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Abstract
Schirmer proved that there is a class of smooth self-maps of the unit sphere in
Euclidean n-space with the property that any smooth self-map of the unit ball that
extends a map of that class must have at least one fixed point in the interior of the
ball. We generalize Schirmer’s result by proving that a smooth self-map of Euclidean
n-space that extends a self-map of the unit sphere of that class must have at least one
fixed point in the interior of the unit ball.
MSC: 55M20; 54C20
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1 Introduction
For spaces X, Y and subsets V ⊆ X, W ⊆ Y , a map f : X → Y is an extension of a map
φ : V → W if f (x) = φ(x) for all x ∈ V . We denote by Bn the unit ball in R

n, by Sn– its
boundary and by int(Bn) its interior.
If f : B → B is an extension of φ : S → S = {–, } and φ has no fixed points, then f

must have an interior fixed point, that is, a fixed point in int(B). However, if φ has a fixed
point, then there need not be any interior fixed points.
If n = , the situation is more complicated. Of course the Brouwer fixed point theorem

implies that amap f : B → B must have at least one interior fixed point if it is an extension
of a map φ : S → S that has no fixed points. But it was proved in [] (see also []) that if
the extension f is smooth, it may still be required to have interior fixed points for certain
maps φ that have many fixed points. Representing the points of S by complex numbers,
let φ = φd : S → S, for an integer d, be the power map defined by φd(z) = zd . If d ≥  and
f : B → B is a smooth extension of φd , then f has at least one interior fixed point. It is also
demonstrated in [] that interior fixed points of extensions need not exist if d ≤  or if f
is not smooth. Schirmer generalized this interior fixed point result to smooth extensions
f : Bn → Bn for n ≥  to show in Example . of [] that if f is a smooth extension of a
‘sparse’ map φ : Sn– → Sn–, a generalization of φd that is defined below, of degree d such
that (–)nd ≥ , then f must have at least one interior fixed point.
Returning to the case n = , if we extend the map φ : S → S without fixed points to a

map f : R → R
, there still must be a fixed point of f in int(B). The reason for the interior

fixed points of the extension f : B → B of themap of S without fixed points, namely that
(–, ) and (,–), lie in different components of B ×B \�, where� = {(x,x) : x ∈ B}, ap-
plies also to the extension f : R →R

 since those points are also in different components
of B ×R

 \ �.
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On the other hand, the reason for the presence of fixed points in int(Bn) for smooth ex-
tensions of certain maps of Sn– demonstrated in [] is considerably more subtle. There-
fore, it is reasonable to ask whether such fixed points would persist if, instead of smooth
extensions f : Bn → Bn of φ : Sn– → Sn–, we consider extensions that are smooth Eu-
clidean maps, that is, maps f : Rn → R

n. Thus, we ask whether there still must be fixed
points of f in int(Bn) if we allow f to map points of int(Bn) outside of Bn.
We will prove that the interior fixed points do persist, even in this more general setting.

As in the case of self-maps of balls, the interior fixed points of Euclideanmaps are detected
by means of a theorem that relates the index of a fixed point of φ : Sn– → Sn– to its index
as a fixed point of an extension. We will therefore devote Section  to a discussion of the
properties of the fixed point index that we will use. In Section , we prove that a smooth
extension f : R → R

 of a power map φd : S → S for d ≥  must have at least one in-
terior fixed point. Section  then contains the proof that Schirmer’s result generalizes to
smooth extensions f : Rn →R

n of sparsemaps φ : Sn– → Sn– that satisfy the same degree
restrictions.

