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Abstract
A fixed point theorem is obtained for a monotone self-map in a 0-complete ordered
partial metric space under Hardy-Rogers-type contractive condition. This result
improves some recently obtained ones, in the sense that weaker conditions are used.
An example shows how this result can be used when the corresponding result in
standard metric cannot. The second theorem is concerned with two weakly isotone
increasing self-mappings in ordered partial metric spaces. A common fixed point
result is obtained without any commutativity or compatibility assumptions.
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1 Introduction
Matthews [] introduced the notion of a partial metric space as a part of the study of deno-
tational semantics of dataflow networks. He showed that the Banach contractionmapping
theorem can be generalized to the partial metric context for applications in program ver-
ification. Subsequently, several authors (see, e.g., [–]) derived fixed point theorems in
partial metric spaces. See also the presentation by Bukatin et al. [] where themotivation
for introducing non-zero distance (i.e., the ‘distance’ p where p(x,x) =  need not hold) is
explained, which is also leading to interesting research in foundations of topology.
On the other hand, fixed point theory has developed rapidly in partially ordered metric

spaces. The first result in this direction was given by Ran and Reurings [] who presented
its applications to matrix equations. Subsequently, Nieto and Rodríguez-López [] ex-
tended this result and applied it to obtain a unique solution for periodic boundary value
problems. Further results were obtained by several authors, we mention [–]. Fixed
point results in ordered partial metric spaces have been obtained recently in [–].
The following definitions and details can be seen in [–] and [, , ].

Definition . A partial metric on a nonempty set X is a function p : X × X → R+ such
that for all x, y, z ∈ X,

(p) x = y ⇐⇒ p(x,x) = p(x, y) = p(y, y),
(p) p(x,x)≤ p(x, y),
(p) p(x, y) = p(y,x),
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(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

The pair (X,p) is called a partial metric space.

It is clear that if p(x, y) = , then from (p) and (p) x = y. But if x = y, p(x, y) may not be .
Each partial metric p on X generates a T topology τp on X which has as a base the

family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x,x) + ε}
for all x ∈ X and ε > . A sequence {xn} in (X,p) converges to a point x ∈ X (in the sense of
τp) if limn→∞ p(x,xn) = p(x,x). This will be denoted as xn → x (n→ ∞) or limn→∞ xn = x.

Remark . Clearly, a limit of a sequence in a partial metric space need not be unique.
Moreover, the function p(·, ·) need not be continuous in the sense that xn → x and yn → y
imply p(xn, yn) → p(x, y).

If p is a partial metric on X, then the function ps : X ×X →R+ given by

ps(x, y) = p(x, y) – p(x,x) – p(y, y) (.)

is a metric on X. Furthermore, limn→∞ ps(xn,x) =  if and only if

p(x,x) = lim
n→∞p(xn,x) = lim

n,m→∞p(xn,xm).

Example .
() A paradigmatic example of a partial metric space is the pair (R+,p), where

p(x, y) =max{x, y} for all x, y ∈R+. The corresponding metric is

ps(x, y) = max{x, y} – x – y = |x – y|.

() If (X,d) is a metric space and c≥  is arbitrary, then

p(x, y) = d(x, y) + c

defines a partial metric on X and the corresponding metric is ps(x, y) = d(x, y).

Remark . If T : X → X is continuous at x ∈ X (with respect to τp), then for each se-
quence {xn} in X, we have

xn → x ⇒ Txn → Tx, i.e.,

p(xn,x) → p(x,x) ⇒ p(Txn,Tx) → p(Tx,Tx). (.)

It is worth mentioning that the notions of p-continuity and ps-continuity for a self-
mapping on X are incomparable in general. Indeed, let X = [,+∞), p(x, y) = max{x, y}
(and hence ps(x, y) = |x– y|), T = , Tx = x for x > , and let Sx = | sinx|. Then it is easy to
see that T is p-continuous and ps-discontinuous at x = , while S is p-discontinuous and
ps-continuous at x = π (for details, see []).

