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1 Introduction and preliminaries
Recently, Babu and Alemayehu [1] proved the following results as improvements over
the relevant ones presented in Kameswari [2].

Proposition 1.1. [1] Let A, B, S and T be four self maps of a metric space (X, d)
satisfying the inequality

[d(Ax, By)]* < ¢ max{[d(Sx, Ax)]?, [d(Ty, By)]?, [d(Sx, Ty)]*}

+cp max{d(Sx, Ax)d(Sx, By), d(Ty, Ax)d(Ty, By)} + c3d(Ty, Ax)d(Sx, By) @D

for all w, y € X where ¢y, ¢35, ¢3 2 0 and ¢; + ¢3 < 1. If either

(i) B(X) € S(X), the pair (B, T) satisfies the property (E.A.) and T(X) is a closed
subset of X, or

(if) A(X) € T(X), the pair (A4, S) satisfies the property (E.A.) and S(X) is a closed
subset of X,

then the pairs (4, S) and (B, T) have a coincidence point each.
Theorem 1.1. [1] If, in addition to the hypotheses of Proposition 1.1, both the pairs
(A, S) and (B, T) are occasionally weakly compatible, then the maps A, B, S and T have

a unique common fixed point in X.
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Proposition 1.2. [1] Let A, B, S and T be four self-maps of a metric space (X, d)
satisfying the inequality (1.1) (of Proposition (1.1)). If the pairs (4, S) and (B, T) share
the common property (E.A.) and S(X) as well as T(X) are closed subsets of X, then the
pairs (4, S) and (B,T) have a coincidence point each.

Theorem 1.2. [1] If, in addition to the hypotheses of Proposition 1.2, both the pairs
(A, S) and (B, T) are occasionally weakly compatible, then the maps A, B, S and T have
a unique common fixed point in X.

First, we point out that preceding results can be deduced as corollaries of Theorem
3.1 due to Ali and Imdad [3] which runs as follows.

Theorem 1.3. [3] Let A, B, S and T be four self maps of a metric space (X, d) satisfy-
ing the inequality

F(d(Ax, By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Sx, By), d(Ty, Ax)) <0 (1.2)

for all v, y € X and F € ¥, where YV is the class of lower semi-continuous (in short L
s.c.) functions F : R® — R enjoying the following properties:

F, F(£,0,t,0,0,t) > 0, for all ¢ > 0;

F, F(t,0,0,t,t0) > 0, for all ¢ > 0;

F; F(£,t,0,0,t,t) > 0, for all t > 0.

Suppose that

(i) the pairs (4, S) and (B,T) share the common property (E.A.),
(ii) S(X) and T(X) are closed subsets of X.

Then the pairs (4, S) and (B, T) have a coincidence point each. Moreover, 4, B, S,
and T have a unique common fixed point provided both the pairs (4, S) and (B,T) are
weakly compatible.

Recently, Gopal et al. [4] extended Theorem 1.3 to symmetric spaces involving a
sequence of mappings in symmetric spaces. In order to state this result, we need some
terminology which can be summarize as follows:

A symmetric d in respect of a non-empty set X is a function d: X x X — [0, )
which satisfies d(x, y) = d(y, x) and d(x, ) = 0 & x = y(for all x, y € X). If d is a sym-
metric on a set X, then for x € X and € > 0, we write B(x, €) = {y € X: d(x, y) <¢}. A
topology 7(d) on X is given by the sets U (along with empty set) in which for each x €
U, one can find some € > 0 such that B(x, €) € U. A set S © X is a neighborhood of x
€ X if and only if there is a U containing x such that x € U © S. A symmetric d is
said to be a semi-metric if for each x € X and for each ¢ > 0, B(x, ¢) is a neighborhood
of x in the topology 7(d). Thus a symmetric (resp., a semi-metric) space X is a topolo-
gical space whose topology 7(d) on X is induced by a symmetric (resp., a semi-metric)
d. Notice that nlggo d(xn,x) = 0 if and only if x, — x in the topology 7(d). The distinc-
tion between a symmetric and a semi-metric is apparent as one can easily construct a
symmetric d such that B(x, €) need not be a neighborhood of x in 7(d). As symmetric
spaces are not essentially Hausdorff and the symmetric d is also not continuous in
general, therefore in order to prove fixed point theorems some additional axioms are
required.
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The following axioms are relevant to this note which are available in Aliouche [5],
Galvin and Shore [6], Hicks and Rhoades [7], and Wilson [8]. From now on symmetric
as well as semi-metric spaces will be denoted by (X, ).

