‖)

+ αn
〈
γ f (x̃) –Ax̃, Jϕ(xn – x̃)

〉
,

which implies that

	
(‖xn – x̃‖) ≤ 

ϕ()γ̄ – γα – dn

〈
γ f (x̃) –Ax̃, Jϕ(xn – x̃)

〉
,

where dn =
( 
tn

∫ tn
 Ls ds)–

αn
. Thus, there exists n≥  such that

	
(‖xn – x̃‖) ≤ 

ϕ()γ̄ – γα

〈
γ f (x̃) –Ax̃, Jϕ(xn – x̃)

〉
.

In particular, we have

	
(‖xnj – x̃‖) ≤ 

ϕ()γ̄ – γα

〈
γ f (x̃) –Ax̃, Jϕ(xnj – x̃)

〉
. (.)

Since Jϕ is single-valued and weakly continuous, it follows that 	(‖xnj – x̃‖) –→  as j –→
∞. The property of 	 implies that xnj –→ x̃ as j –→ ∞.
Next, we show that x̃ solves the variational inequality (.). From (.), we derive that

A
(

tn

∫ tn


T(s)xn ds

)
– γ f (xn) =


αn

(

tn

∫ tn


T(s)xn ds – xn

)
. (.)

For all v ∈ Fix(S), it follows from (.) that
〈
A

(

tn

∫ tn


T(s)xn ds

)
– γ f (xn), Jϕ(xn – v)

〉

=

αn

〈

tn

∫ tn


T(s)xn ds – xn, Jϕ(xn – v)

〉

=

αn

[〈

tn

∫ tn


T(s)xn ds – v, Jϕ(xn – v)

〉
–

〈
xn – v, Jϕ(xn – v)

〉]

≤ 
αn

[(

tn

∫ tn


Ls ds

)
	

(‖xn – v‖) –	
(‖xn – v‖)

]

=
( 
tn

∫ tn
 Ls ds) – 

αn
	

(‖xn – v‖). (.)
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Now, replacing n by nj in (.) and letting j –→ ∞, we notice that

xnj –

tnj

∫ tnj


T(s)xnj ds –→ .

By the condition (C), we obtain that

〈
γ f (x̃) –Ax̃, Jϕ(v – x̃)

〉 ≤ , ∀v ∈ Fix(S).

That is, x̃ is a solution of the variational inequality (.).
Finally, we show that {xn} converges strongly to x̃ ∈ Fix(S). Suppose that there exists

another subsequence xni –→ x̂ as j –→ ∞. We note that x̂ ∈ Fix(S) is the solution of the
variational inequality (.). Hence, x̃ = x̂ = x* by uniqueness. In summary, we have shown
that {xn} is sequentially compact and each cluster point of the sequence {xn} is equal to x*.
Therefore, we conclude that xn –→ x* as n –→ ∞. This proof is complete. �

Remark . Theorem . extends and generalizes Theorem . of Zegeye et al. [], The-
orem . of Chen and Song [] and Theorem . of [], in the following respects:
() Theorem . generalizes Theorem . of Zegeye et al. [] to the viscosity iterative

method in a different Banach space which admits a weakly continuous duality mapping.
() Theorem . improves Theorem . of Zegeye et al. [] in the sense that our theorem

is applicable in a uniformly convex Banach space without the requirement that S = {T(t) :
t ∈R

+} is almost uniformly asymptotically regular.
() Theorem . extends Theorem . of Chen and Song [] from a class of strongly

continuous semigroups of nonexpansivemappings to amore general class of strongly con-
tinuous semigroups of asymptotically nonexpansive mappings.
() Theorem . includes Theorem . of Li et al. [] as a special case.

If S = {T(t) : t ∈R
+} is a strongly continuous semigroup of nonexpansive mappings, we

have Lt ≡  and then Theorem . is reduced to the following results.

