# RESEARCH

**Open Access** 

# Iterative common solutions for monotone inclusion problems, fixed point problems and equilibrium problems

Wataru Takahashi<sup>1</sup>, Ngai-Ching Wong<sup>2</sup> and Jen-Chih Yao<sup>3\*</sup>

\*Correspondence: yaojc@kmu.edu.tw <sup>3</sup>Center for General Education, Kaohsiung Medical University, Kaohsiung, 80702, Taiwan Full list of author information is available at the end of the article

# Abstract

Let *H* be a real Hilbert space, and let *C* be a nonempty closed convex subset of *H*. Let  $\alpha > 0$ , and let *A* be an  $\alpha$ -inverse strongly-monotone mapping of *C* into *H*. Let *T* be a generalized hybrid mapping of *C* into *H*. Let *B* and *W* be maximal monotone operators on *H* such that the domains of *B* and *W* are included in *C*. Let 0 < k < 1, and let *g* be a *k*-contraction of *H* into itself. Let *V* be a  $\overline{\gamma}$ -strongly monotone and *L*-Lipschitzian continuous operator with  $\overline{\gamma} > 0$  and L > 0. Take  $\mu, \gamma \in \mathbb{R}$  as follows:

$$0 < \mu < \frac{2\overline{\gamma}}{L^2}, \qquad 0 < \gamma < \frac{\overline{\gamma} - \frac{L^2 \mu}{2}}{k}.$$

Suppose that  $F(T) \cap (A + B)^{-1} \cap (M^{-1} \circ \neq \emptyset)$ , where F(T) and  $(A + B)^{-1} \circ W^{-1} \circ W^{-1}$  are the set of fixed points of T and the sets of zero points of A + B and W, respectively. In this paper, we prove a strong convergence theorem for finding a point  $z_0$  of  $F(T) \cap (A + B)^{-1} \circ O W^{-1} \circ W^{-1}$ , where  $z_0$  is a unique fixed point of  $P_{F(T) \cap (A + B)^{-1} \circ O W^{-1} \circ W^{-1}}(I - V + \gamma g)$ . This point  $z_0 \in F(T) \cap (A + B)^{-1} \circ O W^{-1} \circ W^{-1}$  is also a unique

solution of the variational inequality

 $\left\langle (V-\gamma g)z_0,q-z_0\right\rangle \geq 0, \quad \forall q\in F(T)\cap (A+B)^{-1}0\cap W^{-1}0.$ 

Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space. In particular, we solve a problem posed by Kurokawa and Takahashi (Nonlinear Anal. 73:1562-1568, 2010).

**MSC:** 47H05; 47H10; 58E35

**Keywords:** maximal monotone operator; resolvent; inverse-strongly monotone mapping; generalized hybrid mapping; fixed point; iteration procedure; equilibrium problem

# **1** Introduction

Let *H* be a real Hilbert space, and let *C* be a nonempty closed convex subset of *H*. Let  $\mathbb{N}$  and  $\mathbb{R}$  be the sets of positive integers and real numbers, respectively. A mapping  $T : C \to H$  is called *generalized hybrid* [1] if there exist  $\alpha, \beta \in \mathbb{R}$  such that

$$\alpha \|Tx - Ty\|^{2} + (1 - \alpha)\|x - Ty\|^{2} \le \beta \|Tx - y\|^{2} + (1 - \beta)\|x - y\|^{2}$$

© 2012 Takahashi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



for all  $x, y \in C$ . We call such a mapping an  $(\alpha, \beta)$ -generalized hybrid mapping. Kocourek, Takahashi and Yao [1] proved a fixed point theorem for such mappings in a Hilbert space. Furthermore, they proved a nonlinear mean convergence theorem of Baillon's type [2] in a Hilbert space. Notice that the mapping above covers several well-known mappings. For example, an  $(\alpha, \beta)$ -generalized hybrid mapping *T* is nonexpansive for  $\alpha = 1$  and  $\beta = 0$ , *i.e.*,

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$$

It is also nonspreading [3, 4] for  $\alpha$  = 2 and  $\beta$  = 1, *i.e.*,

$$2\|Tx - Ty\|^2 \le \|Tx - y\|^2 + \|Ty - x\|^2, \quad \forall x, y \in C.$$

Furthermore, it is hybrid [5] for  $\alpha = \frac{3}{2}$  and  $\beta = \frac{1}{2}$ , *i.e.*,

$$3\|Tx - Ty\|^{2} \le \|x - y\|^{2} + \|Tx - y\|^{2} + \|Ty - x\|^{2}, \quad \forall x, y \in C.$$

We can also show that if x = Tx, then for any  $y \in C$ ,

$$\alpha \|x - Ty\|^{2} + (1 - \alpha)\|x - Ty\|^{2} \le \beta \|x - y\|^{2} + (1 - \beta)\|x - y\|^{2},$$

and hence  $||x - Ty|| \le ||x - y||$ . This means that an  $(\alpha, \beta)$ -generalized hybrid mapping with a fixed point is quasi-nonexpansive. The following strong convergence theorem of Halpern's type [6] was proved by Wittmann [7]; see also [8].

**Theorem 1** Let *C* be a nonempty closed convex subset of *H*, and let *T* be a nonexpansive mapping of *C* into itself with  $F(T) \neq \emptyset$ . For any  $x_1 = x \in C$ , define a sequence  $\{x_n\}$  in *C* by

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) T x_n, \quad \forall n \in \mathbb{N},$$

where  $\{\alpha_n\} \subset (0,1)$  satisfies

$$\lim_{n\to\infty}\alpha_n=0,\qquad \sum_{n=1}^{\infty}\alpha_n=\infty \quad and \quad \sum_{n=1}^{\infty}|\alpha_n-\alpha_{n+1}|<\infty.$$

Then  $\{x_n\}$  converges strongly to a fixed point of T.

Kurokawa and Takahashi [9] also proved the following strong convergence theorem for nonspreading mappings in a Hilbert space; see also Hojo and Takahashi [10] for generalized hybrid mappings.

**Theorem 2** Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a nonspreading mapping of C into itself. Let  $u \in C$  and define two sequences  $\{x_n\}$  and  $\{z_n\}$  in C as follows:  $x_1 = x \in C$  and

$$\begin{cases} x_{n+1} = \alpha_n u + (1 - \alpha_n) z_n, \\ z_n = \frac{1}{n} \sum_{k=0}^{n-1} T^k x_n \end{cases}$$

for all  $n = 1, 2, ..., where \{\alpha_n\} \subset (0, 1)$ ,  $\lim_{n\to\infty} \alpha_n = 0$  and  $\sum_{n=1}^{\infty} \alpha_n = \infty$ . If F(T) is nonempty, then  $\{x_n\}$  and  $\{z_n\}$  converge strongly to Pu, where P is the metric projection of H onto F(T).

**Remark** We do not know whether Theorem 1 for nonspreading mappings holds or not; see [9] and [10].

In this paper, we provide a strong convergence theorem for finding a point  $z_0$  of  $F(T) \cap (A + B)^{-1}0 \cap W^{-1}0$  such that it is a unique fixed point of

$$P_{F(T)\cap (A+B)^{-1}0\cap W^{-1}0}(I-V+\gamma g)$$

and a unique solution of the variational inequality

$$\langle (V-\gamma g)z_0, q-z_0\rangle \geq 0, \quad \forall q \in F(T) \cap (A+B)^{-1}0 \cap W^{-1}0,$$

where *T*, *A*, *B*, *W*, *g* and *V* denote a generalized hybrid mapping of *C* into *H*, an  $\alpha$ -inverse strongly-monotone mapping of *C* into *H* with  $\alpha > 0$ , maximal monotone operators on *H* such that the domains of *B* and *W* are included in *C*, a *k*-contraction of *H* into itself with 0 < k < 1 and a  $\overline{\gamma}$ -strongly monotone and *L*-Lipschitzian continuous operator with  $\overline{\gamma} > 0$  and L > 0, respectively. Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space. In particular, we solve a problem posed by Kurokawa and Takahashi [9].

