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1 Introduction and preliminaries
In , the concepts of E -distance and S-completeness were introduced for uniform
spaces in []. Recently in , Jachymski [] proved some fixed point results in met-
ric spaces endowed with a graph and generalized simultaneously the Banach contrac-
tion principle from metric and partially ordered metric spaces. In , Bojor [] intro-
duced (G,ϕ)-contractions and generalized Jachymski’s results. Finally, Nicolae et al. []
presented some fixed point results for a new type of contractions using orbits and also for
G-asymptotic contractions in metric spaces endowed with a graph.
The aim of this paper is to generalize Theorems ., ., . and . and Proposition .

of Jachymski [] from metric to uniform spaces endowed with a graph and to present a
new type of contractive mappings. The reader interested in (ordered) uniform fixed point
theorems may consult the references [–].
Following Willard [], a uniformity on a nonempty set X is a nonempty family U of

subsets of X ×X satisfying the following conditions:
(U) Each U ∈ U contains the diagonal �(X) = {(x,x) : x ∈ X};
(U) U is closed under finite intersections;
(U) For each U ∈ U, the set {(x, y) : (y,x) ∈ U} is a member of U;
(U) For each U ∈ U, there exists a member V of U such that (x, z) ∈U whenever

(x, y), (y, z) ∈ V for all x, y, z ∈ X ;
(U) U contains the supersets of its elements.

Given a uniformity U on a nonempty set X, the pair (X,U), simply denoted by X, is called
a uniform space.
A uniformity U on a nonempty set X is separating if the intersection of all members of

U is equal to �(X). In this case, X is called a separated uniform space.
We are now ready to recall the concepts of E -distance and p-completeness introduced

by Aamri and El Moutawakil [].
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Definition  ([]) Let X be a uniform space. A function p : X ×X → [, +∞) is said to be
an E -distance on X if

(i) for each U ∈ U, there exists a positive number δ such that (x, y) ∈U whenever
p(z,x) ≤ δ and p(z, y) ≤ δ for all x, y, z ∈ X ;

(ii) p satisfies the triangular inequality, i.e.,

p(x, y) ≤ p(x, z) + p(z, y) (x, y, z ∈ X).

A sequence {xn} in a uniform space X equipped with an E -distance p is said to be
p-convergent to a point x ∈ X, denoted by xn

p→ x, if p(xn,x) →  as n → ∞, and p-Cauchy
if p(xm,xn) →  as m,n → ∞. The uniform space X is said to be p-complete if each
p-Cauchy sequence in X is p-convergent to some point of X.
The next lemma shows that in a separated uniform space every sequence is p-convergent

to at most one point. The proof is straightforward, and hence it is omitted here.

Lemma  ([]) Let {xn} be a sequence in a separated uniform space X equipped with an
E -distance p, and x, y ∈ X. If xn

p→ x and xn
p→ y, then x = y. In particular, if p(z,x) =

p(z, y) =  for some z ∈ X, then x = y.

Example  Suppose that the set X = [,+∞) is endowed with the trivial uniformity, that
is, U = {X × X}. Putting p(x, y) = y for all x, y ∈ X, it is seen that p is an E -distance on X
and each sequence (and even each net) in X is p-convergent only to zero, but clearly, this
space is not separated. Therefore, the converse of Lemma  is not true in general.

We next review some basic notions of graph theory in relation to uniform spaces that
we need in the sequel. For more details on the theory of graphs, see, e.g., [].
Let X be a uniform space equipped with an E -distance p and consider a directed graph

G with V (G) = X and �(X) ⊆ E(G), that is, E(G) contains all loops. Suppose further that
G has no parallel edges. The graph G may be considered a weighted graph by assigning
the nonnegative number p(x, y) to each edge (x, y) in E(G).
We denote by G– the conversion of the graph G, that is, V (G–) = V (G) and

E
(
G–) = {

(x, y) ∈ X ×X : (y,x) ∈ E(G)
}
.