(W3): (cf. [8]) Given {x,}, x and y in X with d(x,, x) > 0 and d(x,, y) — 0 imply x =
y.

(10): (cf. [9]) A symmetric d is said to be 1-continuous if nlggo d(xn,x) =0 implies
lim d(xp,y) = d(x,y)

n—oo

(HE): (cf. [5]) Given {x,}, {y,} and an x in X with d(x,, x) — 0 and d(y,, x) — 0 imply
d*x,, y,) > 0.

Now we are equipped to state the following theorem.

Theorem 1.4. (cf. [4]) Let (X, d) be a symmetric space satisfying (1C) and (HE). Let
S, T, Ay, for k = 1, 2,...,, be self mappings of X satisfying the inequality

¢ (d(A1x, Ary), d(Sx, Ty), d(Sx, A1x), d(Ty, Ary), d(Sx, Ary), d(Ty, A1x)) <0,  (1.3)

for all x, y e X and ¢ € V. Suppose that the pairs (A;, S) and (A;,T) for k > 1 share
the common property (E.A.), S(X) and T(X) are closed subsets of X. Then the pairs
(A1,S) and (A, T) have a coincidence point. Moreover S, T and A; have a unique com-
mon fixed point provided both the pairs (4;, S) and (A, T) for each k > 1 are weakly
compatible.

In the event of single valued pair of maps, the notion of occasional weak compatibil-
ity reduces to weak compatibility due to unique coincidence point of the underlying
maps (see [10]) which is always ensured by underlying contraction condition. Hence,
weak compatibility remains the minimal commutativity condition for the existence of
common fixed point for contractive type mappings.

In fact, it was claimed by some authors (e.g., [11,12]) that the notion of occasional
weak compatibility relaxes the requirement of completeness as well as closedness con-
dition on underlying space or subspaces in proving common fixed point theorems for
contractive type mappings.

Now, there arises a natural question: “which optimal class of mappings will do the
job?” The present article is an attempt to give an affirmative answer of the above ques-
tion. In this perspective, we utilize the combined idea of R-weakly commuting of type
(Ag) due to Pathak et al. [13] together with sequentially continuity of type (Ag) (also
alternately R-weakly commuting of type (Af) due to Pathak et al. [13] together with
sequentially continuity of type (Af)).

Before presenting our main results, we recall the relevant definitions and results
needed in our latter discussion. For details, we refer to [1,3,13,14] and references men-
tioned therein.

Definition 1.1. A pair (f;, g) of self maps defined on a metric space (X, d) is said to
be:

(i) compatible if nlg{.lo d(fgxn, &fxn) = 0, whenever {x,} is a sequence in X such that

lim fx, = lim g%, =t for some t € X,
n— 00 n—00
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(ii) non-compatible if there exists some sequence {x,} in X such that

lim fx, = lim gxy =t for some ¢ € X but lim d(fgxn, &fxn) is either non-zero or
n—00 n—00 n—oo

non-existent,

(iii) R-weakly commuting of type (Ag) on X if d(ffx, gfx) < Rd(fx, gx) for some R > 0,
where x varies over X,

(iv) R-weakly commuting of type (Af) on X if d(fgx, ggx) < Rd(fx, gx) for some R >
0, where x varies over X,

(v) weakly compatible (or partially commuting or coincidentally commuting) if f
and g commute on the set of coincidence points, that is, if fx = gx for some x in X
implies that fgx = gfx,

(vi) occasionally weakly compatible iff there is a point x in X which is a coincidence
point of fand g at which fand g commutes, i.e., there exist a point x in X such that
fx = gx and fox = gfx,

(vii) sub-compatible iff there exists a sequence {x,} in X such that

nlggof Xn = nlgrolo 8% =1 for some ¢ € X and which satisfy nlggo d(f8xn, &fxn) = 0,