### 2 Preliminaries

Let *H* be a real Hilbert space with inner product  $\langle \cdot, \cdot \rangle$  and norm  $\|\cdot\|$ , respectively. When  $\{x_n\}$  is a sequence in *H*, we denote the strong convergence of  $\{x_n\}$  to  $x \in H$  by  $x_n \to x$  and the weak convergence by  $x_n \to x$ . We have from [11] that for any  $x, y \in H$  and  $\lambda \in \mathbb{R}$ ,

$$\|x + y\|^{2} \le \|x\|^{2} + 2\langle y, x + y \rangle$$
(2.1)

and

$$\|\lambda x + (1-\lambda)y\|^2 = \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\|x-y\|^2.$$
(2.2)

Furthermore, we have that for  $x, y, u, v \in H$ ,

$$2\langle x - y, u - v \rangle = \|x - v\|^2 + \|y - u\|^2 - \|x - u\|^2 - \|y - v\|^2.$$
(2.3)

All Hilbert spaces satisfy Opial's condition, that is,

$$\liminf_{n \to \infty} \|x_n - u\| < \liminf_{n \to \infty} \|x_n - \nu\|$$
(2.4)

if  $x_n \rightarrow u$  and  $u \neq v$ ; see [12]. Let *C* be a nonempty closed convex subset of a Hilbert space *H*, and let  $T: C \rightarrow H$  be a mapping. We denote by F(T) the set of fixed points for *T*. A mapping  $T: C \rightarrow H$  is called quasi-nonexpansive if  $F(T) \neq \emptyset$  and  $||Tx - y|| \le ||x - y||$ 

for all  $x \in C$  and  $y \in F(T)$ . If  $T : C \to H$  is quasi-nonexpansive, then F(T) is closed and convex; see [13]. For a nonempty closed convex subset C of H, the nearest point projection of H onto C is denoted by  $P_C$ , that is,  $||x - P_C x|| \le ||x - y||$  for all  $x \in H$  and  $y \in C$ . Such  $P_C$  is called the metric projection of H onto C. We know that the metric projection  $P_C$  is firmly nonexpansive;  $||P_C x - P_C y||^2 \le \langle P_C x - P_C y, x - y \rangle$  for all  $x, y \in H$ . Furthermore,  $\langle x - P_C x, y - P_C x \rangle \le 0$  holds for all  $x \in H$  and  $y \in C$ ; see [14]. The following result is in [15].

**Lemma 3** Let *H* be a Hilbert space, and let *C* be a nonempty closed convex subset of *H*. Let  $T: C \rightarrow H$  be a generalized hybrid mapping. Suppose that there exists  $\{x_n\} \subset C$  such that  $x_n \rightarrow z$  and  $x_n - Tx_n \rightarrow 0$ . Then  $z \in F(T)$ .

Let *B* be a mapping of *H* into  $2^H$ . The effective domain of *B* is denoted by D(B), that is,  $D(B) = \{x \in H : Bx \neq \emptyset\}$ . A multi-valued mapping *B* is said to be a monotone operator on *H* if  $\langle x - y, u - v \rangle \ge 0$  for all  $x, y \in D(B)$ ,  $u \in Bx$ , and  $v \in By$ . A monotone operator *B* on *H* is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on *H*. For a maximal monotone operator *B* on *H* and r > 0, we may define a single-valued operator  $J_r = (I + rB)^{-1} : H \to D(B)$ , which is called the resolvent of *B* for *r*. We denote by  $A_r = \frac{1}{r}(I - J_r)$  the Yosida approximation of *B* for r > 0. We know from [8] that

$$A_r x \in BJ_r x, \quad \forall x \in H, \ r > 0.$$

$$(2.5)$$

Let *B* be a maximal monotone operator on *H*, and let  $B^{-1}0 = \{x \in H : 0 \in Bx\}$ . It is known that  $B^{-1}0 = F(J_r)$  for all r > 0 and the resolvent  $J_r$  is firmly nonexpansive, *i.e.*,

$$\|J_r x - J_r y\|^2 \le \langle x - y, J_r x - J_r y \rangle, \quad \forall x, y \in H.$$
(2.6)

We also know the following lemma from [16].

**Lemma 4** Let *H* be a real Hilbert space, and let *B* be a maximal monotone operator on *H*. For r > 0 and  $x \in H$ , define the resolvent  $J_r x$ . Then the following holds:

$$\frac{s-t}{s}\langle J_s x - J_t x, J_s x - x \rangle \ge \|J_s x - J_t x\|^2$$

for all s, t > 0 and  $x \in H$ .

From Lemma 4, we have that

$$\|J_{\lambda}x - J_{\mu}x\| \le \left(|\lambda - \mu|/\lambda\right)\|x - J_{\lambda}x\|$$

for all  $\lambda$ ,  $\mu > 0$  and  $x \in H$ ; see also [14, 17]. To prove our main result, we need the following lemmas.

**Lemma 5** ([18]; see also [19]) Let  $\{s_n\}$  be a sequence of nonnegative real numbers, let  $\{\alpha_n\}$  be a sequence of [0,1] with  $\sum_{n=1}^{\infty} \alpha_n = \infty$ , let  $\{\beta_n\}$  be a sequence of nonnegative real numbers

with  $\sum_{n=1}^{\infty} \beta_n < \infty$ , and let  $\{\gamma_n\}$  be a sequence of real numbers with  $\limsup_{n\to\infty} \gamma_n \le 0$ . Suppose that

$$s_{n+1} \leq (1-\alpha_n)s_n + \alpha_n\gamma_n + \beta_n$$

for all  $n = 1, 2, \ldots$ . Then  $\lim_{n \to \infty} s_n = 0$ .

**Lemma 6** ([20]) Let  $\{\Gamma_n\}$  be a sequence of real numbers that does not decrease at infinity in the sense that there exists a subsequence  $\{\Gamma_{n_i}\}$  of  $\{\Gamma_n\}$  which satisfies  $\Gamma_{n_i} < \Gamma_{n_i+1}$  for all  $i \in \mathbb{N}$ . Define the sequence  $\{\tau(n)\}_{n \ge n_0}$  of integers as follows:

 $\tau(n) = \max\{k \le n : \Gamma_k < \Gamma_{k+1}\},\$ 

where  $n_0 \in \mathbb{N}$  such that  $\{k \le n_0 : \Gamma_k < \Gamma_{k+1}\} \ne \emptyset$ . Then the following hold:

- (i)  $\tau(n_0) \leq \tau(n_0 + 1) \leq \cdots$  and  $\tau(n) \to \infty$ ;
- (ii)  $\Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}$  and  $\Gamma_n \leq \Gamma_{\tau(n)+1}, \forall n \in \mathbb{N}$ .

## **3** Strong convergence theorems

Let *H* be a real Hilbert space. A mapping  $g: H \to H$  is a contraction if there exists  $k \in (0, 1)$  such that  $||g(x) - g(y)|| \le k ||x - y||$  for all  $x, y \in H$ . We call such a mapping *g* a *k*-contraction. A nonlinear operator  $V: H \to H$  is called strongly monotone if there exists  $\overline{\gamma} > 0$  such that  $\langle x - y, Vx - Vy \rangle \ge \overline{\gamma} ||x - y||^2$  for all  $x, y \in H$ . Such *V* is also called  $\overline{\gamma}$ -strongly monotone. A nonlinear operator  $V: H \to H$  is called Lipschitzian continuous if there exists L > 0 such that  $||Vx - Vy|| \le L ||x - y||$  for all  $x, y \in H$ . Such *V* is also called *L*-Lipschitzian continuous. We know the following three lemmas in a Hilbert space; see Lin and Takahashi [21].

**Lemma 7** ([21]) Let H be a Hilbert space, and let V be a  $\overline{\gamma}$ -strongly monotone and L-Lipschitzian continuous operator on H with  $\overline{\gamma} > 0$  and L > 0. Let t > 0 satisfy  $2\overline{\gamma} > tL^2$  and  $1 > 2t\overline{\gamma}$ . Then  $0 < 1 - t(2\overline{\gamma} - tL^2) < 1$  and  $I - tV : H \rightarrow H$  is a contraction, where I is the identity operator on H.

**Lemma 8** ([21]) Let H be a Hilbert space, and let C be a nonempty closed convex subset of H. Let  $P_C$  be the metric projection of H onto C, and let V be a  $\overline{\gamma}$ -strongly monotone and L-Lipschitzian continuous operator on H with  $\overline{\gamma} > 0$  and L > 0. Let t > 0 satisfy  $2\overline{\gamma} > tL^2$ and  $1 > 2t\overline{\gamma}$ , and let  $z \in C$ . Then the following are equivalent:

- (1)  $z = P_C(I tV)z;$
- (2)  $\langle Vz, y-z \rangle \ge 0, \forall y \in C;$
- $(3) \quad z = P_C(I V)z.$

Such  $z \in C$  always exists and is unique.