2 The fixed point indices
Before extending the results of [, ] and [] to the case of a smooth Euclidean map
f : (Rn,Sn–) → (Rn,Sn–) extending φ : Sn– → Sn–, we need to define the relevant fixed
point indices. We will consider the restriction f : (Bn,Sn–) → (Rn,Sn–). Since our goal is
to establish conditions for the existence of fixed points on the interior of Bn, the behavior
of the function outside of Bn is not relevant. Therefore, we will make use of the indices
i(Bn, f ,p) and i(Sn–,φ,p) of an isolated fixed point p ∈ Sn–. We do so by generalizing the
approach used in [] (see also []).
For an isolated fixed point p ∈ Sn–, we can choose a small enough neighborhood U so

that it contains only this fixed point and no other. We then may write f in this neighbor-
hood of p in terms of a local coordinate system in which U ∩Bn is contained in the upper
half-space

R
n
+ =

{
(x,x, . . . ,xn) ∈R

n|xn ≥ 
}

in such a way that p is the origin  in this setting andU ∩Sn– is contained in the subspace

R
n– =

{
(x,x, . . . ,xn–, ) ∈R

n}.
In order to calculate the index of p in each space, we consider the map F : U →R

n defined
by

F(x,x, . . . ,xn) =

⎧⎨
⎩
(x,x, . . . ,xn) – f (x,x, . . . ,xn), if xn ≥ ,

(x,x, . . . ,xn) – f (x,x, . . . ,xn–, ), if xn < .

Note that F sends the origin, lower half-plane andR
n– to itself respectively. Also, F(z) �= z

for z �= . The index i(Sn–,φ,p) is equal to i(Rn–,F ,) in this setting as in the traditional
definition of the index.Moreover, i(Bn, f ,p) is identifiedwith i(Rn,F ,), which can be com-
puted as the degree of the map ρ ◦ F : Sn– → Sn– where ρ :Rn\→ Sn– is the retraction
defined by ρ(z) = z/|z|.
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3 Unit-circle-preservingmaps of the plane
Brown, Greene and Schirmer proved

Theorem  [, ] Let f : B → B be a smooth map with a finite number of fixed points
such that f (ζ ) = ζ k for all ζ ∈ S for some k ≥ , where B is the closed two-dimensional
ball with the boundary S. If π is a fixed point of f that lies in S, then either i(B, f ,π ) = 
or i(B, f ,π ) = –.

The contractibility of B implies the following corollary.

Corollary  [] Suppose f : B → B is a smooth map such that f (ζ ) = ζ k for all ζ ∈ S, for
some k ≥ . Then there exists z ∈ int(B) such that f (z) = z.

We will extend Theorem  to maps f : (B,S) → (R,S) by modifying the proof of The-
orem  in []. Corollary  will then extend to maps f : (R,S) → (R,S).

Theorem  Let f : (B,S) → (R,S) be a smoothmap with a finite number of fixed points
such that f (ζ ) = ζ k for all ζ ∈ S for some k ≥ . If π is a fixed point of f that lies in S, then
either i(B, f ,π ) =  or i(B, f ,π ) = –.

Proof Letπ be a fixed point of f in S.We canwrite this fixed point in the polar coordinates
(r, θ ) as (, θ). We will introduce new coordinates on a neighborhood U of π as follows:

x = θ – θ, x =  – r.

In the new coordinate setting, the fixed point π is the origin andU∩S corresponds to the
x-axis near , and the portion of the interior of the unit ball inU is contained in the upper
half-plane. Consider the following map (as described in Section ) in the new coordinate
setting:

F(x,x) =

⎧⎨
⎩
(x,x) – f (x,x), if x ≥ ,

(x,x) – f (x, ), if x < .

Now write F = (F,F) and define g(x) = F(x, ). Since f (ζ ) = ζ k for ζ ∈ S, we have

g(x) = F(x, ) = x – kx = ( – k)x.

