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Abstract
In this paper, we introduce new implicit and explicit iterative schemes for finding a
common element of the set of solutions of the mixed equilibrium problem and the
set of fixed points of a k-strictly pseudocontractive non-self mapping in Hilbert
spaces. We establish results of the strong convergence of the sequences generated
by the proposed schemes to a common point of two sets, which is a solution of a
certain variational inequality. Our results extend and improve the corresponding
results given by many authors recently in this area.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be a
nonempty closed convex subset of H and S : C → C be a self-mapping on C. We denote
by F(S) the set of fixed points of S, that is, F(S) := {x ∈ C : Sx = x}.
Let � be a bifunction of C × C into R and ϕ : C → R be a function, where R is the set

of real numbers. Then we consider the following mixed equilibrium problem (for short,
MEP): finding x ∈ C such that

�(x, y) + ϕ(y) – ϕ(x)≥ , ∀y ∈ C, (.)

which was studied by Ceng and Yao [] (see also []). The set of solutions of the MEP (.)
is denoted by MEP(�,ϕ). We see that x being a solution of the problem (.) implies that
x ∈ domϕ = {ϕ(x) <∞}.
If ϕ = , then the MEP (.) becomes the following equilibrium problem (for short, EP):

finding x ∈ C such that

�(x, y) ≥ , ∀y ∈ C. (.)

The set of solutions of the EP (.) is denoted by EP(�).
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The MEP (.) is very general in the sense that it includes, as special cases, fixed point
problems, optimization problems, variational inequality problems, minmax problems,
Nash equilibrium problems in noncooperative games and others; see, e.g., [, –].
The class of pseudocontractive mappings is one of the most important classes of map-

pings among nonlinear mappings. Recently, many authors have devoted their studies to
the problems of finding fixed points for pseudocontractivemappings; see, for example, [–
] and the references therein. We recall that a mapping S : C → H is said to be k-strictly
pseudocontractive if there exists a constant k ∈ [, ) such that

‖Sx – Sy‖ ≤ ‖x – y‖ + k
∥∥(I – S)x – (I – S)y

∥∥, ∀x, y ∈ C.

Note that the class of k-strictly pseudocontractive mappings includes the class of non-
expansive mappings as a subclass. That is, S is nonexpansive (i.e., ‖Sx – Sy‖ ≤ ‖x – y‖,
∀x, y ∈ C) if and only if S is -strictly pseudocontractive. The mapping S is also said to be
pseudocontractive if k = , and S is said to be strongly pseudocontractive if there exists
a constant λ ∈ (, ) such that S – λI is pseudocontractive. Clearly, the class of k-strictly
pseudocontractive mappings falls into the one between classes of nonexpansive mappings
and pseudocontractive mappings. Also, we remark that the class of strongly pseudocon-
tractive mappings is independent of the class of k-strictly pseudocontractive mappings
(see [, ]).
Recently, in order to study the EP (.) coupled with the fixed point problem, many

authors have introduced some iterative schemes for finding a common element of the set
of solutions of the EP (.) and the set of fixed points of a countable family of nonexpansive
mappings or strictly pseudocontractive mappings; see [–] and the references therein.
On the other hand, in  Yamada [] introduced the hybrid iterative method for

the nonexpansive mapping to solve a variational inequality related to a Lipschitzian and
stronglymonotone operator. Since then, by using the ideas ofMarino andXu [], Tien [,
] and Ceng et al. [] provided the general iterative schemes for finding a fixed point of
the nonexpansive mapping, which is a solution of a certain variational inequality related
to a Lipschitzian and strongly monotone operator. Cho et al. [] and Jung [, ] gave
the general iterative schemes for finding a fixed point of the k-strictly pseudocontractive
mapping, which is a solution of a certain variational inequality.
Inspired and motivated by the above mentioned recent works, in this paper, we intro-

duce new implicit and explicit iterative schemes for finding a common element of the set of
the solutions of the MEP (.) and the set of fixed points of a k-strictly pseudocontractive
mapping. Then we establish results of the strong convergence of the sequences generated
by the proposed schemes to a common point of two sets, which is a solution of a certain
variational inequality. Our results extend and improve the recent well-known results in
this area.

2 Preliminaries and lemmas
Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H . In
the following, we write xn ⇀ x to indicate that the sequence {xn} converges weakly to x.
xn → x implies that {xn} converges strongly to x.
Recall that the mapping V :H →H is said to be l-Lipschitzian if

‖Vx –Vy‖ ≤ l‖x – y‖, ∀x, y ∈H ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/184
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and that the nonlinear operator F : H → H is said to be ρ-Lipschitzian and η-strongly
monotone, where ρ >  and η >  are constants, if

‖Fx – Fy‖ ≤ ρ‖x – y‖

and

〈Fx – Fy,x – y〉 ≥ η‖x – y‖, ∀x, y ∈ H .

In a real Hilbert space H , we have

‖x – y‖ = ‖x‖ + ‖y‖ – 〈x, y〉, (.)

for all x, y ∈ H and λ ∈ R. For every point x ∈ H , there exists a unique nearest point in C,
denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖

for all y ∈ C. PC is called the metric projection of H onto C. It is well known that PC is
nonexpansive and PC is characterized by the property

u = PCx ⇔ 〈x – u,u – y〉 ≥ , ∀x ∈H , y ∈ C. (.)