**Lemma 9** ([21]) Let *H* be a Hilbert space, and let  $g: H \to H$  be a *k*-contraction with 0 < k < 1. Let *V* be a  $\overline{\gamma}$ -strongly monotone and *L*-Lipschitzian continuous operator on *H* with  $\overline{\gamma} > 0$  and L > 0. Let a real number  $\gamma$  satisfy  $0 < \gamma < \frac{\overline{\gamma}}{k}$ . Then  $V - \gamma g: H \to H$  is a  $(\overline{\gamma} - \gamma k)$ -strongly monotone and  $(L + \gamma k)$ -Lipschitzian continuous mapping. Furthermore, let *C* be a nonempty closed convex subset of *H*. Then  $P_C(I - V + \gamma g)$  has a unique fixed point  $z_0$  in *C*. This point  $z_0 \in C$  is also a unique solution of the variational inequality

$$\langle (V-\gamma g)z_0, q-z_0 \rangle \geq 0, \quad \forall q \in C.$$

Now, we prove the following strong convergence theorem of Halpern's type [6] for finding a common solution of a monotone inclusion problem for the sum of two monotone mappings, of a fixed point problem for generalized hybrid mappings and of an equilibrium problem for bifunctions in a Hilbert space.

**Theorem 10** Let *H* be a real Hilbert space, and let *C* be a nonempty closed convex subset of *H*. Let  $\alpha > 0$ , and let *A* be an  $\alpha$ -inverse strongly-monotone mapping of *C* into *H*. Let *B* and *W* be maximal monotone operators on *H* such that the domains of *B* and *W* are included in *C*. Let  $J_{\lambda} = (I + \lambda B)^{-1}$  and  $T_r = (I + rW)^{-1}$  be resolvents of *B* and *W* for  $\lambda > 0$  and r > 0, respectively. Let *S* be a generalized hybrid mapping of *C* into *H*. Let 0 < k < 1, and let *g* be a *k*-contraction of *H* into itself. Let *V* be a  $\overline{\gamma}$ -strongly monotone and *L*-Lipschitzian continuous operator with  $\overline{\gamma} > 0$  and L > 0. Take  $\mu, \gamma \in \mathbb{R}$  as follows:

$$0 < \mu < \frac{2\overline{\gamma}}{L^2}, \qquad 0 < \gamma < \frac{\overline{\gamma} - \frac{L^2 \mu}{2}}{k}.$$

Suppose  $F(S) \cap (A + B)^{-1}0 \cap W^{-1}0 \neq \emptyset$ . Let  $x_1 = x \in H$ , and let  $\{x_n\} \subset H$  be a sequence generated by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) \left\{ \alpha_n \gamma g(x_n) + (I - \alpha_n V) S J_{\lambda_n} (I - \lambda_n A) T_{r_n} x_n \right\}$$

for all  $n \in \mathbb{N}$ , where  $\{\alpha_n\} \subset (0,1)$ ,  $\{\beta_n\} \subset (0,1)$ ,  $\{\lambda_n\} \subset (0,\infty)$  and  $\{r_n\} \subset (0,\infty)$  satisfy

$$\lim_{n \to \infty} \alpha_n = 0, \qquad \sum_{n=1}^{\infty} \alpha_n = \infty, \qquad 0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1,$$
$$\liminf_{n \to \infty} r_n > 0 \quad and \quad 0 < a \le \lambda_n \le b < 2\alpha.$$

Then  $\{x_n\}$  converges strongly to  $z_0 \in F(S) \cap (A + B)^{-1}0 \cap W^{-1}0$ , where  $z_0$  is a unique fixed point in  $F(S) \cap (A + B)^{-1}0 \cap W^{-1}0$  of  $P_{F(S) \cap (A+B)^{-1}0 \cap W^{-1}0}(I - V + \gamma g)$ .

*Proof* Let  $z \in F(S) \cap (A + B)^{-1} \cap W^{-1} \cap W^{-1}$ . We have that z = Sz,  $z = J_{\lambda_n}(I - \lambda_n A)z$  and  $z = T_{r_n}z$ . Putting  $w_n = J_{\lambda_n}(I - \lambda_n A)T_{r_n}x_n$  and  $u_n = T_{r_n}x_n$ , we obtain that

$$\begin{split} \|Sw_{n} - z\|^{2} &\leq \|w_{n} - z\|^{2} \\ &= \|J_{\lambda_{n}}(u_{n} - \lambda_{n}Au_{n}) - J_{\lambda_{n}}(z - \lambda_{n}Az)\|^{2} \\ &\leq \|u_{n} - \lambda_{n}Au_{n} - (z - \lambda_{n}Az)\|^{2} \\ &= \|u_{n} - z - \lambda_{n}(Au_{n} - Az)\|^{2} \\ &= \|u_{n} - z\|^{2} - 2\lambda_{n}(Au_{n} - z, Au_{n} - Az) + \lambda_{n}^{2}\|Au_{n} - Az\|^{2} \\ &\leq \|u_{n} - z\|^{2} - 2\lambda_{n}\alpha\|Au_{n} - Az\|^{2} + \lambda_{n}^{2}\|Au_{n} - Az\|^{2} \\ &\leq \|x_{n} - z\|^{2} + \lambda_{n}(\lambda_{n} - 2\alpha)\|Au_{n} - Az\|^{2} \\ &\leq \|x_{n} - z\|^{2}. \end{split}$$
(3.1)

Put  $\tau = \overline{\gamma} - \frac{L^2 \mu}{2}$ . Using  $\lim_{n \to \infty} \alpha_n = 0$ , we have that for any  $x, y \in H$ ,

$$\begin{aligned} \left\| (I - \alpha_{n}V)x - (I - \alpha_{n}V)y \right\|^{2} \\ &= \left\| x - y - \alpha_{n}(Vx - Vy) \right\|^{2} \\ &= \left\| x - y \right\|^{2} - 2\alpha_{n}\langle x - y, Vx - Vy \rangle + \alpha_{n}^{2} \|Vx - Vy\|^{2} \\ &\leq \left\| x - y \right\|^{2} - 2\alpha_{n}\overline{\gamma} \|x - y\|^{2} + \alpha_{n}^{2}L^{2} \|x - y\|^{2} \\ &= \left( 1 - 2\alpha_{n}\overline{\gamma} + \alpha_{n}^{2}L^{2} \right) \|x - y\|^{2} \\ &= \left( 1 - 2\alpha_{n}\tau - \alpha_{n}L^{2}\mu + \alpha_{n}^{2}L^{2} \right) \|x - y\|^{2} \\ &\leq \left( 1 - 2\alpha_{n}\tau - \alpha_{n}(L^{2}\mu - \alpha_{n}L^{2}) + \alpha_{n}^{2}\tau^{2} \right) \|x - y\|^{2} \\ &\leq \left( 1 - 2\alpha_{n}\tau + \alpha_{n}^{2}\tau^{2} \right) \|x - y\|^{2} \\ &\leq \left( 1 - 2\alpha_{n}\tau + \alpha_{n}^{2}\tau^{2} \right) \|x - y\|^{2} \\ &= \left( 1 - \alpha_{n}\tau \right)^{2} \|x - y\|^{2}. \end{aligned}$$
(3.2)

Since  $1 - \alpha_n \tau > 0$ , we obtain that for any  $x, y \in H$ ,

$$\| (I - \alpha_n V) x - (I - \alpha_n V) y \| \le (1 - \alpha_n \tau) \| x - y \|.$$
(3.3)

Putting  $y_n = \alpha_n \gamma g(x_n) + (I - \alpha_n V)SJ_{\lambda_n}(I - \lambda_n A)T_{r_n}x_n$ , from  $z = \alpha_n Vz + z - \alpha_n Vz$ , (3.1) and (3.3) we have that

$$\|y_n - z\| = \|\alpha_n (\gamma g(x_n) - Vz) + (I - \alpha_n V)Sw_n - (I - \alpha_n V)z\|$$
  
$$\leq \alpha_n \gamma k \|x_n - z\| + \alpha_n \|\gamma g(z) - Vz\| + (1 - \alpha_n \tau) \|Sw_n - z\|$$
  
$$\leq \{1 - \alpha_n (\tau - \gamma k)\} \|x_n - z\| + \alpha_n \|\gamma g(z) - Vz\|.$$

Using this, we get

$$\begin{aligned} \|x_{n+1} - z\| &= \left\| \beta_n (x_n - z) + (1 - \beta_n) (y_n - z) \right\| \\ &\leq \beta_n \|x_n - z\| + (1 - \beta_n) \|y_n - z\| \\ &\leq \beta_n \|x_n - z\| \\ &+ (1 - \beta_n) \left( \left\{ 1 - \alpha_n (\tau - \gamma k) \right\} \|x_n - z\| + \alpha_n \left\| \gamma g(z) - Vz \right\| \right) \\ &= \left\{ 1 - (1 - \beta_n) \alpha_n (\tau - \gamma k) \right\} \|x_n - z\| \\ &+ (1 - \beta_n) \alpha_n (\tau - \gamma k) \frac{\|\gamma g(z) - Vz\|}{\tau - \gamma k}. \end{aligned}$$

