
Kangtunyakarn Fixed Point Theory and Applications 2012, 2012:188
http://www.fixedpointtheoryandapplications.com/content/2012/1/188

RESEARCH Open Access

Strong convergence of the hybrid method for
a finite family of nonspreading mappings and
variational inequality problems
Atid Kangtunyakarn*

*Correspondence:
beawrock@hotmail.com
Department of Mathematics,
Faculty of Science, King Mongkut’s
Institute of Technology Ladkrabang,
Bangkok 10520, Thailand

Abstract
In this paper, we prove a strong convergence theorem by the hybrid method for
finding a common element of the set of fixed points of a finite family of nonspreading
mappings and the set of solutions of a finite family of variational inequality problems.

Keywords: nonspreading mapping; quasi-nonexpansive mapping; S-mapping

1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H . Then a mapping

T : C → C is said to be nonexpansive if ‖Tx –Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. Recall that the
mappingT : C → C is said to be quasi-nonexpansive if ‖Tx–p‖ ≤ ‖x–p‖, ∀x ∈ C and ∀p ∈
F(T), where F(T) denotes the set of fixed points of T . In , Kohsaka and Takahashi
[] introduced the mapping T called the nonspreading mapping in Hilbert spaces H and
defined it as follows: ‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖x – Ty‖, ∀x, y ∈ C.
Let A : C →H . The variational inequality problem is to find a point u ∈ C such that

〈Au, v – u〉 ≥  (.)

for all v ∈ C. The set of solutions of (.) is denoted by VI(C,A).
The variational inequality has emerged as a fascinating and interesting branch of math-

ematical and engineering sciences with a wide range of applications in industry, finance,
economics, social, ecology, regional, pure and applied sciences; see, e.g., [–].
A mapping A of C into H is called inverse-strongly monotone (see []) if there exists a

positive real number α such that

〈x – y,Ax –Ay〉 ≥ α‖Ax –Ay‖

for all x, y ∈ C. Throughout this paper, we will use the following notation:
. ⇀ for weak convergence and → for strong convergence.
. ω(xn) = {x : ∃xni ⇀ x} denotes the weak ω-limit set of {xn}.
In , Takahashi, Takeuchi and Kubota [] proved the following strong convergence

theorems by using the hybrid method for nonexpansive mappings in Hilbert spaces.
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Theorem . Let H be a Hilbert space and C be a nonempty closed convex subset of H . Let
T be a nonexpansive mapping of C into H such that F(T) �= ∅ and let x ∈ H . For C = C
and u ∈ PCx, define a sequence {un} of C as follows:

⎧⎪⎪⎨
⎪⎪⎩
yn = αnun + ( – αn)un,

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖un – z‖},
un+ = PCn+x, n ∈N,

where  ≤ αn ≤ a <  for all n ∈N. Then {un} converges strongly to z = PF(T)x.

In , Iemoto and Takahashi [] proved the convergence theorem of nonexpansive
and nonspreading mappings as follows.

Theorem . Let H be a Hilbert space, and let C be a nonempty closed convex subset of H .
Let S be a nonspreading mapping of C into itself, and let T be a nonexpansive mapping of
C into itself such that F(S)∩ F(T) �= ∅. Define a sequence {xn} as follows.

⎧⎨
⎩x ∈ C,

xn+ = αnxn + ( – αn)(βnSxn + ( – βn)Txn)

for all n ∈N, where {αn}, {βn} ⊂ [, ]. Then the following hold:
(i) If lim infn→∞ αn( – αn) >  and

∑∞
n=( – βn) < ∞, then {xn} converges weakly to

v ∈ F(S).
(ii) If

∑∞
n= αn( – αn) = ∞ and

∑∞
n= βn <∞, then {xn} converges weakly to v ∈ F(T).

(iii) If lim infn→∞ αn( – αn) >  and lim infn→∞ βn( – βn) > , then {xn} converges
weakly to v ∈ F(S)∩ F(T).

Inspired and motivated by these facts and the research in this direction, we prove the
strong convergence theorem by the hybrid method for finding a common element of the
set of fixed points of a finite family of nonspreading mappings and the set of solutions of
a finite family of variational inequality problems.

2 Preliminaries
In this section, we collect and give some useful lemmas that will be used for our main
result in the next section.
Let C be a closed convex subset of a real Hilbert spaceH , let PC be themetric projection

of H onto C, i.e., for x ∈H , PCx satisfies the property

‖x – PCx‖ =min
y∈C ‖x – y‖.