(viii) tangential (or satisfying the property (E.A.)) if there exists a sequence {x,} in X
such that lim fx, = lim gx, = ¢ for some t e X,
n— o0 n— o0
(ix) reciprocally continuous if lim f&xn = ft and lim gfxn = gt whenever {x,} is a
n—o0 n— o0
sequence in X such that 1im fx, = lim gx, = ¢ for some t e X,
n— 00 n—o0o
(x) sub-sequential continuous iff there exists a sequence {x,} in X such that lim,_,..,

fx, = lim, ,. gx, = t for some ¢ € X and which satisfy ’}Lnolofgxn =ft and

lim gfx, =gt
n— 00

For further information on weak commutativity conditions, one is also referred
[15,16]. Notice that (iii) and (iv)=(v)=(vi)=(vii) but the converse implications are not
true. Let us agree to call a pair (f, g) of maps to be nonvacuously reciprocally continu-
ous if there exists at least one sequence meeting the requirement of the definition of
reciprocal continuity. Otherwise, the pair of maps (f, g) may be termed as vacuously
reciprocally continuous. Notice that every nonvacuously reciprocally continuous pair of
maps (f, g) is naturally sub-sequentially continuous. However, there do exist sub-
sequentially continuous pairs of maps which are neither continuous nor reciprocally
continuous [14].

Before proving our results, it can be pointed out that earlier stated results of Babu
and Alemayehu [1] can be deduced from Theorem 1.3 as inequality (1.1) falls in the
format of implicit relation utilized in Ali and Imdad [3] while the notions of weak
compatibility and occasional weak compatibility coincide in the presence of contraction
conditions. One may also notice that improved versions of earlier stated results can
also be deduced from Theorem 1.4 contained in [4].

2 Main results

Motivated by the authors of [13,14,17], we introduce the following definitions.
Definition 2.1. A pair (f;, ) of self maps defined on a metric space (X, d) is said to

be sequentially continuous of type (Ag) iff there exists a sequence {x,} in X such that
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JLrgogfxn =8l for some t € X and nlg{)loffxn =ft and ,}LIE‘ogfx" =gt

Definition 2.2. A pair (f, g) of self maps defined on a metric space (X, d) is said to
be sequentially continuous of type (Af) iff there exists a sequence {x,} in X such that
nlgglofxn = ,}L‘E‘ogxn =1! for some t € X and nli)fgofgxn =ft and r}g&ggxn =gL.

Notice that the notions of sub-sequential continuity and sequentially continuity of
type (Ag) (also alternately notions of sub-sequential continuity and sequentially contin-
uous of type (Af)) are independent of each other. To substantiate this view point, we
furnish the following examples:

Example 2.1. Consider X = [0, ) endowed with the natural metric d and define f, g

X — X by

0 ifx=0,

f(x)=41+x ifxe (0,1] and
2x — 1 ifx € (1, 00)

(x) = 1-x ifxe]0,1),
8= 3x —2ifx € [1,00).
1
If we choose x,, = for n = 1, 2,..., then
n
l .
2=
1
n
1 . 1
_n> ﬂ%r¥>1<)<2+n>=2=f(1),

1im gf (xn) = hmg<1+ ): im <1+3 ~1=g(1), and

1
n n
1
n

hmf(xn)= rglo 1

( + 1,
lim g(x,) = lim (
n—oo n—o0
11m fg(x,,) = 11m f(l =1

Tim ff(x) = hrnf<1+ ):nlgn (2(1+ )—1) —142=f(1).

Thus, the pair (f g) is subsequentially continuous but not sequentially continuous of
type (Ag).

Example 2.2. Consider X = [2, 20] endowed with the natural metric d and define f, g
X — X by

fo= 2,if x=2, or x>25,
T 16, if 2<x<5.

10, ifx=2
_J12, if2<x<5
&%= x+1 |
, ifx > 5.

Here, the pair (f, g) is sequentially continuous of type (Ag) but not subsequently con-
1
tinuous. To substantiate the claim, one can choose {x, = (5+ )} forn =1,2,.in X
n

Now, we prove our results on common fixed point of four maps which not only

improve the results contained in [1] but possibly give rise new results.
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Theorem 2.1. Let A, B, S, and T be four self maps of a metric space (X, d). If the
pairs (A, S) and (B, T) are sequentially continuous of type (Ag) as well as R-weakly
commuting of type (Ag), then pairs (4, S) and (B, T) have a coincidence point. If pairs
(A, S) and (B, T) satisfy the following inequality

F(d(Ax, By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Sx, By), d(Ty, Ax)) < 0 (2.1)

forall x, ye X and Fe ¥, where W = {F|F : R® — R is lower semi-continuous func-
tions (l.s.c.) with F(£,£0,0,4,t) > 0, for all £ > 0}, then A, B, S, and T have a unique com-
mon fixed point.