Putting  $K = \max\{\|x_1 - z\|, \frac{\|\gamma g(z) - Vz\|}{\tau - \gamma k}\}$ , we have that  $\|x_n - z\| \le K$  for all  $n \in \mathbb{N}$ . Then  $\{x_n\}$  is bounded. Furthermore,  $\{u_n\}$ ,  $\{w_n\}$  and  $\{y_n\}$  are bounded. Using Lemma 9, we can take a unique  $z_0 \in F(S) \cap (A + B)^{-1}0 \cap W^{-1}0$  such that

$$z_0 = P_{F(S) \cap (A+B)^{-1} 0 \cap W^{-1} 0} (I - V + \gamma g) z_0.$$

From the definition of  $\{x_n\}$ , we have that

$$x_{n+1} - x_n = \beta_n x_n + (1 - \beta_n) \left\{ \alpha_n \gamma g(x_n) + (I - \alpha_n V) S w_n \right\} - x_n$$

and hence

$$\begin{aligned} x_{n+1} - x_n - (1 - \beta_n)\alpha_n \gamma g(x_n) &= \beta_n x_n + (1 - \beta_n)(I - \alpha_n V)Sw_n - x_n \\ &= (1 - \beta_n) \{ (I - \alpha_n V)Sw_n - x_n \} \\ &= (1 - \beta_n)(Sw_n - x_n - \alpha_n VSw_n). \end{aligned}$$

Thus, we have that

$$\begin{aligned} \langle x_{n+1} - x_n - (1 - \beta_n) \alpha_n \gamma g(x_n), x_n - z_0 \rangle \\ &= \langle (1 - \beta_n) (Sw_n - x_n - \alpha_n V Sw_n), x_n - z_0 \rangle \\ &= -(1 - \beta_n) \langle x_n - Sw_n, x_n - z_0 \rangle - (1 - \beta_n) \alpha_n \langle V Sw_n, x_n - z_0 \rangle. \end{aligned}$$

$$(3.4)$$

From (2.3) and (3.1), we have that

$$2\langle x_n - Sw_n, x_n - z_0 \rangle = \|x_n - z_0\|^2 + \|Sw_n - x_n\|^2 - \|Sw_n - z_0\|^2$$
  

$$\geq \|x_n - z_0\|^2 + \|Sw_n - x_n\|^2 - \|x_n - z_0\|^2$$
  

$$= \|Sw_n - x_n\|^2.$$
(3.5)

From (3.4) and (3.5), we also have that

$$-2\langle x_n - x_{n+1}, x_n - z_0 \rangle = 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle$$
  

$$-2(1 - \beta_n)\langle x_n - Sw_n, x_n - z_0 \rangle - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle$$
  

$$\leq 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle$$
  

$$-(1 - \beta_n) \|Sw_n - x_n\|^2 - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle.$$
(3.6)

Furthermore, using (2.3) and (3.6), we have that

$$\|x_{n+1} - z_0\|^2 - \|x_n - x_{n+1}\|^2 - \|x_n - z_0\|^2$$
  

$$\leq 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle$$
  

$$- (1 - \beta_n) \|Sw_n - x_n\|^2 - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle.$$

Setting  $\Gamma_n = ||x_n - z_0||^2$ , we have that

$$\Gamma_{n+1} - \Gamma_n - \|x_n - x_{n+1}\|^2$$

$$\leq 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle$$

$$- (1 - \beta_n) \|Sw_n - x_n\|^2 - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle.$$

$$(3.7)$$

Noting that

$$\|x_{n+1} - x_n\| = \|(1 - \beta_n)\alpha_n(\gamma g(x_n) - VSw_n) + (1 - \beta_n)(Sw_n - x_n)\|$$
  
$$\leq (1 - \beta_n)(\|Sw_n - x_n\| + \alpha_n\|\gamma g(x_n) - VSw_n\|), \qquad (3.8)$$

$$\|x_{n+1} - x_n\|^2 \le (1 - \beta_n)^2 (\|Sw_n - x_n\| + \alpha_n \|\gamma g(x_n) - VSw_n\|)^2$$
  
=  $(1 - \beta_n)^2 \|Sw_n - x_n\|^2 + (1 - \beta_n)^2 2\alpha_n \|Sw_n - x_n\| \|\gamma g(x_n) - VSw_n\|$   
+  $(1 - \beta_n)^2 \alpha_n^2 \|\gamma g(x_n) - VSw_n\|^2.$  (3.9)

Thus, we have from (3.7) and (3.9) that

$$\begin{split} \Gamma_{n+1} - \Gamma_n &\leq \|x_n - x_{n+1}\|^2 + 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle \\ &- (1 - \beta_n) \|Sw_n - x_n\|^2 - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle \\ &\leq (1 - \beta_n)^2 \|Sw_n - x_n\|^2 + (1 - \beta_n)^2 2\alpha_n \|Sw_n - x_n\| \|\gamma g(x_n) - VSw_n\| \\ &+ (1 - \beta_n)^2 \alpha_n^2 \|\gamma g(x_n) - VSw_n\|^2 + 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle \\ &- (1 - \beta_n) \|Sw_n - x_n\|^2 - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle \end{split}$$

and hence

$$\Gamma_{n+1} - \Gamma_n + \beta_n (1 - \beta_n) \|Sw_n - x_n\|^2 \leq (1 - \beta_n)^2 2\alpha_n \|Sw_n - x_n\| \|\gamma g(x_n) - VSw_n\| + (1 - \beta_n)^2 \alpha_n^2 \|\gamma g(x_n) - VSw_n\|^2 + 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle.$$
(3.10)

We divide the proof into two cases.

Case 1: Suppose that  $\Gamma_{n+1} \leq \Gamma_n$  for all  $n \in \mathbb{N}$ . In this case,  $\lim_{n\to\infty} \Gamma_n$  exists and then  $\lim_{n\to\infty} (\Gamma_{n+1} - \Gamma_n) = 0$ . Using  $0 < \liminf_{n\to\infty} \beta_n \le \limsup_{n\to\infty} \beta_n < 1$  and  $\lim_{n\to\infty} \alpha_n = 0$ , we have from (3.10) that

$$\lim_{n \to \infty} \|Sw_n - x_n\| = 0.$$
(3.11)

Using (3.8), we also have that

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$
(3.12)

Since  $x_{n+1} - x_n = (1 - \beta_n)(y_n - x_n)$ , we have from (3.12) that

$$\lim_{n \to \infty} \|y_n - x_n\| = 0.$$
(3.13)

We also have from (2.6) that

$$2\|u_n - z_0\|^2 = 2\|T_{r_n}x_n - T_{r_n}z_0\|^2$$
  
$$\leq 2\langle x_n - z_0, u_n - z_0 \rangle$$
  
$$= \|x_n - z_0\|^2 + \|u_n - z_0\|^2 - \|u_n - x_n\|^2$$

and hence

$$\|u_n - z_0\|^2 \le \|x_n - z_0\|^2 - \|u_n - x_n\|^2.$$
(3.14)

From (3.1) we have that

$$||Sw_n - z_0||^2 \le ||u_n - z_0||^2 \le ||x_n - z_0||^2 - ||u_n - x_n||^2$$

and hence

$$||u_n - x_n||^2 \le ||x_n - z_0||^2 - ||Sw_n - z_0||^2 \le M ||Sw_n - x_n||^2$$

where  $M = \sup\{||x_n - z_0|| + ||Sw_n - z_0|| : n \in \mathbb{N}\}$ . Thus, from (3.11) we have that

$$\lim_{n \to \infty} \|u_n - x_n\| = 0.$$
(3.15)

We show  $\lim_{n\to\infty} \|Sw_n - w_n\| = 0$ . Since  $\|\cdot\|^2$  is a convex function, we have that

$$\|x_{n+1} - z_0\|^2 \le \beta_n \|x_n - z_0\|^2 + (1 - \beta_n) \|y_n - z_0\|^2.$$
(3.16)

From  $z_0 = \alpha_n V z_0 + z_0 - \alpha_n V z_0$  and (2.1), we also have that

$$\begin{aligned} \|y_{n} - z_{0}\|^{2} &= \left\|\alpha_{n} \left(\gamma g(x_{n}) - Vz_{0}\right) + (I - \alpha_{n}V)Sw_{n} - (I - \alpha_{n}V)z_{0}\right\|^{2} \\ &\leq (1 - \alpha_{n}\tau)^{2} \|Sw_{n} - z_{0}\|^{2} + 2\alpha_{n} \langle\gamma g(x_{n}) - Vz_{0}, y_{n} - z_{0}\rangle \\ &\leq (1 - \alpha_{n}\tau)^{2} \|w_{n} - z_{0}\|^{2} + 2\alpha_{n} \langle\gamma g(x_{n}) - Vz_{0}, y_{n} - z_{0}\rangle \\ &\leq \|w_{n} - z_{0}\|^{2} + 2\alpha_{n} \langle\gamma g(x_{n}) - Vz_{0}, y_{n} - z_{0}\rangle \\ &\leq \|x_{n} - z\|^{2} + \lambda_{n} (\lambda_{n} - 2\alpha) \|Au_{n} - Az\|^{2} \\ &+ 2\alpha_{n} \langle\gamma g(x_{n}) - Vz_{0}, y_{n} - z_{0}\rangle. \end{aligned}$$
(3.17)