Corollary . Let X be a uniformly convex Banach space which admits a weakly continu-
ous duality mapping Jϕ with a gauge ϕ such that ϕ is invariant on [, ]. Let S = {T(t) : t ∈
R

+} be a strongly continuous semigroup of nonexpansive mappings from X into itself such
that Fix(S) �= ∅. Let f : X –→ X be a contraction mapping with a constant α ∈ (, ) and
A : X –→ X be a strongly positive linear bounded operator with a constant γ̄ ∈ (, ) such
that  < γ < γ̄ ϕ()

α
. Let {xn} be a sequence defined by

xn = αnγ f (xn) + (I – αnA)

tn

∫ tn


T(s)xn ds, ∀n≥ , (.)

where {αn} is a sequence in (, ) such that limn–→∞ αn =  and {tn} is a positive real diver-
gent sequence. Then the sequence {xn} defined by (.) converges strongly to x* ∈ Fix(S),
where x* is the unique solution of the variational inequality

〈
γ f

(
x*

)
–Ax*, Jϕ

(
v – x*

)〉 ≤ , ∀v ∈ Fix(S). (.)
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Corollary . (Li et al. [, Theorem .]) Let H be a real Hilbert space and C be a
nonempty closed convex subset of X such that C ± C ⊂ C. Let S = {T(t) : t ∈ R

+} be
a strongly continuous semigroup of nonexpansive mappings from C into itself such that
Fix(S) �= ∅. Let f : C –→ C be a contraction mapping with a constant α ∈ (, ) and
A : C –→ C be a strongly positive linear bounded operator with a constant γ̄ ∈ (, ) such
that  < γ < γ̄

α
. Let {xn} be a sequence defined by

xn = αnγ f (xn) + (I – αnA)

tn

∫ tn


T(s)xn ds, ∀n≥ , (.)

where {αn} is a sequence in (, ) such that limn–→∞ αn =  and {tn} is a positive real diver-
gent sequence. Then the sequence {xn} defined by (.) converges strongly to x* ∈ Fix(S),
where x* is the unique solution of the variational inequality

〈
γ f

(
x*

)
–Ax*, v – x*

〉 ≤ , ∀v ∈ Fix(S). (.)

4 Explicit iteration scheme
Theorem . Let X be a uniformly convex Banach space which admits a weakly contin-
uous duality mapping Jϕ with a gauge ϕ such that ϕ is invariant on [, ]. Let S = {T(t) :
t ∈R

+} be a strongly continuous semigroup of asymptotically nonexpansive mappings from
X into itself with a sequence {Lt} ⊂ [,∞) such that Fix(S) �= ∅. Let f : X –→ X be a con-
traction mapping with a constant α ∈ (, ) and A : X –→ X be a strongly positive linear
bounded operator with a constant γ̄ ∈ (, ) such that  < γ < γ̄ ϕ()

α
. For given x ∈ X, let

{xn} be a sequence defined by

xn+ = αnγ f (xn) + (I – αnA)

tn

∫ tn


T(s)xn ds, ∀n≥ , (.)

where {αn} is a sequence in (, ) and {tn} is a positive real divergent sequence which satisfy
the following conditions:
(C) limn–→∞ αn =  and

∑∞
n= αn = ∞;

(C) limn–→∞
( 
tn

∫ tn
 Ls ds)–

αn
= .

Then the sequence {xn} defined by (.) converges strongly to x* ∈ Fix(S), where x* is the
unique solution of the variational inequality

〈
γ f

(
x*

)
–Ax*, Jϕ

(
v – x*

)〉 ≤ , ∀v ∈ Fix(S). (.)

Proof By the condition limn–→∞ αn = , we may assume, with no loss of generality, that
αn ≤ ϕ()‖A‖– for all n ∈ N. By Lemma ., we have ‖I – αnA‖ ≤ ϕ()( – αnγ̄ ). First, we
show that {xn} is bounded. Take p ∈ Fix(S) and  < ε < ϕ()γ̄ – γα.

Since limn–→∞
( 
tn

∫ tn
 Ls ds)–

αn
=  implies ϕ()( – αnγ̄ )[( 

tn

∫ tn
 Ls ds) – ] ≤ εαn for suffi-

ciently large n≥ . Then from (.), we get that

‖xn+ – p‖ =
∥∥∥∥αn

(
γ f (xn) –Ap

)
+ (I – αnA)

(

tn

∫ tn


T(s)xn ds – p

)∥∥∥∥
≤ αn

∥∥γ f (xn) –Ap
∥∥ + ϕ()( – αnγ̄ )

∥∥∥∥ 
tn

∫ tn


T(s)xn ds – p

∥∥∥∥
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≤ αnγ
∥∥f (xn) – f (p)

∥∥ + αn
∥∥γ f (p) –Ap

∥∥
+ ϕ()( – αnγ̄ )

(

tn

∫ tn


Ls ds

)
‖xn – p‖

≤
[
 –

(
ϕ()γ̄ – γα

)
αn + ϕ()( – αnγ̄ )

[(

tn

∫ tn


Ls ds

)
– 

]]
‖xn – p‖

+ αn
∥∥γ f (p) –Ap

∥∥
≤ (

 –
(
ϕ()γ̄ – γα – ε

)
αn

)‖xn – p‖ + αn
∥∥γ f (p) –Ap

∥∥

=
(
 –

(
ϕ()γ̄ – γα – ε

)
αn

)‖xn – p‖ + (
ϕ()γ̄ – γα – ε

)
αn

‖γ f (p) –Ap‖
ϕ()γ̄ – γα – ε

.