The undirected graph obtained from G by ignoring the directions of the edges of G is
denoted by G̃. Indeed, G̃ can be treated as a directed graph for which the set E(G̃) is a
symmetric subset of X ×X, namely E(G̃) = E(G)∪ E(G–).
If x and y are two vertices in a graph G, then a path in G from x to y is a finite sequence

(xi)Ni= consisting of N +  vertices of G such that x = x, xN = y, and (xi–,xi) ∈ E(G) for
i = , . . . ,N , where N ∈ N. A graph G is said to be connected if there exists a path in G
between each two vertices of G, and weakly connected if the graph G̃ is connected.
By a subgraph of G, we mean a graph H satisfying V (H) ⊆ V (G) and E(H)⊆ E(G) such

that V (H) contains the vertices of all edges of E(H).
If x ∈ V (G) and E(G) is symmetric, then the subgraph Gx consisting of all edges and

vertices that are contained in some path in G that starts at x is called the component of G
containing x. Thus,V (Gx) = [x]G, where [x]G is the equivalence class of x in the equivalence
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relation ∼ defined by

y∼ z ⇐⇒ there exists a path in G from y to z
(
y, z ∈ V (G)

)
.

It is clear that the graph Gx is connected for all x ∈ X.

2 Main results
Throughout this section, we assume that X is a uniform space that is endowed with an
E -distance p and a directed graph G with V (G) = X and �(X)⊆ E(G) unless stated other-
wise.
We denote by Fix(f ) the set of all fixed points for a self-map f on X, and further by �

the class of all nondecreasing functions ϕ from [,+∞) into [, ).
Following Jachymski [], we introduce (p,ϕ)-G-contractions on a uniform space en-

dowed with an E -distance and a graph.

Definition  Let f be a self-map on X and ϕ be a function in �. Then f is called a (p,ϕ)-
G-contraction if
(C) the edges of G are preserved by f , i.e., (x, y) ∈ E(G) implies (fx, fy) ∈ E(G) for all

x, y ∈ X ;
(C) the p-weights of the edges of G are ϕ-decreased by f in the sense that

p(fx, fy) ≤ ϕ
(
p(x, y)

)
p(x, y), ()

for all x, y ∈ X with (x, y) ∈ E(G).

If p is a metric on X, then we call f a ϕ-G-contraction, and we call f a (p,ϕ)-contraction
if () holds for all x, y ∈ X.
We now give some examples of (p,ϕ)-G-contractions.

Example  If p(x,x) =  for some x ∈ X, since E(G) contains all loops, it follows that the
constant mapping f = x is a (p,ϕ)-G-contraction for any ϕ ∈ �. In particular, p(x,x) = 
for all x ∈ X if and only if each constant mapping on X is a (p,ϕ)-G-contraction for some
ϕ ∈ �.

Example  Each (p,ϕ)-contraction is a (p,ϕ)-G-contraction, where G is the complete
graph with V (G) = X, that is, E(G) = X ×X.

Example  Suppose that � is a partial order on X and consider the poset graph G, that
is, V (G) = X and

E(G) =
{
(x, y) ∈ X ×X : x� y

}
.

Then Condition (C)means that f is nondecreasing with respect to�, and Condition (C)
means that f is an order (p,ϕ)-contraction, i.e., () holds for all x, y ∈ X with x� y.

In the next example, we construct a self-map f that fails to be a ϕ-G-contraction for any
ϕ ∈ �, whereas f is a (p,ϕ)-G-contraction for some E -distance p and some ϕ ∈ �.
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Example  Let X = [,+∞) be endowed with the usual uniformity (see [, p.]) and the
graph G. Let n≥  and consider a self-map f on X defined by the rule

fx =

⎧⎨
⎩,  ≤ x < ,

n√x+
 , x≥ .