It is also well known that H satisfies the Opial condition; that is, for any sequence {xn}
with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

holds for every y ∈H with y �= x.
For solving the equilibrium problem for a bifunction � : C ×C →R, let us assume that

� and ϕ satisfy the following conditions:
(A) �(x,x) =  for all x ∈ C;
(A) � is monotone, that is, �(x, y) +�(y,x)≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim
t↓ �

(
tz + ( – t)x, y

) ≤ �(x, y);

(A) for each x ∈ C, y �→ �(x, y) is convex and lower semicontinuous;
(A) for each y ∈ C, x �→ �(x, y) is weakly upper semicontinuous;
(B) for each x ∈H and r > , there exist a bounded subset Dx ⊆ C and yx ∈ C such

that for any z ∈ C \Dx,

�(z, yx) + ϕ(yx) – ϕ(z) +

r
〈yx – z, z – x〉 < ;

(B) C is a bounded set.
The following lemmas were given in [, ].

http://www.fixedpointtheoryandapplications.com/content/2012/1/184
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Lemma . [] Let C be a nonempty closed convex subset of H and � be a bifunction of
C ×C into R satisfying (A)-(A). Let r >  and x ∈ H . Then there exists z ∈ C such that

�(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Lemma . [] Let C be a nonempty closed convex subset of H . Let � be a bifunction
from C×C toR satisfying (A)-(A) and ϕ : C →R be a proper lower semicontinuous and
convex function. For r >  and x ∈H , define a mapping Tr :H → C as follows:

Trx =
{
z ∈ C :�(z, y) + ϕ(y) – ϕ(z) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H . Assume that either (B) or (B) holds. Then the following hold:
() for each x ∈H , Trx �= ∅;
() Tr is single-valued;
() Tr is firmly nonexpansive; that is, for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

() F(Tr) =MEP(�,ϕ);
() MEP(�,ϕ) is closed and convex.

We need the following lemmas for the proof of our main results.

Lemma . [] Let H be a Hilbert space, C be a closed convex subset of H . If S is a k-
strictly pseudocontractive mapping on C, then the fixed point set F(S) is closed convex, so
that the projection PF(S) is well defined.

Lemma . [] Let H be a real Hilbert space and C be a closed convex subset of H . Let
S : C →H be a k-strictly pseudocontractive mapping with F(S) �= ∅. Then F(PCS) = F(S).

Lemma . [] Let H be a real Hilbert space, C be a closed convex subset of H , and
S : C → H be a k-strictly pseudocontractive mapping. Define a mapping T : C → H by
Tx = λx+ ( – λ)Sx for all x ∈ C. Then as λ ∈ [k, ), T is a nonexpansive mapping such that
F(T) = F(S).

Lemma . [] Let {sn} be a sequence of non-negative real numbers satisfying

sn+ ≤ ( – ξn)sn + ξnδn, ∀n≥ ,

where {ξn} and {δn} satisfy the following conditions:
(i) {ξn} ⊂ [, ] and

∑∞
n= ξn = ∞,

(ii) lim supn→∞ δn ≤  or
∑∞

n= ξnδn < ∞.
Then limn→∞ sn = .

Lemma . [] Let {xn} and {zn} be bounded sequences in a real Banach space E and
{γn} be a sequence in [, ] which satisfies the following condition:

 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < .

http://www.fixedpointtheoryandapplications.com/content/2012/1/184
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Suppose that xn+ = γnxn + ( – γn)zn for all n ≥  and

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖zn – xn‖ = .

Lemma . In a real Hilbert space H , the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

The following lemma can be easily proven, and therefore, we omit the proof.

Lemma . Let V : H → H be an l-Lipschitzian mapping with a constant l ≥ , and F :
H → H be a ρ-Lipschitzian and η-strongly monotone operator with constants ρ,η > .
Then for  ≤ γ l < μη,

〈
(μF – γV )x – (μF – γV )y,x – y

〉 ≥ (μη – γ l)‖x – y‖, ∀x, y ∈ C.

That is, μF – γV is strongly monotone with a constant μη – γ l.

Finally, the following lemma is an improvement of Lemma . in [] (see also []).

Lemma . Let H be a real Hilbert space H . Let F : H → H be a ρ-Lipschizian and
η-strongly monotone operator with  < η ≤ ρ . Let  < μ < η

ρ
and  < t < ς ≤ . Then

S := ς I – tμF : H → H is a contraction with a contractive constant ς – tτ , where τ =
 –

√
 –μ(η –μρ).

Proof First, we show that I –μF is strictly contractive. In fact, by applying the ρ-Lipschitz
continuity and η-strongly monotonicity of F , we obtain for x, y ∈ H ,

∥∥(I –μF)x – (I –μF)y
∥∥

=
∥∥(x – y) –μ(Fx – Fy)

∥∥

= ‖x – y‖ – μ〈Fx – Fy,x – y〉 +μ‖Fx – Fy‖

≤ ‖x – y‖ – μη‖x – y‖ +μρ‖x – y‖

=
(
 –μ

(
η –μρ))‖x – y‖,

and so

∥∥(I –μF)x – (I –μF)y
∥∥ ≤

√
 –μ

(
η –μρ

)‖x – y‖. (.)