By induction, we have

‖xn – p‖ ≤ max

{
‖x – p‖, ‖γ f (p) –Ap‖

ϕ()γ̄ – γα – ε

}
, ∀n≥ .

Hence, {xn} is bounded, so are {f (xn)} and {A( 
tn

∫ tn
 T(s)xn ds)}.

Next, we show that ‖xn – T(h)xn‖ –→  as n –→ ∞. From (.), we note that

∥∥∥∥xn+ – 
tn

∫ tn


T(s)xn ds

∥∥∥∥ = αn

∥∥∥∥γ f (xn) –A
(

tn

∫ tn


T(s)xn ds

)∥∥∥∥.

By the condition (C), we obtain

lim
n–→∞

∥∥∥∥xn+ – 
tn

∫ tn


T(s)xn ds

∥∥∥∥ = . (.)

For all h≥ , we note that

∥∥xn+ – T(h)xn+
∥∥ ≤

∥∥∥∥xn+ – 
tn

∫ tn


T(s)xn ds

∥∥∥∥
+

∥∥∥∥ 
tn

∫ tn


T(s)xn ds – T(h)

(

tn

∫ tn


T(s)xn ds

)∥∥∥∥
+

∥∥∥∥T(h)
(

tn

∫ tn


T(s)xn ds

)
– T(h)xn+

∥∥∥∥
≤

∥∥∥∥xn+ – 
tn

∫ tn


T(s)xn ds

∥∥∥∥
+

∥∥∥∥ 
tn

∫ tn


T(s)xn ds – T(h)

(

tn

∫ tn


T(s)xn ds

)∥∥∥∥
+ Lh

∥∥∥∥xn+ – 
tn

∫ tn


T(s)xn ds

∥∥∥∥.

By Lemma . and (.), we obtain limn–→∞ ‖xn+ – T(h)xn+‖ =  and hence

lim
n–→∞

∥∥xn – T(h)xn
∥∥ =  for all h≥ . (.)
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Next, we show that

lim sup
n–→∞

〈
γ f

(
x*

)
–Ax*, Jϕ

(
xn – x*

)〉 ≤ .

Let {xnj} be a subsequence of {xn} such that

lim
j–→∞

〈
γ f

(
x*

)
–Ax*, Jϕ

(
xnj – x*

)〉
= lim sup

n–→∞

〈
γ f

(
x*

)
–Ax*, Jϕ

(
xn – x*

)〉
.

By reflexivity of X and boundedness of {xn}, there exists a weakly convergent subsequence
{xnj} of {xn} such that xnj ⇀ v ∈ X as j –→ ∞. Since Jϕ is weakly continuous, we have by
Lemma . that

lim sup
j–→∞

	
(‖xnj – x‖) = lim sup

j–→∞
	

(‖xnj – v‖) +	
(‖x – v‖) for all x ∈ X.

Let H(x) = lim supj–→∞ 	(‖xnj – x‖) for all x ∈ X. It follows that

H(x) =H(v) +	
(‖x – v‖) for all x ∈ X.

Since 	 is continuous and limh–→∞ Lh = , it follows from (.) that

H
(
lim

h–→∞
T(h)v

)
= lim

h–→∞
H

(
T(h)v

)

= lim
h–→∞

lim sup
j–→∞

	
(∥∥xnj – T(h)v

∥∥)

= lim
h–→∞

lim sup
j–→∞

	
(∥∥T(h)xnj – T(h)v

∥∥)

≤ lim
h–→∞

lim sup
j–→∞

	
(
Lh‖xnj – v‖)

= lim sup
j–→∞

	
(‖xnj – v‖)

=H(x̃). (.)

On the other hand, we note that

H
(
lim

h–→∞
T(h)v

)
= lim

h–→∞
lim sup
j–→∞

	
(‖xnj – v‖) + lim

h–→∞
	

(∥∥T(h)v – v
∥∥)

= lim sup
j–→∞

	
(‖xnj – v‖) +	

(
lim

h–→∞
∥∥T(h)v – v

∥∥)
. (.)