Then f is not a ϕ-G-contraction for any ϕ ∈ �. Because, setting x =  and y = 
 , we have∣∣∣∣f  – f




∣∣∣∣ = 

>



× ϕ

(



)
= ϕ

(∣∣∣∣ – 


∣∣∣∣
)∣∣∣∣ – 



∣∣∣∣.
Now, put p(x, y) = y for all x, y ∈ X and define ϕ : [, +∞) → [, ) by

ϕ(t) =

⎧⎨
⎩

t
 ,  ≤ t < ,

 , t ≥ .

Clearly, ϕ ∈ � and an easy argument shows that Conditions (C) and (C) are satisfied.
Thus, f is a (p,ϕ)-G-contraction.

Example  Consider the mapping f on R defined by fx = x +  for all x ∈ R. Let G be an
arbitrary weakly connected graph with V (G) =R and �(R)⊆ E(G) and ϕ be any function
in�. SinceG is weakly connected, there exists two distinct points x, y ∈R such that (x, y) ∈
E(G). Then

|fx – fy| = |x – y| > ϕ
(|x – y|)|x – y|.

Therefore, f is not a ϕ-G-contraction for any weakly connected graph G (with V (G) =
R and �(R) ⊆ E(G)) and any function ϕ ∈ �. Now let R be equipped with the trivial
uniformity U = {X ×X}. Then p :R×R→ [, +∞) defined by p(x, y) =  for all x, y ∈R is
an E-distance on R, and the mapping f is a (p,ϕ)-G̃-contraction for any function ϕ ∈ �.

Example  Let X = [, ] be endowed with the usual uniformity and define f : X → X by

fx =

⎧⎨
⎩


 ,  ≤ x < ,

 , x = .

Then f is not a ϕ-G-contraction for any ϕ ∈ � since

|fx – f | = 

> ϕ( – x)( – x) = ϕ

(|x – |)|x – |
(


< x < 

)
.

On the other hand, defining ‘�’ by

x � y ⇐⇒
(
(x = y)∨

(
x, y ∈

[


, 

]
,x ≤ y

))
(x, y ∈ X),

the same argument shows that f fails to be a ϕ-G-contraction for any ϕ ∈ �.
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Now, set V (G) = X and

E(G) = �(X)∪
{(


n
,


n + 

)
: n≥ 

}
∪

{(


,



)
,
(


,



)}
.

Then f is a ϕ-G-contraction if we define ϕ : [, +∞)→ [, ) by the rule ϕ(t) = t
 .

Remark  It is worth mentioning that Conditions (C) and (C) are independent of each
other. For instance, the identity mapping on R preserves the edges of G, but there is no
ϕ ∈ � for which the contractive condition () holds. Conversely, setting fx = – 

x for all
x ∈ R, it is seen that f is an order (p,ϕ)-contraction for the constant function ϕ = 

 but f
fails to be nondecreasing.

Remark  Putting ϕ the constant function α ∈ [, ) in Definition , we get the concept
of Banach G-contraction with p = d on a metric space (X,d), which was introduced by
Jachymski [].

Definition  We say that the sequences {xn} and {yn} are p-Cauchy equivalent inX if both
of them are p-Cauchy and further, p(xn, yn) →  as n→ ∞.

Hereafter we assume that ϕ is an arbitrary fixed function in � and f : X → X is a (p,ϕ)-
G̃-contraction unless stated otherwise.

Theorem  Consider the following statements:
(A) G is weakly connected.
(B) If f is a (p,ϕ)-G̃-contraction, then {f nx} and {f ny} are p-Cauchy equivalent for all

x, y ∈ X .
(C) Each (p,ϕ)-G̃-contraction has at most one fixed point in X .

Then,
(i) (A) implies (B).
(ii) (B) implies (C) provided that X is separated.
(iii) (C) implies (A) provided that p(x,x) =  for all x ∈ X .