Now, noting that S := ς I – tμF = (ς – t)I – t(μF – I), by (.) we have for x, y ∈H ,

‖Sx – Sy‖ =
∥∥(ς – t)(x – y) – t

(
(μF – I)x – (μF – I)y

)∥∥
≤ (ς – t)‖x – y‖ + t

∥∥(μF – I)x – (μF – I)y
∥∥

http://www.fixedpointtheoryandapplications.com/content/2012/1/184
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≤ (ς – t)‖x – y‖ + t
√
 –μ

(
η –μρ

)‖x – y‖

=
(
ς – t

(
 –

√
 –μ

(
η –μρ

)))‖x – y‖
= (ς – tτ )‖x – y‖.

Hence, S is a contraction with a contractive constant ς – tτ . �

3 Main results
Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H . Let
V : H → H be an l-Lipschitzian mapping with a constant l > , and F : H → H be a ρ-
Lipschitzian and η-strongly monotone operator with  < η ≤ ρ . Let  < μ < η

ρ
and  <

γ l < τ , where τ =  –
√
 –μ(η –μρ). Let {Trn} be a sequence of mappings defined as in

Lemma . and S : C → H be a k-strictly pseudocontractive mapping. Define a mapping
Sn : C →H by Snx = βnx + ( – βn)Sx, ∀x ∈ C, where βn ∈ [k, ). Then, by Lemma ., Sn is
nonexpansive.
Consider the following mapping Qn on H defined by

Qnx = αnγVx + (I – αnμF)SnTrnx, ∀x ∈H ,n ≥ ,

where αn ∈ (, ). By Lemmas . and ., we have

‖Qnx –Qny‖ ≤ αnγ ‖Vx –Vy‖ + ∥∥(I – αnμF)SnTrnx – (I – αnμF)SnTrny
∥∥

≤ αnγ l‖x – y‖ + ( – αnτ )‖x – y‖
=

(
 – αn(τ – γ l)

)‖x – y‖.

Since  < –αn(τ –γ l) < ,Qn is a contraction. Therefore, by the Banach contraction prin-
ciple, Qn has a unique fixed point xn ∈H , which uniquely solves the fixed point equation

xn = αnγVxn + (I – αnμF)SnTrnxn.

Now, we prove the convergence of the sequence {xn} and show the existence of the q ∈
MEP(�,ϕ)∩ F(S), which solves the variational inequality

〈
(μF – γV )q,p – q

〉 ≥ , ∀p ∈MEP(�,ϕ)∩ F(S). (.)

Equivalently, q = PMEP(�,ϕ)∩F(S)(I –μF + γV )q.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H and
� be a bifunction from C × C → R satisfying (A)-(A). Let S : C → H be a k-strictly
pseudocontractive non-self mapping such that F(S) ∩ MEP(�,ϕ) �= ∅. Let F : H → H be
a ρ-Lipschitzian and η-strongly monotone operator with  < η ≤ ρ . Let V : H → H be
an l-Lipschitzian mapping with a constant l > . Let  < μ < η

ρ
and  < γ l < τ , where

τ =  –
√
 –μ(η –μρ). Assume that either (B) or (B) holds. Let {xn} be a sequence

http://www.fixedpointtheoryandapplications.com/content/2012/1/184


Jung Fixed Point Theory and Applications 2012, 2012:184 Page 7 of 19
http://www.fixedpointtheoryandapplications.com/content/2012/1/184

generated by

⎧⎪⎪⎨
⎪⎪⎩

�(un, y) + ϕ(y) – ϕ(un) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = βnun + ( – βn)Sun,

xn = αnγVxn + (I – αnμF)yn, ∀n≥ ,

(.)

where un = Trnxn, yn = Snun, and {rn} ⊂ (,∞) satisfying lim infn→∞ rn > . If {αn} and {βn}
satisfy the following conditions:

(i) {αn} ⊂ (, ), limn→∞ αn = ;
(ii)  ≤ k ≤ βn ≤ λ <  and limn→∞ βn = λ,

then {xn} converges strongly to a point q ∈ F(S) ∩MEP(�,ϕ), which solves the variational
inequality (.).

Proof Note that from the condition (i), without loss of generality, we assume that αnτ < 
for n≥ .
First, we can show easily the uniqueness of a solution of the variational inequality (.).

In fact, noting that  ≤ γ l < τ and μη ≥ τ ⇔ ρ ≥ η, it follows from Lemma . that

〈
(μF – γV )x – (μF – γV )y,x – y

〉 ≥ (μη – γ l)‖x – y‖.

That is, μF – γV is strongly monotone for ≤ γ l < τ ≤ μη. So, the variational inequality
(.) has only one solution. In what follows, we use q ∈ F(S) ∩ MEP(�,ϕ) to denote the
unique solution of the variational inequality (.).
Now, take p ∈ F(S) ∩ MEP(�,ϕ). Since un = Trnxn and p = Trnp, from Lemma ., we

know that

‖un – p‖ ≤ ‖xn – p‖, ∀n≥ .

Moreover, from Snp = p, it follows that

‖yn – p‖ = ‖Snun – Snp‖ ≤ ‖un – p‖ ≤ ‖xn – p‖. (.)

Thus, we have

‖xn – p‖ =
∥∥αn(γVxn –μFp) + (I – αnμF)yn – (I – αnμF)p

∥∥
≤ ( – αnτ )‖yn – p‖ + αn

(
γ l‖xn – p‖ + ‖γVp –μFp‖)

≤ (
 – αn(τ – γ l)

)‖xn – p‖ + αn‖γVp –μFp‖.