Using (3.16) and (3.17), we have that

$$\begin{aligned} \|x_{n+1} - z_0\|^2 &\leq \beta_n \|x_n - z_0\|^2 + (1 - \beta_n) \|x_n - z_0\|^2 \\ &+ (1 - \beta_n) \big( \lambda_n (\lambda_n - 2\alpha) \|Au_n - Az_0\|^2 + 2\alpha_n \big\langle \gamma g(x_n) - Vz_0, y_n - z_0 \big\rangle \big) \\ &= \|x_n - z_0\|^2 + (1 - \beta_n) \big( \lambda_n (\lambda_n - 2\alpha) \|Au_n - Az_0\|^2 \\ &+ 2\alpha_n \big\langle \gamma g(x_n) - Vz_0, y_n - z_0 \big\rangle \big). \end{aligned}$$
(3.18)

Thus, we have that

$$(1 - \beta_n)\lambda_n(2\alpha - \lambda_n) \|Au_n - Az\|^2 \leq \|x_n - z\|^2 - \|x_{n+1} - z\|^2 + (1 - \beta_n)2\alpha_n \langle \gamma g(x_n) - Vz_0, y_n - z_0 \rangle.$$
(3.19)

Then we have that

$$\lim_{n \to \infty} \|Au_n - Az_0\| = 0.$$
(3.20)

Since  $J_{\lambda_n}$  is firmly nonexpansive, we have that

$$2\|w_{n} - z_{0}\|^{2} = 2\|J_{\lambda_{n}}(u_{n} - \lambda_{n}Au_{n}) - J_{\lambda_{n}}(z_{0} - \lambda_{n}Az_{0})\|^{2}$$

$$\leq 2\langle u_{n} - \lambda_{n}Au_{n} - (z_{0} - \lambda_{n}Az_{0}), w_{n} - z_{0}\rangle$$

$$= \|u_{n} - \lambda_{n}Au_{n} - (z_{0} - \lambda_{n}Az_{0})\|^{2} + \|w_{n} - z_{0}\|^{2}$$

$$- \|u_{n} - \lambda_{n}Au_{n} - (z_{0} - \lambda_{n}Az_{0}) - (w_{n} - z_{0})\|^{2}$$

$$\leq \|u_{n} - z_{0}\|^{2} + \|w_{n} - z_{0}\|^{2}$$

$$- \|u_{n} - w_{n} - \lambda_{n}(Au_{n} - Az_{0})\|^{2}$$

$$\leq \|x_{n} - z_{0}\|^{2} + \|w_{n} - z_{0}\|^{2} - \|u_{n} - w_{n}\|^{2}$$

$$\leq \|x_{n} - z_{0}\|^{2} + \|w_{n} - Az_{0}\|^{2} - \|u_{n} - w_{n}\|^{2}$$

Thus, we get

$$\|w_n - z_0\|^2 \le \|x_n - z_0\|^2 - \|u_n - w_n\|^2 + 2\lambda_n \langle u_n - w_n, Au_n - Az_0 \rangle - \lambda_n^2 \|Au_n - Az_0\|^2.$$
(3.21)

Using (3.17), we obtain

$$\begin{aligned} \|x_{n+1} - z_0\|^2 &\leq \beta_n \|x_n - z_0\|^2 + (1 - \beta_n) \|y_n - z_0\|^2 \\ &\leq \beta_n \|x_n - z_0\|^2 + (1 - \beta_n) (\|w_n - z_0\|^2 + 2\alpha_n \langle \gamma g(x_n) - Vz_0, y_n - z_0 \rangle) \\ &\leq \beta_n \|x_n - z_0\|^2 + (1 - \beta_n) \|x_n - z_0\|^2 \\ &- (1 - \beta_n) \|u_n - w_n\|^2 + (1 - \beta_n) 2\lambda_n \langle u_n - w_n, Au_n - Az_0 \rangle \\ &- (1 - \beta_n) \lambda_n^2 \|Au_n - Az_0\|^2 + (1 - \beta_n) 2\alpha_n \langle \gamma g(x_n) - Vz_0, y_n - z_0 \rangle \\ &= \|x_n - z_0\|^2 - (1 - \beta_n) \|u_n - w_n\|^2 \\ &+ (1 - \beta_n) 2\lambda_n \langle u_n - w_n, Au_n - Az_0 \rangle - (1 - \beta_n) \lambda_n^2 \|Au_n - Az_0\|^2 \\ &+ (1 - \beta_n) 2\alpha_n \langle \gamma g(x_n) - Vz_0, y_n - z_0 \rangle, \end{aligned}$$

from which it follows that

$$(1 - \beta_n) \|x_n - w_n\|^2 \le \|x_n - z_0\|^2$$
  
-  $\|x_{n+1} - z_0\|^2 + 2\lambda_n \langle u_n - w_n, Au_n - Az_0 \rangle$   
-  $\lambda_n^2 \|Au_n - Az_0\|^2 + 2\alpha_n \langle \gamma g(x_n) - Vz_0, y_n - z_0 \rangle.$ 

Then we have

$$\lim_{n \to \infty} \|u_n - w_n\| = 0.$$
(3.22)

From (3.22) and (3.15), we have that

$$\lim_{n \to \infty} \|x_n - w_n\| = 0.$$
(3.23)

Since  $||Sw_n - w_n|| \le ||Sw_n - x_n|| + ||x_n - w_n||$ , we have that

$$\lim_{n \to \infty} \|Sw_n - w_n\| = 0.$$
(3.24)

Take  $\lambda_0 \in \mathbb{R}$  with  $0 < a \le \lambda_0 \le b < 2\alpha$  arbitrarily. Put  $s_n = (I - \lambda_n A)u_n$ . Using  $u_n = T_{r_n}x_n$ and  $w_n = J_{\lambda_n}(I - \lambda_n A)u_n$ , we have from Lemma 4 that

$$\|J_{\lambda_0}(I-\lambda_0A)u_n-w_n\| = \|J_{\lambda_0}(I-\lambda_0A)u_n-J_{\lambda_n}(I-\lambda_nA)u_n\|$$
  
$$= \|J_{\lambda_0}(I-\lambda_0A)u_n-J_{\lambda_0}(I-\lambda_nA)u_n$$
  
$$+J_{\lambda_0}(I-\lambda_nA)u_n-J_{\lambda_n}(I-\lambda_nA)u_n\|$$
  
$$\leq \|(I-\lambda_0A)u_n-(I-\lambda_nA)u_n\| + \|J_{\lambda_0}s_n-J_{\lambda_n}s_n\|$$
  
$$\leq |\lambda_0-\lambda_n|\|Au_n\| + \frac{|\lambda_0-\lambda_n|}{\lambda_0}\|J_{\lambda_0}s_n-s_n\|.$$
(3.25)

We also have from (3.25) that

$$\|u_n - J_{\lambda_0}(I - \lambda_0 A)u_n\| \le \|u_n - w_n\| + \|w_n - J_{\lambda_0}(I - \lambda_0 A)u_n\|.$$
(3.26)

We will use (3.25) and (3.26) later.

Let us show that  $\limsup_{n\to\infty} \langle (V - \gamma g) z_0, x_n - z_0 \rangle \ge 0$ . Put

 $A = \limsup_{n \to \infty} \langle (V - \gamma g) z_0, x_n - z_0 \rangle.$ 

Without loss of generality, we may assume that there exists a subsequence  $\{x_{n_i}\}$  of  $\{x_n\}$  such that  $A = \lim_{i\to\infty} \langle (V - \gamma g)z_0, x_{n_i} - z_0 \rangle$  and  $\{x_{n_i}\}$  converges weakly to some point  $w \in H$ . From  $||x_n - w_n|| \to 0$  and  $||x_n - u_n|| \to 0$ , we also have that  $\{w_{n_i}\}$  and  $\{u_{n_i}\}$  converge weakly to  $w \in C$ . On the other hand, from  $\{\lambda_{n_i}\} \subset [a, b]$  there exists a subsequence  $\{\lambda_{n_{i_j}}\}$  of  $\{\lambda_{n_i}\}$  such that  $\lambda_{n_{i_j}} \to \lambda_0$  for some  $\lambda_0 \in [a, b]$ . Without loss of generality, we assume that  $w_{n_i} \to w$ ,  $u_{n_i} \to w$  and  $\lambda_{n_i} \to \lambda_0$ . From (3.24) we know  $\lim_{n\to\infty} ||Sw_n - w_n|| = 0$ . Thus, we have from Lemma 3 that w = Sw. Since W is a monotone operator and  $\frac{x_{n_i} - u_{n_i}}{r_{n_i}} \in Wu_{n_i}$ , we have that for any  $(u, v) \in W$ ,

$$\left\langle u-u_{n_i}, v-\frac{x_{n_i}-u_{n_i}}{r_{n_i}}\right\rangle \geq 0.$$