Proof (i) Let x, y ∈ X be given. Since G is weakly connected, there exists a path (xi)Ni= in
G̃ from x to y, i.e., x = x, xN = y, and (xi–,xi) ∈ E(G̃) for each i. Because f is a (p,ϕ)-
G̃-contraction, we get by induction that

(
f nxi–, f nxi

) ∈ E(G̃) (n≥ ),

and, furthermore, by the contractive condition () and the fact that ϕ is nondecreasing,
we get

p
(
f nxi–, f nxi

) ≤ ϕ
(
p
(
f n–xi–, f n–xi

))
p
(
f n–xi–, f n–xi

)
≤ ϕ

(
p
(
f n–xi–, f n–xi

))
ϕ
(
p
(
f n–xi–, f n–xi

))
p
(
f n–xi–, f n–xi

)
...
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≤
n∏
k=

ϕ
(
p
(
f n–kxi–, f n–kxi

))
p(xi–,xi)

≤ (
ϕ
(
p(xi–,xi)

))np(xi–,xi),
for all n ≥  and all i = , . . . ,N . Hence, by the triangle inequality of p,

p
(
f nx, f ny

) ≤
N∑
i=

p
(
f nxi–, f nxi

)

≤
N∑
i=

(
ϕ
(
p(xi–,xi)

))np(xi–,xi)
≤ knr(x, y) →  as n → ∞, ()

where k = max{ϕ(p(xi–,xi)) : i = , . . . ,N} <  and r(x, y) =
∑N

i= p(xi–,xi). Now, the weak
connectivity of G gives fx ∈ X = [x]G̃, and so, setting y = fx in () yields

p
(
f nx, f n+x

) ≤ knr(x, fx)

for all n ≥ . Since k < , it follows that
∑∞

n= p(f nx, f n+x) < ∞ and a standard argument
shows that {f nx} is p-Cauchy. Similarly, {f ny} is p-Cauchy and hence {f nx} and {f ny} are
p-Cauchy equivalent.
(ii) Let x and y be two fixed points for f . Since, by the hypothesis, {f nx} and {f ny} are

p-Cauchy equivalent, it follows that

p(x, y) = p
(
f nx, f ny

) →  and p(x,x) = p
(
f nx, f nx

) → .

Because X is separated, Lemma  ensures that x = y.
(iii) Suppose on the contrary thatG is not weakly connected. Then there exists an x ∈ X

such that both sets [x]G̃ and X \ [x]G̃ are nonempty. Fix any y ∈ X \ [x]G̃ and define
f : X → X by

fx =

⎧⎨
⎩x, x ∈ [x]G̃,

y, x ∈ X \ [x]G̃.

Clearly, Fix(f ) = {x, y}. To get a contradiction, we show that f is a (p,ϕ)-G̃-contraction.
If (x, y) ∈ E(G̃), then [x]G̃ = [y]G̃, and so either x, y ∈ [x]G̃ or x, y ∈ X \ [x]G̃. Hence, in both
cases, fx = fy, so (fx, fy) ∈ E(G̃) because �(X) ⊆ E(G̃). Moreover,

p(fx, fy) =  ≤ ϕ
(
p(x, y)

)
p(x, y),

where ϕ is any arbitrary function in �. Thus, f is a (p,ϕ)-G̃-contraction. �

Corollary  If X is p-complete and G is weakly connected, then there exists an x* ∈ X such
that f nx

p→ x* for all x ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2012/1/182
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Proof Fix any point x ∈ X. By Theorem , {f nx} is a p-Cauchy sequence in X. Since X is
p-complete, there exists an x* ∈ X such that f nx

p→ x*. Now, if y ∈ X, then by the p-Cauchy
equivalence of {f ny} and {f nx}, we have

p
(
f ny,x*

) ≤ p
(
f ny, f nx

)
+ p

(
f nx,x*

) → .