This implies that ‖xn – p‖ ≤ ‖γVp–μFp‖
τ–γ l . Hence, {xn} is bounded, and we also obtain that

{un}, {yn} and {Vxn} are bounded. We note that

‖un – yn‖ ≤ ‖un – xn‖ + ‖xn – yn‖
= ‖un – xn‖ + αn‖γVxn –μFyn‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/184
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Using Lemma ., we obtain

‖un – p‖ = ‖Trnxn – Trnp‖

≤ 〈xn – p,un – p〉 = 

(‖xn – p‖ + ‖un – p‖ – ‖xn – un‖

)
,

and so

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖. (.)

Then, from Lemma ., (.) and (.), we have

‖xn – p‖ =
∥∥αn(γVxn –μFp) + (I – αnμF)yn – (I – αnμF)p

∥∥

≤ ( – αnτ )‖yn – p‖ + αn〈γVxn –μFp,xn – p〉
≤ ( – αnτ )‖un – p‖ + αnγ 〈Vxn –Vp,xn – p〉

+ αn‖γVp –μFp‖‖xn – p‖
≤ ( – αnτ )

(‖xn – p‖ – ‖xn – un‖
)
+ αnγ l‖xn – p‖

+ αn‖γVp –μFp‖‖xn – p‖
=

(
 – αn(τ – γ l) + (αnτ )

)‖xn – p‖ – ( – αnτ )‖xn – un‖

+ αn‖γVp –μFp‖‖xn – p‖
≤ ‖xn – p‖ + α

nτ
‖xn – p‖ – ( – αnτ )‖xn – un‖

+ αn‖γVp –μFp‖‖xn – p‖,

and hence

( – αnτ )‖xn – un‖ ≤ α
nτ

‖xn – p‖ + αn‖γVp –μFp‖‖xn – p‖.

Since αn → , it follows that

lim
n→∞‖xn – un‖ = .

From (.), we know that

lim
n→∞‖un – yn‖ = . (.)

Define T : C → H by Tx = λx + ( – λ)Sx. Then by Lemma ., T is nonexpansive with
F(T) = F(S). Notice that

‖Tun – un‖ ≤ ‖Tun – yn‖ + ‖yn – un‖
≤ |λ – βn|‖un – Sun‖ + ‖yn – un‖.

By (.) and βn → λ, we obtain

lim
n→∞‖Tun – un‖ = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/184
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Consider a subsequence {uni} of {un}. Since {un} is bounded, there exists a subsequence
{unij } of {uni} which converges weakly to q.
Next, we show that q ∈ F(S) ∩ MEP(�,ϕ). Without loss of generality, we can assume

that uni ⇀ q. Since C is closed and convex, C is weakly closed. So, we have q ∈ C. Let us
show q ∈ F(T). Assume that q /∈ F(T). Since uni ⇀ q and q �= Tq, it follows from the Opial
condition that

lim inf
i→∞ ‖uni – q‖ < lim inf

i→∞ ‖uni – Tq‖

≤ lim inf
i→∞

(‖uni – Tuni‖ + ‖Tuni – Tq‖)
≤ lim inf

i→∞ ‖uni – q‖,

which is a contradiction. So, we get q ∈ F(T), and hence q ∈ F(S).
We shall show that q ∈MEP(�,ϕ). Since un = Trnxn, for any y ∈ C, we have

�(un, y) + ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ .

It follows from (A) that

ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ �(y,un).

Replacing n by ni, we have

ϕ(y) – ϕ(uni ) +

rni

〈y – uni ,uni – xni〉 ≥ �(y,uni ).

Since uni–xni
rni

→  and uni ⇀ q, it follows from (A) that

 ≥ –ϕ(y) + ϕ(q) +�(y,q), ∀y ∈ C.

Put zt = ty + ( – t)q for all t ∈ (, ] and y ∈ C. Then we have zt ∈ C and

–ϕ(zt) + ϕ(q) +�(zt ,q) ≤ . (.)

By (A), (A) and (.), we have

 = �(zt , zt) + ϕ(zt) – ϕ(zt)

≤ t�(zt , y) + ( – t)�(zt ,q) + tϕ(y) + ( – t)ϕ(q) – ϕ(zt)

≤ t
(
�(zt , y) + ϕ(y) – ϕ(zt)

)
+ ( – t)

(
�(zt ,q) + ϕ(q) – ϕ(zt)

)
≤ t

(
�(zt , y) + ϕ(y) – ϕ(zt)

)
,

and hence

 ≤ �(zt , y) + ϕ(y) – ϕ(zt). (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/184
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Letting t → , by (A) we have for each y ∈ C,

 ≤ �(q, y) + ϕ(y) – ϕ(q).

This implies that q ∈ MEP(�,ϕ). Therefore, q ∈ F(S)∩MEP(�,ϕ).
On the other hand, we note that

xn – q = αn(γVxn –μFq) + (I – αnμF)yn – (I – αnμF)q.