Other examples of partial metric spaces which are interesting from the computational
point of view may be found in [, , ].
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Definition . Let (X,p) be a partial metric space. Then:
() A sequence {xn} in (X,p) is called a Cauchy sequence if limn,m→∞ p(xn,xm) exists

(and is finite).
() The space (X,p) is said to be complete if every Cauchy sequence {xn} in X

converges, with respect to τp, to a point x ∈ X such that p(x,x) = limn,m→∞ p(xn,xm).
() [] A sequence {xn} in (X,p) is called -Cauchy if limn,m→∞ p(xn,xm) = . The

space (X,p) is said to be -complete if every -Cauchy sequence in X converges (in
τp) to a point x ∈ X such that p(x,x) = .

Lemma . Let (X,p) be a partial metric space.
(a) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric

space (X,ps).
(b) The space (X,p) is complete if and only if the metric space (X,ps) is complete.
(c) [, ] If p(xn, z) → p(z, z) =  as n→ ∞, then p(xn, y) → p(z, y) as n → ∞ for each

y ∈ X .
(d) Every -Cauchy sequence in (X,p) is Cauchy in (X,ps).
(e) If (X,p) is complete, then it is -complete.

The converse assertions of (d) and (e) do not hold as the following easy example shows.

Example . [] The space X = [,+∞) ∩ Q with the partial metric p(x, y) = max{x, y}
is -complete, but it is not complete (since ps(x, y) = |x – y| and (X,ps) is not complete).
Moreover, the sequence {xn} with xn =  for each n ∈N is a Cauchy sequence in (X,p), but
it is not a -Cauchy sequence.

Recall that Romaguera proved in [, Theorem .] that a partial metric space (X,p) is
-complete if and only if every ps-Caristi mapping on X has a fixed point.
It is easy to see that every closed subset of a -complete partial metric space is -

complete.

Definition . Let (X,
) be a partially ordered set. Then:
(a) elements x, y ∈ X are called comparable if x 
 y or y 
 x holds;
(b) a subset K of X is said to be well ordered if every two elements of K are comparable;
(c) a mapping T : X → X is called nondecreasing (nonincreasing) w.r.t. 
 if x 
 y

implies Tx 
 Ty (Tx � Ty).

Definition . Let X be a nonempty set. Then (X,p,
) is called an ordered (partial) met-
ric space if:

(i) (X,p) is a (partial) metric space, and
(ii) (X,
) is a partially ordered set.

Definition . Let (X,p,
) be an ordered partial metric space. We say that X is regular
if the following holds: if {zn} is a nondecreasing (resp. nonincreasing) sequence in X with
respect to 
 such that zn → z ∈ X as n→ ∞, then zn 
 z (resp. zn � z) for all n ∈N.

In this paper, we first obtain a fixed point theorem for a monotone self-map in a -
complete partially ordered partialmetric space underHardy-Rogers-type contractive con-
dition. This result improves some recently obtained ones, in particular those from [], in
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the sense that weaker conditions are used. It can be also considered as an extension and
improvement of some results in standard ordered metric spaces, e.g., those from []. An
example shows that our theorem can be used when the corresponding result in standard
metric cannot.
The second theorem is concerned with two weakly isotone increasing self-mappings in

ordered partial metric spaces and is related to the results of the paper []. A common
fixed point result is obtained without commutativity or compatibility assumptions. An
example shows how this theorem can be used.

2 Fixed point results for a single mapping
Our first result is the following

Theorem . Let (X,p,
) be a -complete ordered partial metric space. Let T : X → X be
a nondecreasing (nonincreasing)mapping such that

p(Tx,Ty) ≤ M(x, y) (.)

for all comparable x, y ∈ X, where

M(x, y) = Ap(x, y) + Bp(x,Tx) +Cp(y,Ty) +Dp(y,Tx) + Ep(x,Ty), (.)

A,B,C,D,E ≥  and A + B + C + D + E < . Also suppose that there exists x ∈ X with
x 
 Tx (resp. x � Tx).We suppose the following:

(i) T is continuous, or
(ii) X is regular.

Then T has a fixed point z and p(Tz,Tz) =  = p(z, z).Moreover, the set F(T) of fixed points
of T is well ordered if and only if it is a singleton.