Therefore, f ny
p→ x*. �

Proposition  If for some x ∈ X we have fx ∈ [x]G̃, then [x]G̃ is f -invariant and f |[x]G̃
is a (p,ϕ)-G̃x -contraction. Moreover, if x, y ∈ [x]G̃, then {f nx} and {f ny} are p-Cauchy
equivalent.

Proof Let x ∈ [x]G̃. Then there exists a path (xi)Ni= in G̃ from x to x, i.e., xN = x and
(xi–,xi) ∈ E(G̃) for each i. So, (fxi–, fxi) ∈ E(G̃) for each i, that is, (fxi)Ni= is a path in G̃ from
fx to fx, and since fx ∈ [x]G̃, there is another path (yj)Mj= in G̃ from x to fx, i.e., y = x,
yM = fx, and (yj–, yj) ∈ E(G̃) for each j. Thus, fx ∈ [x]G̃. Therefore, [x]G̃ is f -invariant.
Next, let (x, y) ∈ E(G̃x ). This means that there exists a path (xi)Ni= in G̃ from x to y such

that xN– = x. Repeating the argument above, we infer that

(x = y, y, . . . , fx = yM, fx, . . . , fy = fxN )

is a path in G̃ from x to fy. In particular,

(fx, fy) = (fxN–, fxN ) ∈ E(G̃x ).

Since E(G̃x ) ⊆ E(G̃), it follows that f is a (p,ϕ)-G̃x -contraction.
Moreover, because G̃x is weakly connected, Theorem  implies that the sequences {f nx}

and {f ny} are p-Cauchy equivalent for all x, y ∈ [x]G̃. �

Following Petruşel and Rus [], we introduce the concept of a p-Picard operator.

Definition  A self-map f on X is called a p-Picard operator if f has a unique fixed point
x* in X and f nx

p→ x* for all x ∈ X.

Given a self-map f on X, we denote the set {x ∈ X : (x, fx) ∈ E(G̃)} by Xf .

Theorem  Let X be p-complete, separated and satisfy the following property:

(∗) For each sequence {xn} in X , p-convergent to some x ∈ X , if (xn,xn+) ∈ E(G̃) for all n≥ ,
then there exists a subsequence {xnk } of {xn} such that (xnk ,x) ∈ E(G̃) for all k ≥ .

Then
(i) f |[x]G̃ is a p-Picard operator for each x ∈ Xf .
(ii) If Xf �= ∅ and G is weakly connected, f is a p-Picard operator.
(iii) card(Fix(f )) = card{[x]G̃ : x ∈ Xf }.
(iv) Fix(f ) �= ∅ if and only if Xf �= ∅.
(v) f has a unique fixed point if and only if there exists an x ∈ Xf such that Xf ⊆ [x]G̃.

http://www.fixedpointtheoryandapplications.com/content/2012/1/182
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Proof (i) Let x ∈ Xf . Then fx ∈ [x]G̃, and so by Proposition  and Corollary , there exists
an x* ∈ X such that f ny

p→ x* for all y ∈ [x]G̃. Since (x, fx) ∈ E(G̃), it follows from Condition
(C) that

(
f nx, f n+x

) ∈ E(G̃) (n≥ ). ()

By the property (∗), there exists a subsequence {f nk x} of {f nx} such that (f nk x,x*) ∈ E(G̃)
for all k ≥ .
Now, by (), we see that (x, fx, . . . , f nx,x*) is a path in G̃ from x to x*, that is, x* ∈ [x]G̃.

Moreover, because f is a (p,ϕ)-G̃-contraction, it follows that

p
(
f nk+x, fx*

) ≤ ϕ
(
p
(
f nk x,x*

))
p
(
f nk x,x*

)
(k ≥ ).