It follows that

‖xn – q‖

= αn〈γVxn –μFq,xn – q〉 + 〈
(I – αnμF)yn – (I – αnμF)q,xn – q

〉
≤ αn〈γVxn –μFq,xn – q〉 + ∥∥(I – αnμF)yn – (I – αnμF)q

∥∥‖xn – q‖
≤ αn〈γVxn –μFq,xn – q〉 + ( – αnτ )‖yn – q‖‖xn – q‖
≤ αn〈γVxn –μFq,xn – q〉 + ( – αnτ )‖xn – q‖.

Hence, we obtain

‖xn – q‖ ≤ 
τ

〈γVxn –μFq,xn – q〉

=

τ

(
γ 〈Vxn –Vq,xn – q〉 + 〈γVq –μFq,xn – q〉)

≤ 
τ

(
γ l‖xn – q‖ + 〈γVq –μFq,xn – q〉).

This implies that

‖xn – q‖ ≤ 〈γVq –μFq,xn – q〉
τ – γ l

.

In particular, we have

‖xni – q‖ ≤ 〈γVq –μFq,xni – q〉
τ – γ l

. (.)

Since xni ⇀ q, it follows that xni → q as i→ ∞.
Now, we show that q solves the variational inequality (.). Since xn = αnγVxn + (I –

αnμF)SnTrnxn, we have

(μF – γV )xn = –

αn

(
(I – αnμF)xn – (I – αnμF)SnTrnxn

)
.

It follows that for p ∈ F(S)∩MEP(�,ϕ),

〈
(μF – γV )xn,xn – p

〉
= –


αn

〈
(I – αnμF)xn – (I – αnμF)SnTrnxn,xn – p

〉
= –


αn

〈
(I – SnTrn )xn – (I – SnTrn )p,xn – p

〉
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+ 〈μFxn –μFSnTrnxn,xn – p〉
≤ 〈μFxn –μFSnTrnxn,xn – p〉 (.)

since I – SnTrn is monotone (i.e., 〈x– y, (I – SnTrn )x– (I – SnTrn )y〉 ≥  for all x, y ∈H . This
is due to the nonexpansivity of SnTrn ). Since ‖xn – yn‖ = αn‖γVxn –μFyn‖ →  as n → ∞,
by replacing n in (.) with ni and letting i → ∞, we obtain

〈
(μF – γV )q,q – p

〉
= lim

i→∞
〈
(μF – γV )xni ,xni – p

〉
≤ lim

i→∞〈μFxni –μFyni ,xni – p〉 = . (.)

That is, q ∈ F(S)∩MEP(�,ϕ) is a solution of the variational inequality (.).
Finally, we show that the sequence {xn} converges strongly to q. To this end, let {xnk } be

another subsequence of {xn} and assume xnk → q̂. By the same proof as the one above, we
have q̂ ∈ F(S)∩MEP(�,ϕ). Moreover, it follows from (.) that

〈
(μF – γV )q,q – q̂

〉 ≤ . (.)

Interchanging q and q̂, we obtain

〈
(μF – γV )̂q, q̂ – q

〉 ≤ . (.)

Lemma . and adding these two inequalities (.) and (.) yield

(μη – γ l)‖q – q̂‖ ≤ 〈
(μF – γV )q – (μF – γV )̂q,q – q̂

〉 ≤ .

Hence, q = q̂. Therefore, we conclude that xn → q as n→ ∞.
The variational inequality (.) can be rewritten as

〈
(I –μF + γV )q – q,q – p

〉 ≥ , ∀p ∈ F(S)∩MEP(�,ϕ).

By (.), this is equivalent to the fixed point equation

PF(S)∩MEP(�,ϕ)(I –μF + γV )q = q. �

Now, we establish the strong convergence of an explicit iterative scheme for finding a
common element of the set of solutions of a mixed equilibrium problem and the set of
fixed points of a k-strictly pseudocontractive non-self mapping.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H and
� be a bifunction from C × C → R satisfying (A)-(A). Let S : C → H be a k-strictly
pseudocontractive non-self mapping such that F(S) ∩ MEP(�,ϕ) �= ∅. Let F : H → H be a
ρ-Lipschitzian and η-strongly monotone operator with  < η ≤ ρ . Let V : H → H be an
l-Lipschitzian mapping with a constant l > . Let  < μ < η

ρ
and  < γ l < τ , where τ =

–
√
 –μ(η –μρ). Assume that either (B) or (B) holds. Let {xn} and {un} be sequences
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generated by

⎧⎪⎪⎨
⎪⎪⎩

�(un, y) + ϕ(y) – ϕ(un) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = βnun + ( – βn)Sun,

xn+ = αnγVxn + λnxn + (( – λn)I – αnμF)yn, ∀n≥ ,

(.)

where un = Trnxn and yn = Snun. If {αn}, {βn}, {rn} and {λn} satisfy the following conditions:
(i) {αn} ⊂ (, ), limn→∞ αn = ,

∑∞
n= αn = ∞;

(ii) ≤ k ≤ βn ≤ λ <  and limn→∞ βn = λ, limn→∞ |βn+ – βn| = ;
(iii) {rn} ⊂ (,∞), lim infn→∞ rn > , limn→∞ |rn+ – rn| = ;
(iv) {λn} ⊂ (, ) and  < lim infn→∞ λn ≤ lim supn→∞ λn < ,

then {xn} and {un} converge strongly to a point q ∈ F(S) ∩ MEP(�,ϕ), which solves the
variational inequality (.).