Combining (.) and (.), we obtain 	(limh–→∞ ‖T(h)v – v‖) ≤ . The property of 	

implies that limh–→∞ T(h)v = v. In fact, since T(t + h)x = T(t)T(h)x for all x ∈ X and t ≥ ,
then we have

v = lim
h–→∞

T(h)v = lim
h–→∞

T(h + t)v = lim
h–→∞

T(h)T(t)v = T(t) lim
h–→∞

T(h)v = T(t)v,
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for all t ≥ . Hence, v ∈ Fix(S). Since Jϕ is single-valued and weakly continuous, we obtain
that

lim sup
n–→∞

〈
γ f

(
x*

)
–Ax*, Jϕ

(
xn – x*

)〉
= lim

j–→∞
〈
γ f

(
x*

)
–Ax*, Jϕ

(
xnj – x*

)〉

=
〈
γ f

(
x*

)
–Ax*, Jϕ

(
v – x*

)〉 ≤ . (.)

Finally, we show that xn –→ x* as n –→ ∞. Now, from Lemma ., we have

	
(∥∥xn+ – x*

∥∥)

= 	

(∥∥∥∥αn
(
γ f (xn) –Ax*

)
+ (I – αnA)

(

tn

∫ tn


T(s)xn ds – x*

)∥∥∥∥
)

= 	

(∥∥∥∥αnγ
(
f (xn) – f

(
x*

))
+ αn

(
γ f

(
x*

)
–Ax*

)

+ (I – αnA)
(

tn

∫ tn


T(s)xn ds – x*

)∥∥∥∥
)

≤ 	

(∥∥∥∥αnγ
(
f (xn) – f

(
x*

))
+ (I – αnA)

(

tn

∫ tn


T(s)xn ds – x*

)∥∥∥∥
)

+ αn
〈
γ f

(
x*

)
–Ax*, Jϕ

(
xn+ – x*

)〉

≤ 	

({
 –

(
ϕ()γ̄ – γα

)
αn + ϕ()( – αnγ̄ )

[(

tn

∫ tn


Ls ds

)
– 

]}∥∥xn – x*
∥∥)

+ αn
〈
γ f

(
x*

)
–Ax*, Jϕ

(
xn+ – x*

)〉
≤ (

 –
(
ϕ()γ̄ – γα

)
αn

)
	

(∥∥xn – x*
∥∥)

+ ϕ()( – αnγ̄ )
[(


tn

∫ tn


Ls ds

)
– 

]
	

(∥∥xn – x*
∥∥)

+ αn
〈
γ f

(
x*

)
–Ax*, Jϕ

(
xn+ – x*

)〉
≤ (

 –
(
ϕ()γ̄ – γα

)
αn

)
	

(∥∥xn – x*
∥∥)

+ ϕ()( – αnγ̄ )
[(


tn

∫ tn


Ls ds

)
– 

]
M + αn

〈
γ f

(
x*

)
–Ax*, Jϕ

(
xn+ – x*

)〉
, (.)

whereM = supn≥{	(‖xn – x*‖)}. Put σn := (ϕ()γ̄ – γα)αn and

δn := ϕ()( – αnγ̄ )
[(


tn

∫ tn


Ls ds

)
– 

]
M + αn

〈
γ f

(
x*

)
–Ax*, Jϕ

(
xn+ – x*

)〉
.

Then (.) reduces to formula

	
(∥∥xn+ – x*

∥∥) ≤ ( – σn)	
(∥∥xn – x*

∥∥)
+ δn.

It follows from the conditions (C), (C) and (.) that
∑∞

n= σn = ∞ and

lim sup
n–→∞

δn

σn
= lim sup

n–→∞


ϕ()γ̄ – γα

[
ϕ()( – αnγ̄ )[( 

tn

∫ tn
 Ls ds) – ]

αn
M

+
〈
γ f

(
x*

)
–Ax*, Jϕ

(
xn+ – x*

)〉] ≤ .
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Hence, by Lemma ., we obtain that 	(‖xn+ – x*‖) –→  as n –→ ∞. The property of 	
implies that xn –→ x* as n –→ ∞. This proof is complete. �

Applications . Let X be a uniformly convex Banach space which admits a weakly con-
tinuous duality mapping. Let L(X) be the space of all bounded linear operators on X. For
� ∈ L(X), define S := {T(t) : t ∈ R

+} of bounded linear operators by using the following
exponential expression:

T(t) = e–t� :=
∞∑
k=

(–)k

k!
tk�k .