Proof We will prove the theorem for the case of a nondecreasing mapping. Starting from
the given element x ∈ X, form the sequence {xn} as xn = Txn–, n ∈N. If p(xn,xn+) =  for
some n ≥ , then Txn = xn+ = xn and p(xn,xn) =  (by (p)) and the proof is completed.
Suppose further that p(xn,xn+) >  for all n ≥ . Note that, since T is nondecreasing, we
have that

x 
 Tx = x 
 Tx = x 
 · · · 
 xn 
 Txn = xn+ 
 · · · .

Applying condition (.) to comparable elements x = xn and y = xn+, we get that

p(xn+,xn+) = p(Txn,Txn+) ≤ M(xn,xn+)

= Ap(xn,xn+) + Bp(xn,xn+) +Cp(xn+,xn+)

+Dp(xn+,xn+) + Ep(xn,xn+)

≤ (A + B + E)p(xn,xn+) + (C + E)p(xn+,xn+)

+ (D – E)p(xn+,xn+) by (p). (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/180
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Similarly, applying (.) with x = xn+ and y = xn, we get

p(xn+,xn+) = p(Txn+,Txn) ≤ M(xn+,xn)

= Ap(xn+,xn) + Bp(xn+,xn+) +Cp(xn,xn+)

+Dp(xn,xn+) + Ep(xn+,xn+)

≤ (A +C +D)p(xn,xn+) + (B +D)p(xn+,xn+)

+ (E –D)p(xn+,xn+) by (p). (.)

Adding up (.) and (.), we obtain

p(xn+,xn+)≤ λp(xn,xn+),

with

 ≤ λ =
A + B +C +D + E
 – (B +C +D + E)

< ,

since A + B + C + D + E < . It follows that p(xn,xn+) ≤ λnp(x,x) and limn→∞ p(xn,
xn+) = . Also, for n >m,

p(xn,xm) ≤
(
λm + · · · + λn–)p(x,x),

and hence limm,n→∞ p(xn,xm) = . Hence, {xn} is a -Cauchy sequence in (X,p). Since
(X,p) is -complete, it follows that there exists z ∈ X such that xn → z in (X,p) and
p(z, z) = . Moreover,

lim
n→∞p(xn, z) = p(z, z) = . (.)

We will prove that Tz = z.
(i) Suppose that T is continuous. Letting n→ ∞ in

p(z,Tz) ≤ p(z,xn+) + p(xn+,Tz) – p(xn+,xn+) ≤ p(z,xn+) + p(xn+,Tz)

and applying (.) and (.), we get

p(z,Tz) ≤ lim
n→∞p(z,xn+) + lim

n→∞p(Txn,Tz)

= p(z, z) + p(Tz,Tz) = p(Tz,Tz).

Thus, we have p(z,Tz) ≤ p(Tz,Tz). But from (p), we have p(Tz,Tz) ≤ p(z,Tz). Hence,

p(z,Tz) = p(Tz,Tz).

Suppose that p(z,Tz) > . Now, since z 
 z, by inequality (.) we have

p(z,Tz) = p(Tz,Tz) ≤ M(z, z) = (B +C +D + E)p(z,Tz)

≤ (A + B +C +D + E)p(z,Tz) < p(z,Tz),

http://www.fixedpointtheoryandapplications.com/content/2012/1/180
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which is a contradiction. Thus, we get that p(Tz,Tz) = p(z,Tz) = p(z, z) = . By (p), we
conclude that z = Tz, that is, z is a fixed point of T .
(ii) Suppose now that the spaceX is regular. Substituting x = xn and y = z (these elements

are comparable) in the contractive condition (.), we get

p(xn+,Tz) = p(Txn,Tz)

≤ Ap(xn, z) + Bp(xn,xn+) +Cp(z,Tz) +Dp(z,xn+) + Ep(xn,Tz).