Proof First, from the condition (i), without loss of generality, we assume that αnτ < ,
αn(τ–γ l)
–αnγ l <  and αn( – λn) <  for n≥ .
We divide the proof into several steps as follows.
Step . We show that ‖xn – p‖ ≤ max{‖x – p‖, ‖γVp–μFp‖

τ–γ l } for all n≥  and all p ∈ F(S)∩
MEP(�,ϕ). Indeed, let p ∈ F(S)∩MEP(�,ϕ). Then from Lemma ., we have

‖xn+ – p‖
=

∥∥αn(γVxn –μFp) + λn(xn – p) +
(
( – λn)I – αnμF

)
yn –

(
( – λn)I – αnμF

)
p
∥∥

≤ ( – λn – αnτ )‖yn – p‖ + λn‖xn – p‖ + αn‖γVxn –μFp‖
≤ ( – λn – αnτ )‖xn – p‖ + λn‖xn – p‖ + αn

(‖γVxn – γVp‖ + ‖γVp –μFp‖)
≤ ( – αnτ )‖xn – p‖ + αnγ l‖xn – p‖ + αn‖γVp –μFp‖
=

(
 – (τ – γ l)αn

)‖xn – p‖ + (τ – γ l)αn
‖γVp –μFp‖

τ – γ l

≤ max

{
‖xn – p‖, ‖γVp –μFp‖

τ – γ l

}
.

From induction, we have

‖xn – p‖ ≤ max

{
‖x – p‖, ‖γVp –μFp‖

τ – γ l

}
, ∀n≥ .

Hence, {xn} is bounded. From (.), {un}, {yn}, {Vxn}, {Sun} and {Fyn} are also bounded.
Step . We show that limn→∞ ‖xn+ – xn‖ =  and limn→∞ ‖un+ – un‖ = . To show this,

define

xn+ = λnxn + ( – λn)zn, ∀n≥ .

Observe that from the definition of zn,

zn+ – zn =
xn+ – λn+xn+

 – λn+
–
xn+ – λnxn

 – λn

=
αn+γVxn+ + (( – λn+)I – αn+μF)yn+

 – λn+

http://www.fixedpointtheoryandapplications.com/content/2012/1/184
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–
αnγVxn + (( – λn)I – αnμF)yn

 – λn

=
αn+

 – λn+
γVxn+ –

αn

 – λn
γVxn

+ yn+ – yn +
αn

 – λn
μFyn –

αn+

 – λn+
μFyn+

=
αn+

 – λn+
(γVxn+ –μFyn+) +

αn

 – λn
(μFyn – γVxn) + yn+ – yn.

Thus, it follows that

‖zn+ – zn‖ ≤ αn+

 – λn+

(
γ ‖Vxn+‖ +μ‖Fyn+‖

)
+

αn

 – λn

(
μ‖Fyn‖ + γ ‖Vxn‖

)
+ ‖yn+ – yn‖. (.)

On the one hand, we note that

‖yn+ – yn‖ = ‖Sn+un+ – Snun‖
≤ ‖Sn+un+ – Sn+un‖ + ‖Sn+un – Snun‖
≤ ‖un+ – un‖ + ‖Sn+un – Snun‖. (.)

Noticing that

‖sn+un – Snun‖ =
∥∥βn+un + ( – βn+)Sun –

(
βnun + ( – βn)Sun

)∥∥
≤ |βn+ – βn|‖un – Sun‖,

from (.) we have

‖yn+ – yn‖ ≤ ‖un+ – un‖ + |βn+ – βn|‖un – Sun‖. (.)

On the other hand, from un+ = Trn+xn+ and un = Trnxn, we have

�(un+, y) + ϕ(y) – ϕ(un+) +


rn+
〈y – un+,un+ – xn+〉 ≥ , ∀y ∈ C (.)

and

�(un, y) + ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C. (.)

Putting y = un in (.) and y = un+ in (.), we obtain

�(un+,un) + ϕ(un) – ϕ(un+) +


rn+
〈un – un+,un+ – xn+〉 ≥ 

and

�(un,un+) + ϕ(un+) – ϕ(un) +

rn

〈un+ – un,un – xn〉 ≥ .
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By (A), we have

〈
un+ – un,

un – xn
rn

–
un+ – xn+

rn+

〉
≥ ,

and hence
〈
un+ – un,un – un+ + un+ – xn –

rn
rn+

(un+ – xn+)
〉
≥ .

Since lim infn→∞ rn > , we assume that there exists a real number c such that rn > c > 
for all n ≥ . Thus, we have

‖un+ – un‖ ≤
〈
un+ – un,xn+ – xn +

(
 –

rn
rn+

)
(un+ – xn+)

〉

≤ ‖un+ – un‖
{
‖xn+ – xn‖ +

∣∣∣∣ – rn
rn+

∣∣∣∣‖un+ – xn+‖
}
,

and hence

‖un+ – un‖ ≤ ‖xn+ – xn‖ + 
rn+

|rn+ – rn|‖un+ – xn+‖

≤ ‖xn+ – xn‖ + 
c
|rn+ – rn|L, (.)

where L = sup{‖un – xn‖ : n≥ }. Therefore, from (.), (.) and (.), we obtain

‖zn+ – zn‖ – ‖xn+ – xn‖
≤ αn+

 – λn+

(
γ ‖Vxn+‖ +μ‖Fyn+‖

)
+

αn

 – λn

(
μ‖Fyn‖ + γ ‖Vxn‖

)
+ |βn+ – βn|‖un – Sun‖ + 

c
|rn+ – rn|L

≤ αn+

 – λn+

(
γ ‖Vxn+‖ +μ‖Fyn+‖

)
+

αn

 – λn

(
μ‖Fyn‖ + γ ‖Vxn‖

)
+

(|βn+ – βn| + |rn+ – rn|
)
M,

where M is an appropriate constant such that M = L
c + sup{‖un – Sun‖ : n ≥ }. Thus,

from conditions (i)-(iv), it follows that

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Hence, by Lemma ., we have

lim
n→∞‖zn – xn‖ = .