Proof. Since the pair (4, S) is sequentially continuous of type (Ag) as well as R-weakly

commuting of type (Ag), there exists a sequence {x,} in X with nlg{)lo Axy = nlgglo Sxn =u

(for some u € X) such that nlLHgOAAxn =Au  and nll)ﬂgo SAxy =Su ., Also,

lim d(AAx,, SAx,) < R lim d(Ax,, Sx,) =0 so that

=00 100

d(Au, Su) = nlgTolo d(AAxy, SAxn) = 0 je., u is a coincidence point of the pair (4, ).
Similarly, in respect of pair (B, T), there also exists a sequence {y,} with

lim By, = lim Ty, =v (for some v e X) such that lim BBy,=Bv and
n—o0 n—oo n—oo

lim TBy, =Tv,  Also, lim d(BBy,, TBy,) <R lim d(By,, Tyn) =0, so  that
n—00 n—00 n—o0o

d(Bv, Tv) = nlif(f)lo d(BByn, TByn) = 0, ie., v is a coincidence point of the pair (B, 7).

Now, we show that u = v. If it is not so, then using inequality (2.1), we have
F(d(Axy,, Byn), d(Sxpn, Tyn), d(Axy, Sx1), A(Byn, Tyn), A(Sxn, Byn), d(Tyn, Ax,)) < O.
Taking the limit as # — oo and using the Ls.c. of F, we obtain

F(d(u,v),d(u,v),0,0,d(u,v),d(u,v)) <0,

a contradiction so that u = v.

Next, we assert that Au = u. Let on contrary that Au =z u. On using (2.1), we get
F(d(Au, Ayy), d(Su, Tyy,), d(Au, Su), d(Byy, Tyn), d(Su, By,), d(Ty,, Au)) < 0.
Taking the limit as # — o and using the Ls.c. of F, we get

F(d(Au, u), d(Au, u), 0,0, d(Au, u), d(u, Au)) <0,

a contradiction. Hence u = Au = Su. To prove Bu = u, assume on contrary that Bu =
u. Using (2.1), we obtain
F(d(Au, Bu), d(Su, Tu), d(Au, Su), d(Bu, Tu), d(Su, Bu), d(Tu, Au)) < 0,
or
F(d(u, Bu), d(u, Bu), 0, 0, d(u, Bu), d(Bu, u)) <0,
a contradiction. Thus « is a common fixed point of A, B, S and T.

Finally, suppose that there exists another common fixed point z of A, B, S and T
such that z # u. Then, on using inequality (2.1), we have

F(d(Au, Bz), d(Su, Tz), d(Au, Su), d(Bz, Tz), d(Su, Bz), d(Tz, Au)) < O,

Page 6 of 9
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or
F(d(u, z),d(u,z),0,0,d(u,z),d(uz)) <0,

which is a contradiction. Hence u# = z. Thus, u is the unique common fixed point of
A, B, S, and T. This completes the proof.

Restricting Theorem 2.1 to a pair of mappings, we deduce the following:

Corollary 2.1. Let A and S be two self maps of a metric space (X, d). If the pair (4,
S) is sequentially continuous of type (Ag) as well as R-weakly commuting of type (Ag),
then pair (4, S) has a coincidence point. If pair (4, S) satisfies the inequality

F(d(Ax, Ay), d(Sx, Sy), d(Ax, Sx), d(Ay, Sy), d(Sx, Ay), d(Sy, Ax)) <0 (2.2)

for all x, y e X and Fe ¥, where W = {F|F : R® — R is lower semi-continuous func-
tions (Ls.c.) and F(£,£,0,0,t,t) > 0, for all £ > 0}, then A and S have a unique common
fixed point.

Remark 2.1. A careful examination of the proof reveals the fact that Theorem 2.1
(hence also Corollary 2.1) remains valid in symmetric space (X, d) wherein d is
continuous.