Passing to the limit as n→ ∞, and using Lemma .(c), we get that

p(z,Tz) ≤ (C + E)p(z,Tz) ≤ (A + B +C +D + E)p(z,Tz),

which is (because of A + B + C +D + E < ) possible only if p(z,Tz) = . We conclude that
Tz = z.
Now suppose that the set of fixed points of T is well ordered. We claim that the fixed

point of T is unique. Assume to the contrary that Tu = u and Tv = v, but u �= v. By suppo-
sition, we can replace x by u and y by v in (.) to obtain

p(u, v) = p(Tu,Tv) ≤ M(u, v)

= Ap(u, v) + Bp(u,Tu) +Cp(v,Tv) +Dp(v,Tu) + Ep(u,Tv)

= Ap(u, v) + Bp(u,u) +Cp(v, v) +Dp(v,u) + Ep(u, v)

≤ (A + B +C +D + E)p(u, v) < p(u, v),

unless p(u, v) = . Hence, u = v and the fixed point of T is unique. The converse is trivial.
Thus, the proof is complete. �

Remark . Note that this theorem improves [, Theorem . and Corollary .] since
our assumptions are weaker than the assumptions from [] in several places: ◦ there
is no need to use additional function φ, hence our contractive condition (.) is weaker
than the one used in [] (function ψ is redundant anyway, see e.g., []); ◦ conditions
on coefficients A, B, C, D, E are weaker (just the usual Hardy-Rogers-type conditions);
◦ -completeness is used instead of completeness (see Lemma .(e) and Example .).
Similarly, putting d = p, we obtain an improvement of [, Theorem ].

In a standardway, one gets the following corollarywith integral-type condition (see []).

Corollary . Let all the conditions of Theorem . be fulfilled, except that the condi-
tion (.) is replaced by

∫ p(Tx,Ty)


ϕ(t)dt ≤

∫ M(x,y)


ϕ(t)dt

for all comparable x, y ∈ X,whereM(x, y) is given by (.), and ϕ :R+ →R+ is a nonnegative
Lebesgue integrable function (with finite integral) on each compact subset of R+, satisfying∫ ε

 ϕ(t)dt >  for each ε > .

http://www.fixedpointtheoryandapplications.com/content/2012/1/180
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We demonstrate the use of Theorem . with the help of the following example. It will
also show that this theorem is more general than some other known fixed point results.

Example . Let X = [,+∞)∩Q be endowed with the usual partial metric p : X ×X →
[, +∞) defined by p(x, y) = max{x, y}. The partial metric space (X,p) is -complete (see
Example .). We endow X with the partial order

x 
 y ⇔ x = y or (x, y ∈ [, ] with x≤ y).

Define T : X → X as

Tx =

⎧⎨
⎩

x
+x , x ∈ [, ],
x
 , x > ,

and take M(x, y) = 
p(x, y), i.e., A = 

 , B = C = D = E = . Suppose that y 
 x. Then there
are two possibilities. If x ∈ [, ] (and so y ∈ [, ]), then

p(Tx,Ty) =max

{
x

 + x
,
y

 + y

}
=

x

 + x
.

Since M(x, y) = 
x, it easily follows that p(Tx,Ty) ≤ M(x, y). If x >  (and so y = x), then

p(Tx,Ty) = x
 =M(x, y). Hence, in all possible cases, condition (.) holds. Also, it is clear

that both the condition of regularity of X and continuity of T are satisfied, and for x = ,
we have x 
 Tx. Therefore, all conditions of Theorem . are satisfied, and so T has a
fixed point in X (which is z = ).
On the other hand, consider the same problem in the standard metric d(x, y) and take

x =  and y = 
 . Then d(Tx,Ty) = |  – 

 | = 
 andM(x, y) = 

d(,

 ) =


 and so

M(x, y) =


<


= d(Tx,Ty).

Hence, d(Tx,Ty) ≤ M(x, y) does not hold and the existence of a fixed point of T cannot be
obtained from the known results in standard metric spaces.

3 Common fixed point results for a pair of weakly isotone increasingmappings
In this section, we give a common fixed point theorem for a pair of maps satisfying T-
weakly isotone increasing property. For this we need the following definitions.

Definition . Let (X,
) be a partially ordered set, and let S,T : X → X be two map-
pings.
() [] The pair (S,T) is said to be weakly increasing if Sx
 TSx and Tx 
 STx for all

x ∈ X .
() [] The mapping S is said to be T-weakly isotone increasing if for all x ∈ X we have

Sx
 TSx
 STSx.