Consequently,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – λn)‖zn – xn‖ = ,
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and by (.) and (.),

lim
n→∞‖un+ – un‖ = , and lim

n→∞‖yn+ – yn‖ = .

Step . We show that limn→∞ ‖xn – yn‖ = . Indeed, since

xn+ = αnγVxn + λnxn +
(
( – λn)I – αnμF

)
yn,

we have

‖xn – yn‖ ≤ ‖xn – xn+‖ + ‖xn+ – yn‖
≤ ‖xn – xn+‖ + αn‖γVxn –μFyn‖ + λn‖xn – yn‖,

that is,

‖xn – yn‖ ≤ 
 – λn

‖xn – xn+‖ + αn

 – λn

(
γ ‖Vxn‖ +μ‖Fyn‖

)
.

So, from the conditions αn →  and (iv) and Step , it follows that

lim
n→∞‖xn – yn‖ = .

Step . We show that limn→∞ ‖xn – un‖ =  and limn→∞ ‖un – yn‖ = . Indeed, since Trn

is firmly nonexpansive, for p ∈ F(S)∩MEP(�,ϕ), we have

‖un – p‖ = ‖Trnxn – Trnp‖

≤ 〈xn – p,un – p〉
=



(‖xn – p‖ + ‖un – p‖ – ‖xn – un‖

)
,

and hence

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖. (.)

Then, by using the convexity of ‖ · ‖, we have from (.) and (.),

‖xn+ – q‖

=
∥∥αn

(
γVxn + (I –μF)yn – p

)
+ ( – αn)(yn – p) + λn(xn – yn)

∥∥

≤ (∥∥αn
(
γVxn + (I –μF)yn – p

)
+ ( – αn)(yn – p)

∥∥ + λn‖xn – yn‖
)

≤ ∥∥αn
(
γVxn + (I –μF)yn – p

)
+ ( – αn)(yn – p)

∥∥

+ λn
∥∥αn

(
γVxn + (I –μF)yn – p

)
+ ( – αn)(yn – p)

∥∥‖xn – yn‖
+ λ

n‖xn – yn‖

≤ αn
∥∥γVxn + (I –μF)yn – p

∥∥ + ( – αn)‖yn – p‖

+ λn‖xn – yn‖
[
αn

(∥∥γVxn + (I –μF)yn – p
∥∥ + ( – αn)‖yn – p‖)
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+ λn‖xn – yn‖
]

≤ αn
∥∥γVxn + (I –μF)yn – p

∥∥ + ( – αn)‖un – p‖ +Mn

≤ αn
∥∥γVxn + (I –μF)yn – p

∥∥ + ( – αn)
(‖xn – p‖ – ‖xn – un‖

)
+Mn, (.)

where

Mn = λn‖xn – yn‖
[
αn

(
γ ‖Vxn‖ +μ‖Fyn‖ + ( – αn)‖yn – p‖) + λn‖xn – yn‖

]
.

By Step , we know that limn→∞ Mn = . Then from (.), we have

( – αn)‖xn – un‖ ≤ αn
∥∥γVxn + (I –μF)yn – p

∥∥

+ ‖xn – p‖ – ‖xn+ – p‖ +Mn

≤ αn
(
γ ‖Vxn‖ +μ‖Fyn‖ + ‖yn – p‖)

+ ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖) +Mn.

Since αn →  and ‖xn – xn+‖ → , we obtain

lim
n→∞‖xn – un‖ = . (.)

From Step , we also have

‖un – yn‖ ≤ ‖un – xn‖ + ‖xn – yn‖ → , as n→ ∞. (.)

Step . We show that limn→∞ ‖Tun – un‖ = , where T : C → H is defined by Tx = λx +
( – λ)Sx. We know that T is nonexpansive with F(T) = F(S) by Lemma .. Notice that

‖Tun – un‖ ≤ ‖Tun – yn‖ + ‖yn – un‖
≤ |λ – βn|‖un – Sun‖ + ‖yn – un‖.

By (.) and βn → λ, we obtain

lim
n→∞‖Tun – un‖ = .

Step . We show that

lim sup
n→∞

〈
(μF – γV )q,q – xn

〉 ≤ ,

where q = PF(S)∩MEP(�,ϕ)(I – μF + γV )q is a unique solution of the variational inequality
(.). To show this inequality, we choose a subsequence {xni} of {xn} such that

lim
i→∞

〈
(μF – γV )q,q – xni

〉
= lim sup

n→∞
〈
(μF – γV )q,q – xn

〉
.