Letting k → ∞, it is concluded that f nk+x
p→ fx*, and since f nk+x

p→ x*, Lemma  yields
x* = fx*. If y* ∈ [x]G̃ is a fixed point for f , since f ny*

p→ x*, it follows that p(y*,x*) = . Fur-
thermore, since, by Proposition , {f ny*} is p-Cauchy equivalent to itself, it follows that
p(y*, y*) = . Now, again by Lemma , x* = y*. Thus, f |[x]G̃ is a p-Picard operator.
(ii) If G is weakly connected, then [x]G̃ = X, where x ∈ Xf , and so, by (i), f is a p-Picard

operator.
(iii) Set C = {[x]G̃ : x ∈ Xf } and define a mapping θ : Fix(f ) → C by

θ (x) = [x]G̃.

We are going to show that θ is a bijection. Since �(X) ⊆ E(G̃), it follows that Fix(f ) ⊆ Xf ,
and hence θ is well-defined. On the other hand, if x ∈ Xf , then by Theorem , there exists
an x* ∈ X such that

f nx
p→ x* ∈ [x]G̃ ∩ Fix(f ),

which implies that

θ
(
x*

)
=

[
x*

]
G̃ = [x]G̃.

Thus, θ is surjective.
Now, if x,x ∈ Fix(f ) are such that θ (x) = θ (x), then x ∈ [x]G̃. So, by Proposition 

and Theorem ,

f nx, f nx
p→ x* ∈ [x]G̃ ∩ Fix(f ) = {x}.

Therefore, x = x* = x. Consequently, θ is injective.
(iv), (v) They are immediate consequences of (iii). �

Remark  In [], Gwóźdź-Łukawska and Jachymski proved some fixed point results for
iterated function systems ofG-contractions, and in [, Example ], they explicitly claimed
that none of [, Theorems -] can be generalized to the family of all edge-preserving
self-maps satisfying the contractive condition

d(fx, fy) ≤ ϕ
(
d(x, y)

) (
(x, y) ∈ E(G)

)
,

http://www.fixedpointtheoryandapplications.com/content/2012/1/182
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where ϕ : R+ → R
+ is nondecreasing and satisfies ϕn(t) →  for all t > . More precisely,

their example contains a fixed point free (G,ϕ)-contraction (in the sense of [, Defini-
tion .]) and hence it contradicts [, Theorem ., ()], which implies the existence of a
fixed point for such a mapping. It might be interesting for the reader why the mapping
f in this example does not satisfy (), which is the main condition of Theorem  of this
paper and so the example is not in contrary with that theorem. We give the following two
reasons:
() Let f and ϕ be as in [, Example ]. Since for each n ≥ , we have

|fsn – fsn+| = ϕ
(|sn – sn+|

)
> ϕ

(|sn – sn+|
) · 

n + 
= ϕ

(|sn – sn+|
) · |sn – sn+|,

it shows that f is not a ϕ-G-contraction, i.e., it does not satisfy

|fx – fy| ≤ ϕ
(|x – y|) · |x – y| (

(x, y) ∈ E(G)
)
.

In particular, f is not a ϕ-G̃-contraction;
() In essence, the mapping f in [, Example ] fails to be a ϕ-G-contraction for any

ϕ ∈ �. Otherwise, if f is a ϕ-G-contraction for some ϕ ∈ �, then from


n + 

= |fsn – fsn+| ≤ ϕ
(|sn – sn+|

) · |sn – sn+| = ϕ

(


n + 

)
· 
n + 

,

we have

n + 
n + 

≤ ϕ

(


n + 

)
, n = ,  . . . .

By the monotonicity of ϕ, it follows that the sequence {ϕ( 
n+ )} is nonincreasing and

bounded from below. Therefore,

 = lim
n→∞

n + 
n + 

≤ lim
n→∞ϕ

(


n + 

)
≤ ϕ

(



)
< ,

which is a contradiction.

Example  Let X = { 
n : n ≥ } ∪ {,  } be endowed with the Euclidean metric and define

a graph G by V (G) = X and

E(G) = �(X)∪
{(


n
,


n + 

)
: n ≥ 

}
∪

{(

n
, 

)
: n ≥ 

}
∪

{(


, 

)
,
(
,




)}
.