Alternately, using R-weakly commuting property of type (Af) (due to Pathak et al.
[13]) together with sequential continuity of type (Af), we have the following:

Theorem 2.2. Let A, B, S, and T be four self maps of a metric space (X, d). If the
pairs (A4, S) and (B, T) are sequentially continuous of type (Af) as well as R-weakly
commuting of type (Af), then pairs (A4, S) and (B, T) have a coincidence point. If pairs
(A, S) and (B, T) satisty the inequality (2.1) (of Theorem 2.1), then A, B, S and T have
a unique common fixed point.

Proof. Since the pair (4, S) is sequentially continuous of type (Af) and R-weakly com-

muting of type (Af), there exist sequence {x,} in X with nli_)r{}oAxn = r}l)rlgo Sxn = u, for

some u € X such that limASx,=Au apq lim SSx, =Su. Also,
n—o00 n—oo

lim d(ASxn, SSxn) =0, Thus, we get d(Au,Su) = lim d(ASx,, SSx») =0, e, u is a
n—oo n—o0

coincidence point of the pair (4, S).
Similarly, in respect of pair (B, T), there also exists a sequence {y,} in X with

lim By, = lim Ty, =v | for some v e X such that lim BTy, = Bv and lim TTy, = Tv
n—o0 n—o0 n— o0 n— o0

Also, nlggo d(BTyy, TTy,) <R nlijglo d(Byn, Tyn) = 0, Thus, we get
d(Bv, Tv) = nlijglo d(BByn, TBys) = 0, i, v is a coincidence point of the pair (B, T). The
rest of the proof can be completed on the lines of above Theorem 2.1. This concludes
the proof.

Restricting Theorem 2.2 to a pair of mappings, we deduce the following:

Corollary 2.2. Let A and S be two self maps of a metric space (X, d). If the pair (4,

S) is sequentially continuous of type (Af) as well as R-weakly commuting of type (Af),
then the pair (4, S) has a coincidence point. If pair (4, S) satisfies the inequality

F(d(Ax, Ay), d(Sx, Sy), d(Ax, Sx), d(Ay, Sy), d(Sx, Ay), d(Sy, Ax)) <0 (2.3)
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forall x, ye X and Fe ¥, where W = {F|F : R® — R is lower semi-continuous func-
tions (L.s.c.) and F(,£,0,0,t,t) > 0, for all £ > 0}, then A and S have a unique common
fixed point.

Remark 2.2. A careful examination of the proof reveals the fact that Theorem 2.2
(hence also Corollary 2.2) remains valid in symmetric space (X, d) wherein d is
continuous.

Finally, we present an example to demonstrate the validity of the hypotheses and
degree of generality of our results over comparable ones from the existing literature.

Example 2.3. Consider X = [2, 20) endowed with the natural metric d and define A,

S: X —> X by
2, if x=2, or x>25,
Ax=1% 4
x % if 2<x<5,
2, if x=2
S }cill if 2<x<5
, if x> 5.
3

In respect of the sequence x, = (5 + :l) for n = 1, 2,... in X, we have

1
lim A(x,) = lim <5 + ) =2,
n—00 n—o00 n
. . 1
lim S(x,) = lim <5 + ) =2,
n—o00 n—00 n

and

lim SA(x,) = S(2) =2, lim AA(x,) =2 =A(2),
n—00 h—00

lim AS(x,) = i #2=A(2),

n—oQo

which shows that the pair (4, S) is subsequently continuous of type (Ag) as well as R-
weakly commuting of type (Ag) but not reciprocally continuous and compatible. More-
over, one can also check inequality (2.3) by defining F as F(t,to, t3, ta, ts)ts): [Rf - R

as

F(tll 1, 13,14, ts, tG) =1t — k(max{tZI 13,14, ts, tG})

where € [}, 1). Thus, all the conditions of Corollary 2.2 are satisfied. Notice that 2
is a coincidence as well as unique common fixed point of the pair (4, S).

This example cannot be covered by those fixed point theorems which require both
compatibility and reciprocal continuity or completeness (or closedness) of the underly-
ing spaces or subspaces. Notice that in this example neither X is complete nor

AX)={2}U (5, %] or S(X) = [2,7) U {18} is closed (e.g., [3,13,18]).
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