Since {uni} is bounded, there exists a subsequence {unij } which converges weakly to w.
Without loss of generality, we can assume that uni ⇀ w. From Step  and Step , we obtain
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xni ⇀ w and Tuni ⇀ w. By the same argument as in the proof of Theorem ., we have
w ∈ F(S)∩MEP(�,ϕ). Since q = PF(S)∩MEP(�,ϕ)(I –μF + γV )q, it follows that

lim sup
n→∞

〈
(μF – γV )q,q – xn

〉
= lim

i→∞
〈
(μF – γV )q,q – xni

〉
=

〈
(μF – γV )q,q –w

〉 ≤ .

Step . We show that limn→∞ ‖xn – q‖ = , where q = PF(S)∩MEP(�,ϕ)(I – μF + γV )q is a
unique solution of the variational inequality (.). From (.), we know that

xn+ – q = αn(γVxn –μFq) + λn(yn – q) +
(
( – λn)I – αnμF

)
yn –

(
( – λn)I – αnμF

)
q.

Applying Lemma . and Lemma ., we have

‖xn+ – q‖ ≤ ∥∥λn(xn – q) +
(
( – λn)I – αnμF

)
yn –

(
( – λn)I – αnμF

)
q
∥∥

+ αn〈γVxn –μFq,xn+ – q〉
≤ (

( – λn – αnτ )‖yn – q‖ + λn‖xn – q‖)
+ αnγ 〈Vxn –Vq,xn+ – q〉 + αn〈γVq –μFq,xn+ – q〉

≤ ( – ταn)‖xn – q‖ + αnγ l‖xn – q‖‖xn+ – q‖
+ αn〈γVq –μFq,xn+ – q〉

≤ ( – ταn)‖xn – q‖ + αnγ l
(‖xn – q‖ + ‖xn+ – q‖)

+ αn〈γVq –μFq,xn+ – q〉.

This implies that

‖xn+ – q‖ ≤  – ταn + τ α
n + αnγ l

 – αnγ l
‖xn – q‖

+
αn

 – αnγ l
〈γVq –μFq,xn+ – q〉

=
(
 –

(τ – γ l)αn

 – αnγ l

)
‖xn – q‖ + τ α

n
 – αnγα

‖xn – q‖

+
αn

 – αnγ l
〈γVq –μFq,xn+ – q〉

≤
(
 –

(τ – γ l)
 – αnγ l

αn

)
‖xn – q‖

+
(τ – γ l)αn

 – αnγ l

(
τ αn

(τ – γ l)
M +


τ – γ l

〈μFq – γVq,q – xn+〉
)

= ( – ξn)‖xn – q‖ + ξnδn,

whereM = sup{‖xn – q‖ : n≥ }, ξn = (τ–γ l)
–αnγ l αn and

δn =
τ αn

(τ – γ l)
M +


τ – γ l

〈μFq – γVq,q – xn+〉.
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From the condition (i) and Step , it is easy to see that ξn → ,
∑∞

n= ξn = ∞ and
lim supn→∞ δn ≤ . Hence, by Lemma ., we conclude xn → q as n→ ∞. This completes
the proof. �

Remark .
() Theorem . and Theorem . extend and develop Theorem . and Theorem . of

Liu [], respectively, in the following ways:
(a) The EP (.) in Theorem . and Theorem . of [] is extended to the case of

the MEP (.).
(b) The strongly positive bounded linear operator A in Theorem . and

Theorem . of [] is extended to the case of the ρ-Lipschitzian and η-strongly
monotone operator F . In fact, from the definitions, a strongly positive bounded
linear operator A with a constant γ >  is a ‖A‖-Lipschitzian and γ -strongly
monotone operator.

(c) The contractive mapping f :H →H with contractive coefficient α ∈ (, ) in
Theorem . and Theorem . of [] is extended to the case of a Lipschitzian
mapping V :H →H with a constant l ∈ [,∞).

(d) The condition
∑∞

n= |αn+ – αn| <∞ in Theorem . of [] is removed.
(e) The conditions

∑∞
n= |βn+ – βn| <∞ and

∑∞
n= |rn+ – rn| <∞ in Theorem .

of [] are also relaxed by the conditions limn→∞ |βn+ – βn| =  and
limn→∞ |rn+ – rn| = , respectively.

() Even if C =H , S is nonexpansive, {βn} = {}, rn = , un = xn, �(x, y) =  and ϕ(x) = ,
∀x, y ∈ C, Theorem . and Theorem . improve Theorem . and Theorem . of
Tian [] and Theorem . and Theorem . of Ceng et al. [] from the class of
nonexpansive mappings to the class of k-strictly pseudocontractive mappings. In
particular, Theorem . develops Theorem . of Tian [] and Theorem . of
Ceng et al. [] by removing the condition either

∑∞
n= |αn+ – αn| < ∞ or

limn→∞ αn/αn+ = .
() Theorem . also contains Theorem . of Plubtieng and Pungaeng [] as a special

case with the nonexpansive mapping S, and {βn} = {}, and ϕ ≡ .
() Theorem . also includes and improves Theorem . of Plubtieng and Punpaeng

[], Theorem . of Takahashi and Takahashi [] as well as Theorem . of Tian
[], Theorem . of Jung [], Theorem . of Jung [] Theorem . of Cho et al. []
and Theorem . of Marino and Xu [] as some special cases.
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