Then, clearly, the family S := {T(t) : t ∈ R
+} satisfies the semigroup properties. More-

over, this family forms a one-parameter semigroup of self-mappings of X because et� =
[e–t� ]– : X –→ X exists for each t ∈R

+.

Next, the following example shows that all conditions of Theorem . are satisfied.

Example . For instance, let αn =

n
, tn = n and Lt = + 

t+ . Then, clearly, the sequences
{αn}, {tn} and {Lt} satisfy our assumptions and the condition (C) in Theorem .. We
show that the condition (C) is achieved. Indeed, we have


tn

∫ tn
 Ls ds – 

αn
=


n

∫ n
 ( + 

s+ )ds – 
/n

= n
{ 
n

(
s + ln(s + )|n

)
– 

}

= n
{ 
n

(
n + ln

(
n + 

))
– 

}

=
ln

(
n + 

)
n

–→ , as n –→ ∞.

Furthermore, if we take � ∈ L(X) such that ‖T(t)‖ ≤  + 
t+ and Fix(S) �= ∅ (see, e.g.,

p. of []) then the sequence {xn} defined by (.) converges strongly to x* ∈ Fix(S).

Remark . Theorem . extends and generalizes Theorem . of Zegeye et al. [], The-
orem . of Chen and Song [] and Theorem . of Li et al. [] in the following respects:
() Theorem . generalizes Theorem . of Zegeye et al. [] to the viscosity iterative

method in a different Banach space which admits a weakly continuous duality mapping.
() Theorem . improves Theorem . of Zegeye et al. [] in the sense that our theorem

is applicable in a uniformly convex Banach space without the requirement that S = {T(t) :
t ∈R

+} is almost uniformly asymptotically regular.
() Theorem . extends Theorem . of Chen and Song [] from a class of strongly

continuous semigroups of nonexpansivemappings to amore general class of strongly con-
tinuous semigroups of asymptotically nonexpansive mappings.
() Theorem . includes Theorem . of Li et al. [] as a special case.

If S = {T(t) : t ∈R
+} is a strongly continuous semigroup of nonexpansive mappings, we

have Lt ≡  and then Theorem . is reduced to the following result.
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Corollary . Let X be a uniformly convex Banach space which admits a weakly continu-
ous duality mapping Jϕ with a gauge ϕ such that ϕ is invariant on [, ]. Let S = {T(t) : t ∈
R

+} be a strongly continuous semigroup of nonexpansive mappings from X into itself such
that Fix(S) �= ∅. Let f : X –→ X be a contraction mapping with a constant α ∈ (, ) and
A : X –→ X be a strongly positive linear bounded operator with a constant γ̄ ∈ (, ) such
that  < γ < γ̄ ϕ()

α
. For given x ∈ C, let {xn} be a sequence defined by

xn+ = αnγ f (xn) + (I – αnA)

tn

∫ tn


T(s)xn ds, ∀n≥ , (.)

where {αn} is a sequence in (, ) such that limn–→∞ αn =  and
∑∞

n= αn = ∞, and {tn} is a
positive real divergent sequence. Then the sequence {xn} defined by (.) converges strongly
to x* ∈ Fix(S), where x* is the unique solution of the variational inequality

〈
γ f

(
x*

)
–Ax*, Jϕ

(
v – x*

)〉 ≤ , ∀v ∈ Fix(S). (.)

Corollary . (Li et al. [, Theorem .]) Let H be a real Hilbert space and C be a
nonempty closed convex subset of X such that C ± C ⊂ C. Let S = {T(t) : t ∈ R

+} be
a strongly continuous semigroup of nonexpansive mappings from C into itself such that
Fix(S) �= ∅. Let f : C –→ C be a contraction mapping with a constant α ∈ (, ) and
A : C –→ C be a strongly positive linear bounded operator with a constant γ̄ ∈ (, ) such
that  < γ < γ̄

α
. For given x ∈ C, let {xn} be a sequence defined by

xn+ = αnγ f (xn) + (I – αnA)

tn

∫ tn


T(s)xn ds, ∀n≥ , (.)

where {αn} is a sequence in (, ) such that limn–→∞ αn =  and
∑∞

n= αn = ∞, and {tn} is a
positive real divergent sequence. Then the sequence {xn} defined by (.) converges strongly
to x* ∈ Fix(S), where x* is the unique solution of the variational inequality

〈
γ f

(
x*

)
–Ax*, v – x*

〉 ≤ , ∀v ∈ Fix(S). (.)
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