Since the map f is defined to be smooth on B, the map F is smooth on the upper half-
plane. Let F+ denote the restriction of F to the upper half-plane. We will see that smooth-
ness is only required in a neighborhood of the fixed point at . Since we are assuming that
k ≥ , then

d
dx

F(x, ) = g ′(x) =  – k < 

and the smoothness of F+ implies that

∂F+
 (x,x)
∂x

< 
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for (x,x) in an ε-neighborhood of the origin, for ε >  sufficiently small and for x ≥ .
Let 
 be a circle of radius ε/ about the origin.
Let 
+ and 
– denote the half-circles above and below the x-axis respectively. Since

F takes the lower half-plane to itself, we know that F maps 
– to the lower half-plane.
Calculating the fixed point index of f at the origin inR is equivalent to finding thewinding
number of F(
) around . Thus, we need to understand F(
+). Since 
+ lies in the upper
half-plane, we only consider F+. Assuming F has only a finite number of fixed points, we
can choose ε small enough so that only one point on 
 or its interior that F maps to the
origin is the origin itself. Therefore, we can homotope the restriction of F+ to 
+ in R

\
to the restriction of F+ to the curve 
+

δ for δ >  given by


+
δ (t) =

(
ε


(t – ), δ

(
 – ( – t)

))
,

where  ≤ t ≤ .
We write the restriction of F+ to 
+

δ in coordinates as

F+(
+
δ (t)

)
=

(
F+

(

+

δ (t)
)
,F+


(

+

δ (t)
))

=
(
φδ(t),ψδ(t)

)
.

The key idea of the proof is that for δ sufficiently small, the smoothness of F+ and the fact
that

∂F+
 (x,x)
∂x

<  implies that
d
dt

φδ(t) < 

for all t. This tells us that the x-coordinate of the curve F+(
+
δ (t)) is a strictly monotone

function of t. In particular, the curve F+(
+
δ (t)) only crosses the x-axis once. This implies

the desired result since the winding number of F(
) can then only be either  or –.
Notice that it is never specified that f maps B into itself. In considering the map F(z) =

z – f (z), although it is assumed that F maps the exterior of the disc to the exterior of the
disc, the proof allows the image of the interior of the disc under F to lie anywhere in R

.
�

Let f̄ : B →R
 be the restriction of f : (R,S) → (R,S) to B. Since B is contractible,

the sum of the indices of ρ f̄ : B → B equals one, and therefore ρ f̄ (x) = x for some x ∈
int(B). But then f (x) = x as well, so f : (B,S) → (R,S) has a fixed point in the interior
of B. Therefore, we can extend Corollary  as the following result.

Corollary  Let f : (R,S) → (R,S) be a smooth map such that f (ζ ) = ζ k for all ζ ∈ S

for some k ≥ . Then there exist z ∈ int(B) such that f (z) = z.

4 Interior fixed points of a map f : (Rn,Sn–1)→ (Rn,Sn–1)
Definition  ([], p.) A smooth map φ : Sn– → Sn– with finitely many fixed points is
transversely fixed if dφp– I : Tp(Sn–) → Tp(Sn–) is a nonsingular linearmap for each fixed
point p. For F = {p, . . . ,pr} a fixed point class of φ, let

i(F) =
r∑
j=

i
(
Sn–,φ,pj

)
.
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The transverse Nielsen number N�(φ) is defined by

N�(φ) =
∑
F∈F

∣∣i(F)∣∣,

where F is the set of fixed point classes of φ.
A smooth map φ : Sn– → Sn– is sparse if it is transversely fixed and it has N�(φ) fixed

points.

In [], p. Schirmer obtained the following result.

Theorem  Let φ : Sn– → Sn– be a sparse map of degree d and suppose f : (Bn,Sn–) →
(Bn,Sn–) is a smooth map extending φ. If (–)nd ≥ , then f must have a fixed point in
int(Bn).

We will extend this result as a consequence of the following

Theorem  Given a smooth map φ : Sn– → Sn– and a smooth map f : (Bn,Sn–) →
(Rn,Sn–) extending φ, suppose that p ∈ Sn– is an isolated fixed point of f and that dφp – I :
Tp(Sn–) → Tp(Sn–) is a nonsingular linear transformation. Then either i(Bn, f ,p) =  or
i(Bn, f ,p) = i(Sn–,φ,p).