Since  $\liminf_{n\to\infty} r_n > 0$ ,  $u_{n_i} \rightarrow w$  and  $x_{n_i} - u_{n_i} \rightarrow 0$ , we have

$$\langle u-w,v\rangle\geq 0.$$

Since *W* is a maximal monotone operator, we have  $0 \in Ww$  and hence  $w \in W^{-1}0$ . Since  $\lambda_{n_i} \to \lambda_0$ , we have from (3.25) that

$$\left\|J_{\lambda_0}(I-\lambda_0 A)u_{n_i}-w_{n_i}\right\|\to 0.$$

Furthermore, we have from (3.26) that

$$\left\|u_{n_i}-J_{\lambda_0}(I-\lambda_0 A)u_{n_i}\right\|\to 0.$$

Since  $J_{\lambda_0}(I - \lambda_0 A)$  is nonexpansive, we have that  $w = J_{\lambda_0}(I - \lambda_0 A)w$ . This means that  $0 \in Aw + Bw$ . Thus, we have

$$w \in F(T) \cap (A + B)^{-1} 0 \cap W^{-1} 0.$$

Then we have

$$A = \lim_{i \to \infty} \langle (V - \gamma g) z_0, x_{n_i} - z_0 \rangle = \langle (V - \gamma g) z_0, w - z_0 \rangle \ge 0.$$
(3.27)

Since  $y_n - z_0 = \alpha_n(\gamma g(x_n) - Vz_0) + (I - \alpha_n V)Sw_n - (I - \alpha_n V)z_0$ , we have

$$||y_n - z_0||^2 \le (1 - \alpha_n \tau)^2 ||Sw_n - z_0||^2 + 2\alpha_n \langle \gamma g(x_n) - Vz_0, y_n - z_0 \rangle.$$

Thus, we have

$$\|y_n - z_0\|^2 \le (1 - \alpha_n \tau)^2 \|x_n - z_0\|^2 + 2\alpha_n \langle \gamma g(x_n) - V z_0, y_n - z_0 \rangle.$$

Consequently, we have that

$$\begin{aligned} \|x_{n+1} - z_0\|^2 &\leq \beta_n \|x_n - z_0\|^2 + (1 - \beta_n) \|y_n - z_0\|^2 \\ &\leq \beta_n \|x_n - z_0\|^2 \\ &+ (1 - \beta_n) ((1 - \alpha_n \tau)^2 \|x_n - z_0\|^2 + 2\alpha_n \langle \gamma g(x_n) - Vz_0, y_n - z_0 \rangle) \\ &= (\beta_n + (1 - \beta_n) (1 - \alpha_n \tau)^2) \|x_n - z_0\|^2 \\ &+ 2(1 - \beta_n) \alpha_n \langle \gamma g(x_n) - Vz_0, y_n - z_0 \rangle \\ &\leq (1 - (1 - \beta_n) (2\alpha_n \tau - (\alpha_n \tau)^2)) \|x_n - z_0\|^2 \\ &+ 2(1 - \beta_n) \alpha_n \gamma k \|x_n - z_0\|^2 + 2(1 - \beta_n) \alpha_n \langle \gamma g(z_0) - Vz_0, y_n - z_0 \rangle \\ &= (1 - 2(1 - \beta_n) \alpha_n (\tau - \gamma k)) \|x_n - z_0\|^2 \\ &+ (1 - \beta_n) (\alpha_n \tau)^2 \|x_n - z_0\|^2 + 2(1 - \beta_n) \alpha_n \langle \gamma g(z_0) - Vz_0, y_n - z_0 \rangle \\ &= (1 - 2(1 - \beta_n) \alpha_n (\tau - \gamma k)) \|x_n - z_0\|^2 \\ &+ 2(1 - \beta_n) \alpha_n (\tau - \gamma k) (\frac{\alpha_n \tau^2 \|x_n - z_0\|^2}{2(\tau - \gamma k)} + \frac{\langle \gamma g(z_0) - Vz_0, y_n - z_0 \rangle}{\tau - \gamma k}). \end{aligned}$$

By (3.27) and Lemma 5, we obtain that  $x_n \rightarrow z_0$ , where

 $z_0 = P_{F(S) \cap (A+B)^{-1} 0 \cap W^{-1} 0} (I - V + \gamma g) z_0.$ 

Case 2: Suppose that there exists a subsequence  $\{\Gamma_{n_i}\} \subset \{\Gamma_n\}$  such that  $\Gamma_{n_i} < \Gamma_{n_i+1}$  for all  $i \in \mathbb{N}$ . In this case, we define  $\tau : \mathbb{N} \to \mathbb{N}$  by

$$\tau(n) = \max\{k \le n : \Gamma_k < \Gamma_{k+1}\}.$$

Then we have from Lemma 6 that  $\Gamma_{\tau(n)} < \Gamma_{\tau(n)+1}$ . Thus, we have from (3.10) that for all  $n \in \mathbb{N}$ ,

$$\begin{aligned} \beta_{\tau(n)}(1-\beta_{\tau(n)}) \|Sw_{\tau(n)}-x_{\tau(n)}\|^{2} \\ &\leq (1-\beta_{\tau(n)})^{2} 2\alpha_{\tau(n)} \|Sw_{\tau(n)}-x_{\tau(n)}\| \left\| \gamma g(x_{\tau(n)})-VSw_{\tau(n)} \right\| \\ &+ (1-\beta_{\tau(n)})^{2} \alpha_{\tau(n)}^{2} \left\| \gamma g(x_{\tau(n)})-VSw_{\tau(n)} \right\|^{2} \\ &+ 2(1-\beta_{\tau(n)})\alpha_{\tau(n)} \langle \gamma g(x_{\tau(n)}), x_{\tau(n)}-z_{0} \rangle \\ &- 2(1-\beta_{\tau(n)})\alpha_{\tau(n)} \langle VSw_{\tau(n)}, x_{\tau(n)}-z_{0} \rangle. \end{aligned}$$
(3.28)

Using  $\lim_{n\to\infty} \alpha_n = 0$  and  $0 < \liminf_{n\to\infty} \beta_n \le \limsup_{n\to\infty} \beta_n < 1$ , we have from (3.28) and Lemma 6 that

$$\lim_{n \to \infty} \|Sw_{\tau}(n) - x_{\tau}(n)\| = 0.$$
(3.29)

As in the proof of Case 1, we also have that

$$\lim_{n \to \infty} \|x_{\tau(n)+1} - x_{\tau(n)}\| = 0 \tag{3.30}$$

and

$$\lim_{n \to \infty} \|y_{\tau(n)} - x_{\tau(n)}\| = 0.$$
(3.31)

Furthermore, we have that  $\lim_{n\to\infty} ||u_{\tau(n)} - x_{\tau(n)}|| = 0$ ,  $\lim_{n\to\infty} ||Au_{\tau(n)} - Az_0|| = 0$ ,  $\lim_{n\to\infty} ||u_{\tau(n)} - w_{\tau(n)}|| = 0$  and  $\lim_{n\to\infty} ||x_{\tau(n)} - w_{\tau(n)}|| = 0$ . From these we have that  $\lim_{n\to\infty} ||Sw_{\tau(n)} - w_{\tau(n)}|| = 0$ . As in the proof of Case 1, we can show that

$$\limsup_{n\to\infty} \langle (V-\gamma g)z_0, x_{\tau(n)}-z_0 \rangle \geq 0.$$

We also have that

$$\|y_{\tau(n)} - z_0\|^2 \le (1 - \alpha_{\tau(n)}\tau)^2 \|x_{\tau(n)} - z_0\|^2 + 2\alpha_{\tau(n)} \langle \gamma g(x_{\tau(n)}) - Vz_0, y_{\tau(n)} - z_0 \rangle$$

and hence

$$\begin{split} \|x_{\tau(n)+1} - z_0\|^2 &\leq \left(1 - 2(1 - \beta_{\tau(n)})\alpha_{\tau(n)}(\tau - \gamma k)\right) \|x_{\tau(n)} - z_0\|^2 \\ &+ (1 - \beta_{\tau(n)})(\alpha_{\tau(n)}\tau)^2 \|x_{\tau(n)} - z_0\|^2 \\ &+ 2(1 - \beta_{\tau(n)})\alpha_{\tau(n)} \langle \gamma g(z_0) - V z_0, y_{\tau(n)} - z_0 \rangle. \end{split}$$