Clearly, X is complete and G is weakly connected. Consider f defined by fx = 
 if x = ,

and fx =  if x �= . Then f is edge-preserving but given α ∈ [, ), it is seen that

∣∣∣∣f  – f



∣∣∣∣ = 

>

α


= α

∣∣∣∣ – 


∣∣∣∣.
So, f is not a Banach G-contraction in the sense of [, Definition .] and we cannot use
[, Theorem .].
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Now, uniformize X with the usual uniformity and consider an E -distance p on X by
p(x, y) = y. Then X is separated, p-complete and satisfies the property (∗). Moreover,
Xf = X. Therefore, considering ϕ as in Example , it is seen that f is a (p,ϕ)-G-contraction,
and so by Theorem , f is a p-Picard operator with the unique fixed point zero.

Our next result is a generalization of [, Corollary .].

Corollary  Let X be p-complete, separated and satisfy the property (∗), and p(x,x) = 
for all x ∈ X. Then the following statements are equivalent:

(i) G is weakly connected;
(ii) If f is a (p,ϕ)-G̃-contraction such that (x, fx) ∈ E(G̃) for some x ∈ X , then f is a

p-Picard operator;
(iii) Each (p,ϕ)-G̃-contraction has at most one fixed point in X .

Proof (i) ⇒ (ii): It follows immediately from Theorem .
(ii) ⇒ (iii): Let f be a (p,ϕ)-G̃-contraction. If Fix(f ) = ∅, then there is nothing to prove.

Otherwise, by Theorem , Xf �= ∅. Thus, by the hypothesis, f is a p-Picard operator and so
it has a unique fixed point.
(iii) ⇒ (i): It follows from Theorem . �

Following the idea of Jachymski [], we define two different types of p-continuity of self-
maps on X and then we discuss them.

Definition  Let f be a self-map on X. We say that
(i) f is orbitally p-continuous if for each x, y ∈ X and each sequence {an} of positive

integers, f anx
p→ y implies f (f anx)

p→ fy.
(ii) f is graph orbitally p-continuous if for each x, y ∈ X and each sequence {an} of

positive integers with (f anx, f an+x) ∈ E(G̃) for n = , , . . . such that f anx
p→ y, one

has f (f anx)
p→ fy.

It is clear that p-continuity (see [, Definition .]) implies orbital p-continuity, and or-
bital p-continuity implies graph orbital p-continuity. But the converse of these relations is
not true in general as the next example shows.

Example  Let X = [, ] be endowed with the uniformity induced by the usual metric.
(i) Consider an E -distance p on X defined by p(x, y) =max{x, y} and a self-map f

defined by the rule fx =  if x �=  and f  = . Then f is orbitally p-continuous since
max{f anx, y} →  implies that x = y = . But f fails to be p-continuous because

n

p→ , whereas f 
n � p→ f .

(ii) Next, consider the E -distance p(x, y) = |x – y| on X and the graph G with
E(G) = �(X). Then the self-map f on X defined by the rule fx = x

 if x �=  and f  = 
is graph orbitally p-continuous since (f anx, f an+x) ∈ E(G) for all n implies that
{f anx} is a constant sequence. But setting x = y =  and an = n, it is seen that
f anx

p→ y, whereas f (f anx) � p→ fy.

Theorem  Let X be p-complete and separated, and f : X → X be an orbitally p-
continuous (p,ϕ)-G̃-contraction. Then
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(i) for each x ∈ X with fx ∈ [x]G̃, there exists an x* ∈ Fix(f ) such that f ny
p→ x* for all

y ∈ [x]G̃.
(ii) Fix(f ) �= ∅ if and only if there exists an x ∈ X such that fx ∈ [x]G̃.
(iii) If G is weakly connected, f is a p-Picard operator.