Remark. Note that twoweakly increasingmappings neednot be nondecreasing. There
exist some examples to illustrate this fact in [].
If S,T : X → X are weakly increasing, then S is T-weakly isotone increasing.

http://www.fixedpointtheoryandapplications.com/content/2012/1/180
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Theorem . Let (X,p,
) be a -complete ordered partial metric space. Let S,T : X → X
be two mappings such that S is T-weakly isotone increasing and satisfying

p(Tx,Sy)≤ M(x, y) (.)

for all comparable x, y ∈ X, where

M(x, y) = Ap(x, y) + Bp(x,Tx) +Cp(y,Sy) +Dp(y,Tx) + Ep(x,Sy), (.)

A,B,C,D,E ≥ ,A+B+C+D+E <  andA+B+C+D+E < .We suppose the following:
(i) S and T are continuous or
(ii) X is regular.

Then S and T have a common fixed point z and

p(z, z) = p(Tz,Tz) = p(Sz,Sz) = p(z,Sz) = p(z,Tz) = . (.)

Moreover, the set of common fixed points of T and S is well ordered if and only if T and S
have one and only one common fixed point.

Remark . Note that in this result continuity of both mappings is crucial (when the
space is not regular); however, no compatibility of these mappings is needed.

Proof Let x be an arbitrary point in X. If p(x,Sx) =  or p(x,Tx) = , the proof is
finished. Indeed, suppose e.g., that p(x,Tx) =  (and hence Tx = x). Then (.) implies
that

p(x,Sx) = p(Tx,Sx) ≤ M(x,x)

= Ap(x,x) + (C + E)p(x,Sx)

≤ (A +C + E)p(x,Sx) < p(x,Sx) (by (p))

(since A + C + E ≤ A + B + C + D + E < ) unless p(x,Sx) = , implying that Sx = x.
Thus, x is a common fixed point of T and S and (.) holds with z = x.
Assume further that p(x,Sx) >  and p(x,Tx) > . We can define a sequence {xn} in

X as follows:

xn+ = Sxn and xn+ = Txn+ for n ∈ {, , , . . . }.

Without loss of generality, we can suppose that p(xn,xn+) >  for each n ∈ {, , , . . . }.
Otherwise we have again finished.
Note that, since S is T-weakly isotone increasing, we have

x = Sx 
 TSx = Tx = x 
 STSx = STx = Sx = x,

x = Sx 
 TSx = Tx = x 
 STSx = STx = Sx = x,

and continuing this process, we get

x 
 x 
 · · · 
 xn 
 xn+ 
 · · · .

http://www.fixedpointtheoryandapplications.com/content/2012/1/180


Nashine et al. Fixed Point Theory and Applications 2012, 2012:180 Page 9 of 15
http://www.fixedpointtheoryandapplications.com/content/2012/1/180

Now since x = xn– and y = xn are comparable, we can use inequality (.) for these points,
and we have

p(xn,xn+) = p(Txn–,Sxn) ≤ M(xn–,xn)

= Ap(xn–,xn) + Bp(xn–,Txn–) +Cp(xn,Sxn)

+Dp(xn,Txn–) + Ep(xn–,Sxn)

= Ap(xn–,xn) + Bp(xn–,xn) +Cp(xn,xn+)

+Dp(xn,xn) + Ep(xn–,xn+)

≤ Ap(xn–,xn) + Bp(xn–,xn) +Cp(xn,xn+)

+Dp(xn,xn) + E
[
p(xn–,xn) + p(xn,xn+) – p(xn,xn)

]
≤ (A + B + E)p(xn–,xn) + (C +D + E)p(xn,xn+) (by (p)),

wherefrom

p(xn,xn+) ≤ A + B + E
 – (C +D + E)

p(xn–,xn). (.)

Similarly, using (.) with x = xn+ and y = xn, we get that

p(xn+,xn+) = p(Txn+,Sxn) ≤ M(xn+,xn)

= Ap(xn+,xn) + Bp(xn+,xn+) +Cp(xn,xn+)

+Dp(xn,xn+) + Ep(xn+,xn+)

≤ Ap(xn+,xn) + Bp(xn+,xn+) +Cp(xn,xn+)

+D
[
p(xn,xn+) + p(xn+,xn+) – p(xn+,xn+)

]
+ Ep(xn+,xn+)

≤ (A +C +D)p(xn+,xn) + (B +D + E)p(xn+,xn+) (by (p)),

wherefrom

p(xn+,xn+) ≤ A +C +D
 – (B +D + E)

p(xn,xn+). (.)