From  $\Gamma_{\tau(n)} < \Gamma_{\tau(n)+1}$ , we have that

$$\begin{aligned} & 2(1-\beta_{\tau(n)})\alpha_{\tau(n)}(\tau-\gamma k)\|x_{\tau(n)}-z_0\|^2 \\ & \leq (1-\beta_{\tau(n)})(\alpha_{\tau(n)}\tau)^2\|x_{\tau(n)}-z_0\|^2 \\ & + 2(1-\beta_{\tau(n)})\alpha_{\tau(n)}\langle\gamma g(z_0)-Vz_0,y_{\tau(n)}-z_0\rangle. \end{aligned}$$

Since  $(1 - \beta_{\tau(n)})\alpha_{\tau(n)} > 0$ , we have that

$$2(\tau - \gamma k) \|x_{\tau(n)} - z_0\|^2$$
  
$$\leq \alpha_{\tau(n)} \tau^2 \|x_{\tau(n)} - z_0\|^2 + 2\langle \gamma g(z_0) - V z_0, y_{\tau(n)} - z_0 \rangle.$$

Thus, we have that

$$\limsup_{n\to\infty} 2(\tau-\gamma k) \|x_{\tau(n)}-z_0\|^2 \le 0$$

and hence  $||x_{\tau(n)} - z_0|| \to 0$  as  $n \to \infty$ . Since  $x_{\tau(n)} - x_{\tau(n)+1} \to 0$ , we have  $||x_{\tau(n)+1} - z_0|| \to 0$  as  $n \to \infty$ . Using Lemma 6 again, we obtain that

$$||x_n - z_0|| \le ||x_{\tau(n)+1} - z_0|| \to 0$$

as  $n \to \infty$ . This completes the proof.

## **4** Applications

In this section, using Theorem 10, we can obtain well-known and new strong convergence theorems in a Hilbert space. Let *H* be a Hilbert space, and let *f* be a proper lower semicontinuous convex function of *H* into  $(-\infty, \infty]$ . Then the subdifferential  $\partial f$  of *f* is defined as follows:

$$\partial f(x) = \left\{ z \in H : f(x) + \langle z, y - x \rangle \le f(y), \forall y \in H \right\}$$

for all  $x \in H$ . From Rockafellar [22], we know that  $\partial f$  is a maximal monotone operator. Let *C* be a nonempty closed convex subset of *H*, and let  $i_C$  be the indicator function of *C*, *i.e.*,

$$i_C(x) = \begin{cases} 0, & x \in C, \\ \infty, & x \notin C. \end{cases}$$

Then,  $i_C$  is a proper lower semicontinuous convex function on H. So, we can define the resolvent  $J_{\lambda}$  of  $\partial i_C$  for  $\lambda > 0$ , *i.e.*,

$$J_{\lambda}x = (I + \lambda \partial i_C)^{-1}x$$

for all  $x \in H$ . We know that  $J_{\lambda}x = P_C x$  for all  $x \in H$  and  $\lambda > 0$ ; see [11].

**Theorem 11** Let *H* be a real Hilbert space, and let *C* be a nonempty closed convex subset of *H*. Let *S* be a generalized hybrid mapping of *C* into *C*. Suppose  $F(S) \neq \emptyset$ . Let  $u, x_1 \in C$ , and let  $\{x_n\} \subset C$  be a sequence generated by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) \{ \alpha_n u + (1 - \alpha_n) S x_n \}$$

for all  $n \in \mathbb{N}$ , where  $\{\beta_n\} \subset (0,1)$  and  $\{\alpha_n\} \subset (0,1)$  satisfy

$$\lim_{n\to\infty}\alpha_n=0,\qquad \sum_{n=1}^\infty\alpha_n=\infty$$

and

$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1.$$

Then the sequence  $\{x_n\}$  converges strongly to  $z_0 \in F(S)$ , where  $z_0 = P_{F(S)}u$ .

*Proof* Put A = 0,  $B = W = \partial i_C$  and  $\lambda_n = r_n = 1$  for all  $n \in \mathbb{N}$  in Theorem 10. Then we have  $J_{\lambda_n} = T_{r_n} = P_C$  for all  $n \in \mathbb{N}$ . Furthermore, put g(x) = u and V(x) = x for all  $x \in H$ . Then we can take  $\overline{\gamma} = L = 1$ . Thus, we can take  $\mu = 1$ . On the other hand, since  $||g(x) - g(y)|| = 0 \le \frac{1}{3}||x - y||$  for all  $x, y \in H$ , we can take  $k = \frac{1}{3}$ . So, we can take  $\gamma = 1$ . Then for  $u, x_1 \in C$ , we get that

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) \{ \alpha_n u + (I - \alpha_n) S x_n \}$$

for all  $n \in \mathbb{N}$ . So, we have  $\{x_n\} \subset C$ . We also have

$$z_0 = P_{F(S)\cap C}(I - V + \gamma g)z_0 = P_{F(S)}(z_0 - z_0 + 1 \cdot u) = P_{F(S)}u.$$

Thus, we obtain the desired result by Theorem 10.

Theorem 11 solves the problem posed by Kurokawa and Takahashi [9]. The following result is a strong convergence theorem of Halpern's type [6] for finding a common solution of a monotone inclusion problem for the sum of two monotone mappings, of a fixed point problem for nonexpansive mappings and of an equilibrium problem for bifunctions in a Hilbert space.

**Theorem 12** Let *H* be a real Hilbert space, and let *C* be a nonempty closed convex subset of *H*. Let  $\alpha > 0$ , and let *A* be an  $\alpha$ -inverse strongly-monotone mapping of *C* into *H*. Let *B* and *W* be maximal monotone operators on *H* such that the domains of *B* and *W* are included in *C*. Let  $J_{\lambda} = (I + \lambda B)^{-1}$  and  $T_r = (I + rW)^{-1}$  be resolvents of *B* and *W* for  $\lambda > 0$ and r > 0, respectively. Let *S* be a nonexpansive mapping of *C* into *H*. Let 0 < k < 1, and let *g* be a *k*-contraction of *H* into itself. Let *V* be a  $\overline{\gamma}$ -strongly monotone and *L*-Lipschitzian continuous operator with  $\overline{\gamma} > 0$  and L > 0. Take  $\mu, \gamma \in \mathbb{R}$  as follows:

$$0 < \mu < \frac{2\overline{\gamma}}{L^2}, \qquad 0 < \gamma < \frac{\overline{\gamma} - \frac{L^2 \mu}{2}}{k}.$$

Suppose  $F(S) \cap (A + B)^{-1}0 \cap W^{-1}0 \neq \emptyset$ . Let  $x_1 = x \in H$ , and let  $\{x_n\} \subset H$  be a sequence generated by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) \{ \alpha_n \gamma g(x_n) + (I - \alpha_n V) SJ_{\lambda_n} (I - \lambda_n A) T_{r_n} x_n \}$$

for all  $n \in \mathbb{N}$ , where  $\{\alpha_n\} \subset (0,1)$ ,  $\{\beta_n\} \subset (0,1)$ ,  $\{\lambda_n\} \subset (0,\infty)$  and  $\{r_n\} \subset (0,\infty)$  satisfy

$$\lim_{n\to\infty}\alpha_n=0,\qquad \sum_{n=1}^{\infty}\alpha_n=\infty,\qquad 0<\liminf_{n\to\infty}\beta_n\leq\limsup_{n\to\infty}\beta_n<1,$$

 $\liminf_{n\to\infty} r_n > 0 \quad and \quad 0 < a \le \lambda_n \le b < 2\alpha.$ 

Then the sequence  $\{x_n\}$  converges strongly to  $z_0 \in F(S) \cap (A + B)^{-1}0 \cap W^{-1}0$ , where  $z_0 = P_{F(S)\cap (A+B)^{-1}0\cap W^{-1}0}(I - V + \gamma g)z_0$ .

*Proof* We know that a nonexpansive mapping *T* of *C* into *H* is a (1, 0)-generalized hybrid mapping. So, we obtain the desired result by Theorem 10.

Let  $f : C \times C \to \mathbb{R}$  be a bifunction. The equilibrium problem (with respect to *C*) is to find  $\hat{x} \in C$  such that

$$f(\hat{x}, y) \ge 0, \quad \forall y \in C. \tag{4.1}$$

The set of such solutions  $\hat{x}$  is denoted by EP(f), *i.e.*,

$$EP(f) = \left\{ \hat{x} \in C : f(\hat{x}, y) \ge 0, \forall y \in C \right\}.$$

For solving the equilibrium problem, let us assume that the bifunction  $f : C \times C \rightarrow \mathbb{R}$  satisfies the following conditions:

- (A1) f(x,x) = 0 for all  $x \in C$ ;
- (A2) f is monotone, *i.e.*,  $f(x, y) + f(y, x) \le 0$  for all  $x, y \in C$ ;
- (A3) for all  $x, y, z \in C$ ,

$$\limsup_{t\downarrow 0} f(tz + (1-t)x, y) \le f(x, y);$$

(A4) for all  $x \in C$ ,  $f(x, \cdot)$  is convex and lower semicontinuous.