Proof The following proof is a modified version of Theorem . in []. We again write f
in a small ball that contains p ∈ Sn– as described in Section  and the map F is also as
defined there. Moreover, for ε >  small enough, let

Dε(x, . . . ,xn) =

⎧⎨
⎩
(εx, εx, . . . , εxn) – f (εx, εx, . . . , εxn), if xn ≥ ,

(εx, εx, . . . , εxn) – f (εx, εx, . . . , εxn–, ), if xn < .

This thenmeans that the index i(Bn, f ,p) = i(Bn,Dε ,) is the degree of ρ ◦Dε : Sn– → Sn–,
where ρ(x) = x/|x| for x ∈R

n\.
Note that

∣∣F(εx, εx, . . . , εxn) – dFp(εx, εx, . . . , εxn)
∣∣ ≤ o(ε)

because F is a C function. We also have

∣∣dFp(εx, εx, . . . , εxn)∣∣ ≥ Cε

for some C >  independent of ε and (x,x, . . . ,xn) due to the fact that dFp = –(dfp – I) is
nonsingular by hypothesis.
Since dFp is a nonsingular linear map, this last degree is easily seen to be , or ±. But

the images of Dε of the upper and lower hemisphere are each contained entirely in either
the lower or upper half-space. This means that Dε is of degree  or Dε is homotopic in
R

n\ to the suspension of Dε|Sn– . �

We can use Theorem  to extend Theorem  to the case f : (Rn,Sn–) → (Rn,Sn–). The
following is a modified version of part of []. Note that despite the fact that the case n = 

http://www.fixedpointtheoryandapplications.com/content/2012/1/183
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is solved in the previous section, the new material presented below extends the solution
to all the cases.
Suppose we have φ : Sn– → Sn– and a smooth map f : (Rn,Sn–) → (Rn,Sn–) extend-

ing φ. A fixed point class F of f is called a common fixed point class of f and φ if there
exists an essential fixed point class F of φ which is contained in F .
We will again consider the restriction f : (Bn,Sn–) → (Rn,Sn–). In the notation of [],

p., let

u(F) =max
{
,

∑(
i
(
Sn–,φ,F

)∣∣F ⊂ F and i
(
Sn–,φ,F

)
> 

)}
,

l(F) =min
{
,

∑(
i
(
Sn–,φ,F

)∣∣F ⊂ F and i
(
Sn–,φ,F

)
< 

)}
.

Then F is a transversally common fixed point class of f and φ if

l(F)≤ i(F)≤ u(F).

Definition  The boundary transversal Nielsen number of f : (Bn,Sn–) → (Rn,Sn–) is

N
(
f ;Bn,Sn–�

)
=N�(φ) +N(f ) –N(f ,φ�),

whereN(f ,φ�) is the number of essential and transversally common fixed point classes of
f and φ.

Suppose that φ : Sn– → Sn– has degree d. Then f : Bn →R
n has one fixed point class F

with i(F) = , and so l(F)≤  < i(F). If n = , then φ has | –d| essential fixed point classes,
each of the same index, and

∑
i(S,φ,F) = L(φ) =  – d. Hence, i(F) ≤ u(F) if and only if

d ≤ , and

N(f ,φ�) =

⎧⎨
⎩
 if d ≤ ,

 if d > .

If n≥ , then φ has one fixed point class F with i(Sn–,φ,F) =  + (–)n–d and so

N(f ,φ�) =

⎧⎨
⎩
 if (–)n–d ≥ ,

 if (–)n–d < .