It follows from (.) and (.) that

p(xn,xn+) ≤ λp(xn–,xn), n ∈N, (.)

where

 ≤ λ =max

{
A + B + E

 – (C +D + E)
,

A +C +D
 – (B +D + E)

}
< 

sinceA+B+C+D+E <  andA+B+C+D+E < . It follows from (.) that p(xn,xn+) ≤
λnp(x,x) and limn→∞ p(xn,xn+) = . Also, for n >m,

p(xn,xm) ≤
(
λm + · · · + λn–)p(x,x),

http://www.fixedpointtheoryandapplications.com/content/2012/1/180
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and hence limm,n→∞ p(xn,xm) = . Thus, {xn} is a -Cauchy sequence in (X,p). Since (X,p)
is -complete, it follows that there exists z ∈ X such that xn → z in (X,p) and p(z, z) = .
Moreover,

lim
n→∞p(xn, z) = p(z, z) = . (.)

We will prove that Tz = Sz = z.
By (p), we have

p(z,Tz) ≤ p(z,xn+) + p(xn+,Tz) – p(xn+,xn+)

≤ p(z,xn+) + p(xn+,Tz), (.)

and, similarly,

p(z,Tz) ≤ p(z,xn+) + p(xn+,Tz). (.)

(i) Suppose that T is continuous. Letting n→ ∞ in (.) and applying (.), we get

p(z,Tz) ≤ lim
n→∞p(z,xn+) + lim

n→∞p(Txn+,Tz)

= p(Tz,Tz).

Thus, we have p(z,Tz) ≤ p(Tz,Tz). But from (p), we have p(Tz,Tz) ≤ p(z,Tz). Hence,

p(z,Tz) = p(Tz,Tz). (.)

Similarly, if S is continuous, we have

p(z,Sz) = p(Sz,Sz). (.)

By (p) and using (.), we have

p(z,Tz) ≤ p(z,Sz) + p(Sz,Tz) – p(Sz,Sz) (.)

= p(z,Sz) + p(Sz,Tz) – p(z,Sz)

= p(Sz,Tz).

Similarly, by (p) and using (.), we can obtain

p(z,Sz) ≤ p(Sz,Tz). (.)

Suppose that p(Tz,Sz) > . Then, since z 
 z, by inequality (.) and using (.), (.),
we have

p(Tz,Sz) ≤ M(z, z)

= (B +D)p(z,Tz) + (C + E)p(z,Sz)

http://www.fixedpointtheoryandapplications.com/content/2012/1/180
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≤ (B +C +D + E)p(Sz,Tz)

< p(Sz,Tz)

(since B+C +D+E ≤ A+B+C +D+E < ) which is a contradiction. Thus, p(Sz,Tz) = .
By (p), we conclude that Sz = Tz, that is, z is a coincidence point of T and S. From (.),
(.) and (p), we conclude that Tz = z and Sz = z, that is, z is a common fixed point of T
and S.
Suppose that p(z,Tz) > . Then

p(z,Tz) = p(Tz,Tz) = p(Tz,Sz)

≤ (B +C +D + E)p(z,Tz) < p(z,Tz),

a contradiction. Hence, p(z,Tz) = . This implies that

p(Sz, z) =  = p(z,Tz).

By (p), we conclude that Tz = z and Sz = z, that is, z is a common fixed point of T and S.
Also by (p), we can obtain

p(Sz,Sz) =  = p(Sz,Tz).

Thus, we have proved (.).
(ii) Since {xn} is a nondecreasing sequence, if X is regular, it follows that xn 
 z for all n.