The following lemmas were given in Combettes and Hirstoaga [23] and Takahashi, Takahashi and Toyoda [16]; see also [24, 25].

**Lemma 13** ([23]) Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. Assume that  $f : C \times C \to \mathbb{R}$  satisfies (A1)-(A4). For r > 0 and  $x \in H$ , define a mapping  $T_r : H \to C$  as follows:

$$T_r x = \left\{ z \in C : f(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \forall y \in C \right\}$$

for all  $x \in H$ . Then the following hold:

- (1)  $T_r$  is single-valued;
- (2)  $T_r$  is a firmly nonexpansive mapping, i.e., for all  $x, y \in H$ ,

$$||T_r x - T_r y||^2 \le \langle T_r x - T_r y, x - y \rangle;$$

- (3)  $F(T_r) = EP(f);$
- (4) EP(f) is closed and convex.

We call such  $T_r$  the resolvent of f for r > 0.

**Lemma 14** ([16]) Let H be a Hilbert space, and let C be a nonempty closed convex subset of H. Let  $f : C \times C \to \mathbb{R}$  satisfy (A1)-(A4). Let  $A_f$  be a set-valued mapping of H into itself

$$A_{f}x = \begin{cases} \{z \in H : f(x, y) \ge \langle y - x, z \rangle, \forall y \in C\}, & \forall x \in C, \\ \emptyset, & \forall x \notin C. \end{cases}$$

Then  $EP(f) = A_f^{-1}0$  and  $A_f$  is a maximal monotone operator with  $D(A_f) \subset C$ . Furthermore, for any  $x \in H$  and r > 0, the resolvent  $T_r$  of f coincides with the resolvent of  $A_f$ , i.e.,

 $T_r x = (I + rA_f)^{-1} x.$ 

Using Lemmas 13, 14 and Theorem 10, we also obtain the following result for generalized hybrid mappings of *C* into *H* with equilibrium problem in a Hilbert space; see also [26-28].

**Theorem 15** Let *H* be a real Hilbert space, and let *C* be a nonempty closed convex subset of *H*. Let *S* be a generalised hybrid mapping of *C* into *H*. Let *f* be a bifunction of  $C \times C$  into  $\mathbb{R}$  satisfying (A1)-(A4). Let 0 < k < 1, and let *g* be a *k*-contraction of *H* into itself. Let *V* be a  $\overline{\gamma}$ -strongly monotone and *L*-Lipschitzian continuous operator of *H* into itself with  $\overline{\gamma} > 0$ and L > 0. Take  $\mu, \gamma \in \mathbb{R}$  as follows:

$$0 < \mu < \frac{2\overline{\gamma}}{L^2}, \qquad 0 < \gamma < \frac{\overline{\gamma} - \frac{L^2 \mu}{2}}{k}.$$

Suppose that  $F(S) \cap EP(f) \neq \emptyset$ . Let  $x_1 = x \in H$ , and let  $\{x_n\} \subset H$  be a sequence generated by

$$f(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \quad \forall y \in C,$$
$$x_{n+1} = \beta_n x_n + (1 - \beta_n) \{ \alpha_n \gamma g(x_n) + (I - \alpha_n V) S u_n \}$$

for all  $n \in \mathbb{N}$ , where  $\{\beta_n\} \subset (0,1)$ ,  $\{\alpha_n\} \subset (0,1)$  and  $\{r_n\} \subset (0,\infty)$  satisfy

$$\lim_{n \to \infty} \alpha_n = 0, \qquad \sum_{n=1}^{\infty} \alpha_n = \infty, \qquad \liminf_{n \to \infty} r_n > 0,$$
  
and  $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1.$ 

Then the sequence  $\{x_n\}$  converges strongly to  $z_0 \in F(S) \cap EP(f)$ , where  $z_0 = P_{F(S) \cap EP(f)}(I - V + \gamma g)z_0$ .

*Proof* Put A = 0 and  $B = \partial i_C$  in Theorem 10. Furthermore, for the bifunction  $f : C \times C \rightarrow \mathbb{R}$ , define  $A_f$  as in Lemma 14. Put  $W = A_f$  in Theorem 10, and let  $T_{r_n}$  be the resolvent of  $A_f$  for  $r_n > 0$ . Then we obtain that the domain of  $A_f$  is included in C and  $T_{r_n}x_n = u_n$  for all  $n \in \mathbb{N}$ . Thus, we obtain the desired result by Theorem 10.

Competing interests

The authors declare that they have no competing interests.

#### Authors' contributions

All three authors take equal roles in deriving results and writing of this paper.

#### Author details

<sup>1</sup>Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, 152-8552, Japan. <sup>2</sup>Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan. <sup>3</sup>Center for General Education, Kaohsiung Medical University, Kaohsiung, 80702, Taiwan.

#### Acknowledgements

The first author was partially supported by Grant-in-Aid for Scientific Research No. 23540188 from Japan Society for the Promotion of Science. The second and the third authors were partially supported by the grant Taiwan NSC 99-2115-M-110-007-MY3 and the grant Taiwan NSC 99-2115-M-037-002-MY3, respectively.

#### Received: 25 May 2012 Accepted: 30 September 2012 Published: 17 October 2012

#### References

- 1. Kocourek, P, Takahashi, W, Yao, J-C: Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces. Taiwan. J. Math. 14, 2497-2511 (2010)
- Baillon, J-B: Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert. C. R. Acad. Sci. Paris Ser. A-B 280, 1511-1514 (1975)
- 3. Kohsaka, F, Takahashi, W: Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces. SIAM J. Optim. 19, 824-835 (2008)
- 4. Kohsaka, F, Takahashi, W: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch. Math. **91**, 166-177 (2008)
- Takahashi, W: Fixed point theorems for new nonlinear mappings in a Hilbert space. J. Nonlinear Convex Anal. 11, 79-88 (2010)
- 6. Halpern, B: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957-961 (1967)
- 7. Wittmann, R: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486-491 (1992)
- 8. Takahashi, W: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2000) (Japanese)
- 9. Kurokawa, Y, Takahashi, W: Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces. Nonlinear Anal. **73**, 1562-1568 (2010)
- Hojo, M, Takahashi, W: Weak and strong convergence theorems for generalized hybrid mappings in Hilbert spaces. Sci. Math. Jpn. 73, 31-40 (2011)
- 11. Takahashi, W: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)
- Opial, Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591-597 (1967)
- 13. Itoh, S, Takahashi, W: The common fixed point theory of single-valued mappings and multi-valued mappings. Pac. J. Math. **79**, 493-508 (1978)
- 14. Takahashi, W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
- Takahashi, W, Yao, J-C, Kocourek, K: Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces. J. Nonlinear Convex Anal. 11, 567-586 (2010)
- 16. Takahashi, S, Takahashi, W, Toyoda, M: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. **147**, 27-41 (2010)
- 17. Eshita, K, Takahashi, W: Approximating zero points of accretive operators in general Banach spaces. Fixed Point Theory Appl. 2, 105-116 (2007)
- Aoyama, K, Kimura, Y, Takahashi, W, Toyoda, M: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350-2360 (2007)
- 19. Xu, HK: Another control condition in an iterative method for nonexpansive mappings. Bull. Aust. Math. Soc. 65, 109-113 (2002)
- 20. Maingé, PE: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899-912 (2008)
- 21. Lin, L-J, Takahashi, W: A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications. Positivity. (to appear)
- 22. Rockafellar, RT: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209-216 (1970)
- Combettes, PL, Hirstoaga, SA: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117-136 (2005)
   Aoyama, K, Kimura, Y, Takahashi, W: Maximal monotone operators and maximal monotone functions for equilibrium
- problems. J. Convex Anal. 15, 395-409 (2008)
  25. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145 (1994)
- Takahashi, W, Wong, N-C, Yao, J-C: Two generalized strong convergence theorems of Halpern's type in Hilbert spaces and applications. Taiwan. J. Math. 16, 1151-1172 (2012)
- 27. Takahashi, S, Takahashi, W: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 69, 1025-1033 (2008)
- Takahashi, W: Strong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applications. J. Optim. Theory Appl. (to appear)

#### doi:10.1186/1687-1812-2012-181

Cite this article as: Takahashi et al.: Iterative common solutions for monotone inclusion problems, fixed point problems and equilibrium problems. Fixed Point Theory and Applications 2012 2012:181.