Note that this formula is still true for the case n = .
If φ : Sn– → Sn– is a sparse map of degree d then N�(φ) = | – (–)nd| for all d and all

n≥ .
Since N(f ) = , for the case that (–)nd ≤ , the boundary transversal Nielsen number is

N
(
f ;Bn,Sn–�

)
= N�(φ) +N(f ) –N(f ,φ�)

=
∣∣ – (–)nd

∣∣ +  – 

=
∣∣ – (–)nd

∣∣.
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Khamsemanan et al. Fixed Point Theory and Applications 2012, 2012:183 Page 7 of 8
http://www.fixedpointtheoryandapplications.com/content/2012/1/183

As for the case that (–)nd > , the boundary transversal Nielsen number is

N
(
f ;Bn,Sn–�

)
= N�(φ) +N(f ) –N(f ,φ�)

=
∣∣ – (–)nd

∣∣ +  – 

=
∣∣ – (–)nd

∣∣ + .

Hence, we have just proven the following

Proposition  If f : (Bn,Sn–) → (Rn,Sn–) is a smooth extension of a sparse map φ :
Sn– → Sn– of degree d, with n≥ , then the boundary transversal Nielsen number is

N
(
f ;Bn,Sn–�

)
=

⎧⎨
⎩

| – (–)nd| if (–)nd ≤ ,

| – (–)nd| +  if (–)nd > .

As defined in [], p., the extension Nielsen number N(f |φ) is a lower bound for the
number of fixed points on Sn– of continuous extensions of a continuousmap φ. It is equal
to the number of essential (classical) fixed point classes F of f with F ∩ Sn– = ∅. A fixed
point class F is representable on Sn– if there exists a subset F ′ ⊂ F ∩ Sn– with i(Bn, f ,F) =
i(Sn–,φ,F ′). The smooth extension number N (f |φ) is the number of essential (classical)
fixed point classes F of f which are not representable on Sn–. It is a lower bound for the
number of fixed points in Sn– of a smooth extension of a smooth and transversally fixed
map φ.

Proposition  If φ : Sn– → Sn– is sparse, then

N (f |φ) =N
(
f ;Bn,Sn–�

)
–N�(φ),

N(f |φ) =N
(
f ;Bn,Sn–

)
–N(φ).

Proof Our proof is modeled on the proofs of Proposition . and Corollary . in []. For
any essential fixed point class F of f , since φ is sparse, F ∩ Sn– contains u(F) fixed points
p such that i(Sn–,φ,p) =  and l(F) fixed points p such that i(Sn–,φ,p) = –. This means
that F is representable on Sn– if and only if l(F)≤ i(F)≤ u(F). By the definitions of all the
Nielsen numbers involved, we have the result stated above for N (f |φ).
The result for N(f |φ) can be obtained in a similar manner by using Corollary . from

[] along with the fact that all fixed point classes of a sparse map are essential. �

By the definitions of N(f ,φ) in [] and the definition of N (f |φ) defined early, we obtain

Proposition  If φ : Sn– → Sn– is sparse, then the number of essential fixed point classes
of f which are common but not transversally common is

N (f |φ) –N(f |φ) =N(f ,φ) –N(f ,φ�).

We are now ready to prove the following Theorem.
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Theorem  Let n ≥ , and let φ : Sn– → Sn– be a sparse map of degree d and suppose
f : (Bn,Sn–) → (Rn,Sn–) is a smooth map extending φ. If (–)nd ≥ , then f must have a
fixed point in int(Bn).

Proof Since φ has degree d and it is sparse, by definition

N(f |φ) =
⎧⎨
⎩
 if d �= (–)n,

 if d = (–)n

and

N (f |φ) –N(f |φ) = N
(
f ;Bn,Sn–�

)
–N�(φ) –N(f |φ) (from Proposition )

= N
(
f ;Bn,Sn–�

)
–

∣∣ – (–)nd
∣∣ –N(f |φ).

Applying Proposition , we have

N (f |φ) –N(f |φ) =
⎧⎨
⎩
 if (–)nd ≤ ,

 if (–)nd ≥ .

Thus, every smooth extension over Bn of a sparse map of Sn– of degree d with (–)nd ≥ 
has a fixed point on the interior of Bn. �
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