Therefore, for all n, we can use the inequality (.) for xn and z. Since

M(z,xn)

= Ap(z,xn) + Bp(z,Tz) +Cp(xn,Sxn) +Dp(xn,Tz) + Ep(z,Sxn)

= Ap(z,xn) + Bp(z,Tz) +Cp(xn,xn+) +Dp(xn,Tz) + Ep(z,xn+)

≤ Ap(z,xn) + Bp(z,Tz) +Cp(xn,xn+)

+D
[
p(xn, z) + p(z,Tz) – p(z, z)

]
+ Ep(z,xn+)

and so limn→∞ M(z,xn) ≤ (B +D)p(z,Tz). Using (.) and (.), we have

p(z,Tz) ≤ p(z,xn+) + p(Sxn,Tz)

≤ p(z,xn+) +M(z,xn).

Passing to the limit when n→ ∞, we get that

p(z,Tz) ≤ (B +D)p(Tz, z) < p(Tz, z),

which is a contradiction unless p(z,Tz) = . It follows as above that Tz = z. Similarly, we
can show p(Sz, z) = , that is, Sz = z. Hence, z is a common fixed point of T and S. Also, by
(p), we can obtain p(Tz,Tz) =  and p(Sz,Sz) = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/180
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Now suppose that the set of common fixed points of T and S is well ordered. We claim
that a common fixed point of T and S is unique. Assume to the contrary that Su = Tu = u
and Tv = Sv = v, but u �= v (and hence p(u, v) > ). By supposition, we can replace x by u
and y by v in (.) to obtain

p(u, v) = p(Tu,Sv)≤ M(u, v)

= Ap(u, v) + Bp(u,Tu) +Cp(v,Sv) +Dp(v,Tu) + Ep(u,Sv)

= Ap(u, v) + Bp(u,u) +Cp(v, v) +Dp(v,u) + Ep(u, v)

≤ (A + B +C +D + E)p(u, v) < p(u, v),

a contradiction. Hence, p(u, v) =  and u = v. Conversely, ifT and S have only one common
fixed point then the set of common fixed points of T and S, being a singleton, is well
ordered. Thus, the proof is complete. �

Standard corollaries of thisHardy-Rogers-type result can be obtained by specifying con-
ditions on the given constants (see []). We state just a few of them.

Corollary . Let (X,p,
) be a -complete ordered partial metric space. Let S,T : X → X
be two mappings such that S is T-weakly isotone increasing and satisfying either of the
following conditions for all comparable x, y ∈ X:
() p(Tx,Sy) ≤ Ap(x, y),  ≤ A < ;
() p(Tx,Sy) ≤ Bp(x,Tx) +Cp(y,Sy); B,C ≥ , B +C < ;
() p(Tx,Sy) ≤ Dp(y,Sx) + Ep(x,Ty); D,E ≥ , D + E < .

We suppose also the following:
(i) S and T are continuous or
(ii) X is regular.

Then we have conclusions of Theorem ..

We demonstrate Theorem . with the help of the following example.

Example . Let X = [,+∞) be endowed with the usual partial metric p : X × X →
[, +∞) defined by p(x, y) =max{x, y}. We give the partial order on X by

x 
 y ⇔ p(x,x) = p(x, y) ⇔ x =max{x, y} ≥ y.

It is clear that (X,
) is totally ordered. The partialmetric space (X,p) is -complete. Define
mappings T ,S : X → X as

Tx =
x


and Sx =
x


for x ≥ .

It is easy to see that S is T-weakly isotone increasing w.r.t. 
. Take A = 
 , B = C =  and

D = E = 
 , i.e.,

M(x, y) =


p(x, y) +



p(y,Tx) +



p(x,Sy)

http://www.fixedpointtheoryandapplications.com/content/2012/1/180
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(the conditions on coefficients are fulfilled). Consider the following cases:
◦ x 
 y, i.e., y≤ x. Then

p(Tx,Sy) =max

{
x

,
y


}
=
x

,

and

M(x, y) =


x +



max

{
y,
x


}
+


x≥ 


x +




x =



x

(cases y < x
 and x

 ≤ y≤ x have to be considered). Hence, p(Tx,Sy) = 
x ≤ 

x =M(x, y) is
fulfilled.
◦ 

y ≤ x < y. Then again p(Tx,Sy) = x
 and

M(x, y) =


y +



y +



max

{
x,

y


}
=


y +



x.

Hence, p(Tx,Sy) = x
 ≤ 

x ≤ 
y +


x =M(x, y).