Proof (i) Let x ∈ X be such that fx ∈ [x]G̃, and let y ∈ [x]G̃. Since X is p-complete, by
Proposition , {f nx} and {f ny} are p-convergent to a same point x* ∈ X. Since f is orbitally
p-continuous, it follows that

f
(
f nx

) p→ fx*.

On the other hand, f (f nx) = f n+x
p→ x*, and so by Lemma , we have x* = fx*, that is,

x* ∈ Fix(f ). Moreover, if z is any other point in [x]G̃, then it is clear that f nz
p→ x*.

(ii) If there exists an x ∈ X such that fx ∈ [x]G̃, then, by (i), we have Fix(f ) �= ∅. The
converse is trivial.
(iii) SinceG is weakly connected, it follows that [x]G̃ = X for all x ∈ X. So, by (i), there ex-

ists an x* ∈ Fix(f ) such that f ny
p→ x* for all y ∈ X. Now, similar to the proof of Theorem ,

one can show that x* is the only fixed point for f , and hence f is a p-Picard operator. �

A generalization of [, Corollary .] is given in the next result.

Corollary  Let X be p-complete and separated, and p(x,x) =  for all x ∈ X. Then the
following statements are equivalent:

(i) G is weakly connected;
(ii) Each orbitally p-continuous (p,ϕ)-G̃-contraction is a p-Picard operator;
(iii) Each orbitally p-continuous (p,ϕ)-G̃-contraction has at most one fixed point in X .

In particular, if G̃ is disconnected, then there exists an orbitally p-continuous (p,ϕ)-
G̃-contraction that has at least two fixed points in X.

Proof (i) ⇒ (ii): It follows from Theorem .
(ii) ⇒ (iii): It is trivial.
(iii) ⇒ (i): According to the proof of Theorem , it suffices to show that the self-map

f is orbitally p-continuous. To this end, let x, y ∈ X and {an} be a sequence of positive
integers such that f anx

p→ y. Then {f anx} is either the constant sequence x or the constant
sequence y. If the former holds, then p(x, y) = . Since p(x,x) = , it follows by Lemma 
that y = x. Therefore,

f
(
f anx

)
= x

p→ x = fy.

Otherwise, if the latter holds, a similar argument shows that f is orbitally p-continuous.
�

Theorem  Let X be p-complete and separated, and f : X → X be a graph orbitally
p-continuous (p,ϕ)-G̃-contraction. Then

(i) for each x ∈ Xf , there exists an x* ∈ Fix(f ) such that f ny
p→ x* for all y ∈ [x]G̃.

(ii) Fix(f ) �= ∅ if and only if Xf �= ∅.
(iii) If Xf �= ∅ and G is weakly connected, f is a p-Picard operator.
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Proof (i) Let x ∈ X be such that (x, fx) ∈ E(G̃), and let y ∈ [x]G̃. Since X is p-complete,
by Proposition , {f nx} and {f ny} are p-convergent to a same point x* ∈ X. Moreover,
(f nx, f n+x) ∈ E(G̃) for all n ≥ . Since f is graph orbitally p-continuous, it follows that
f (f nx)

p→ fx*. On the other hand, because

f
(
f nx

)
= f n+x

p→ x*,

Lemma  ensures that x* = fx*, that is, x* ∈ Fix(f ).
(ii) If Xf �= ∅, then, by (i), Fix(f ) �= ∅. Conversely, suppose that Fix(f ) �= ∅. Since �(X) ⊆

E(G̃), it follows that Xf �= ∅.
(iii) If x ∈ Xf , sinceG is weakly connected, we have [x]G̃ = X. Hence, by (i), there exists an

x* ∈ Fix(f ) such that f ny
p→ x* for all y ∈ [x]G̃ = X. Now, similar to the proof of Theorem ,

it is seen that x* is the only fixed point for f . �

Remark  In all theorems and corollaries above, settingG =G (G =G), we get the usual
(ordered) version of fixed point theorems in (partially ordered) uniform spaces.
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