◦ x < 
y. Then

M(x, y) =


y +



max

{
x,

y


}
≥ 


y >



y = p(Tx,Sy).

All the conditions of Theorem . are fulfilled. T and S have a unique common fixed point
z = .

Note that in Theorem . there is no condition of the type ‘there exists an x ∈ X with
x 
 Tx’ of Theorem .. And conditions on coefficients are not the same. Hence, Theo-
rem . is not a direct consequence of Theorem .. Instead, putting S = T in Theorem .,
we obtain the following

Corollary . Let (X,p,
) be a -complete ordered partial metric space. Let T : X → X
be a mapping satisfying Tx ≤ Tx for each x ∈ X and

p(Tx,Ty) ≤ Ap(x, y) + Bp(x,Tx) +Cp(y,Ty) +Dp(y,Tx) + Ep(x,Ty)

for all comparable x, y ∈ X, where A,B,C,D,E ≥ , A + B +C +D + E <  and A + B +C +
D + E < .We suppose the following:

(i) T is continuous or
(ii) X is regular.

Then T has a fixed point z and p(z, z) = p(Tz,Tz) = p(z,Tz) = . Moreover, the set of fixed
points of T is well ordered if and only if it is a singleton.
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25. Nashine, HK, Kadelburg, Z, Radenović, S: Common fixed point theorems for weakly isotone increasing mappings in

ordered partial metric spaces. Math. Comput. Model. (2012). doi:10.1016/j.mcm.2011.12.019
26. Abbas, M, Nazir, T: Fixed points of generalized weakly contractive mappings in ordered partial metric spaces. Fixed

Point Theory Appl. 2012, 1 (2012). doi:10.1186/1687-1812-2012-1
27. Heckmann, R: Approximation of metric spaces by partial metric spaces. Appl. Categ. Struct. 7, 71-83 (1999)
28. Romaguera, S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010,

Article ID 493298 (2010). doi:10.1155/2010/493298
29. O’Neill, SJ: Partial metrics, valuations and domain theory. In: Proc. 11th Summer Conference on General Topology and

Applications. Ann. New York Acad. Sci., vol. 806, pp. 304-315 (1996)
30. Escardo, MH: Pcf extended with real numbers. Theor. Comput. Sci. 162, 79-115 (1996)
31. Altun, I, Romaguera, S: Characterizations of partial metric completeness in terms of weakly contractive mappings

having fixed point. Appl. Anal. Discrete Math. (2012). doi:10.2298/AADM120322009A
32. Jachymski, J: Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Anal. TMA 74,

768-774 (2011)
33. Branciari, A: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int.

J. Math. Math. Sci. 29, 531-536 (2002)

http://www.fixedpointtheoryandapplications.com/content/2012/1/180
http://dx.doi.org/10.1155/2011/561245
http://dx.doi.org/10.1155/2011/508730
http://dx.doi.org/10.1186/1687-1812-2011-71
http://dx.doi.org/10.1016/j.mcm.2011.12.019
http://dx.doi.org/10.1186/1687-1812-2012-1
http://dx.doi.org/10.1155/2010/493298
http://dx.doi.org/10.2298/AADM120322009A


Nashine et al. Fixed Point Theory and Applications 2012, 2012:180 Page 15 of 15
http://www.fixedpointtheoryandapplications.com/content/2012/1/180

34. Dhage, BC: Condensing mappings and applications to existence theorems for common solution of differential
equations. Bull. Korean Math. Soc. 36, 565-578 (1999)

35. Rhoades, BE: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 336, 257-290 (1977)

doi:10.1186/1687-1812-2012-180
Cite this article as: Nashine et al.: Fixed point theorems under Hardy-Rogers contractive conditions on 0-complete
ordered partial metric spaces. Fixed Point Theory and Applications 2012 2012:180.

http://www.fixedpointtheoryandapplications.com/content/2012/1/180

	Fixed point theorems under Hardy-Rogers contractive conditions on 0-complete ordered partial metric spaces
	Abstract
	MSC
	Keywords

	Introduction
	Fixed point results for a single mapping
	Common ﬁxed point results for a pair of weakly isotone increasing mappings
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