The following characterizes the projection PC .

Lemma . (See []) Given x ∈ H and y ∈ C. Then PCx = y if and only if the following
inequality holds:

〈x – y, y – z〉 ≥  ∀z ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2012/1/188
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Lemma . (See []) Let C be a nonempty closed convex subset of H. Then a mapping
S : C → C is nonspreading if and only if

‖Sx – Sy‖ ≤ ‖x – y‖ + 〈x – Sx, y – Sy〉

for all x, y ∈ C.

Example . LetR denote the reals with the usual norm. Let T :R→R be defined by

Tx =

⎧⎨
⎩x –  if x ∈ (–∞, ],

–(x + ) if x ∈ (,∞)

for all x ∈R.
To see that T is a nonspreading mapping, if x, y ∈ (,∞), then we have Tx = –(x+ ) and

Ty = –(y + ). From the definition of the mapping T , we have

|Tx – Ty| = ∣∣–(x + ) –
(
–(y + )

)∣∣
= |y – x| = |x – y|

and

〈x – Tx, y – Ty〉 = 〈x + x + , y + y + 〉
= 〈x + , y + 〉
= (x + )(y + ) >  (since x, y > ).

The above implies that

|Tx – Ty| = |x – y| < |x – y| + 〈x – Tx, y – Ty〉.

For every x, y ∈ (–∞, ], we have Tx = x –  and Ty = y – . From the definition of T , we
have

|Tx – Ty| = ∣∣x –  – (y – )
∣∣

= |x – y|,

and

〈x – Tx, y – Ty〉 = 
〈
x – (x – ), y – (y – )

〉
= .

From above, we have

|Tx – Ty| = |x – y| < |x – y| + 〈x – Tx, y – Ty〉.

http://www.fixedpointtheoryandapplications.com/content/2012/1/188
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Finally, for every x ∈ (–∞, ] and y ∈ (,∞), we have Tx = x –  and Ty = –(y + ). From
the definition of T , we have

|Tx – Ty| = |x –  + y + | = |x + y|,
|x – y| = x – xy + y

= x + xy + y – xy

≥ x + xy + y (since –xy≥ )

= (x + y)

and

〈x – Tx, y – Ty〉 = 
〈
x – (x – ), y + (y + )

〉
= 〈, y + 〉
= (y + ) >  (since y > ).

From above, we have

|Tx – Ty| = |x + y| = (x + y)

≤ |x – y|

< |x – y| + 〈x – Tx, y – Ty〉.

Hence, for all x, y ∈R, we have

|Tx – Ty| < |x – y| + 〈x – Tx, y – Ty〉.

Then T is a nonspreading mapping.

Lemma . (See []) Let H be a Hilbert space, let C be a nonempty closed convex subset
of H , and let S be a nonspreading mapping of C into itself. Then F(S) is closed and convex.

Lemma . (See []) Let H be a Hilbert space, let C be a nonempty closed convex subset
of H , and let A be a mapping of C into H . Let u ∈ C. Then for λ > ,

u = PC(I – λA)u ⇔ u ∈ VI(C,A),

where PC is the metric projection of H onto C.

Lemma . (See []) Let C be a closed convex subset of a strictly convex Banach space E.
Let {Tn : n ∈ N} be a sequence of nonexpansive mappings on C. Suppose

⋂∞
n= F(Tn) is

nonempty. Let {λn} be a sequence of positive numbers with
∑∞

n= λn = . Then a mapping S
on C defined by

S(x) =
∞∑
n=

λnTnx

for x ∈ C is well defined, nonexpansive and F(S) =
⋂∞

n= F(Tn) holds.

http://www.fixedpointtheoryandapplications.com/content/2012/1/188
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Lemma . (See []) Let E be a uniformly convex Banach space, C be a nonempty closed
convex subset of E, and S : C → C be a nonexpansive mapping. Then I – S is demi-closed
at zero.

Lemma . (See []) Let C be a closed convex subset of H . Let {xn} be a sequence in H
and u ∈ H . Let q = PCu. If {xn} is such that ω(xn) ⊂ C and satisfies the condition

‖xn – u‖ ≤ ‖u – q‖, ∀n ∈N,

then xn → q, as n→ ∞.

In , Kangtunyakarn and Suantai [] introduced an S-mapping generated by
T, . . . ,TN and λ, . . . ,λN as follows.

Definition . Let C be a nonempty convex subset of a real Banach space. Let {Ti}Ni= be
a finite family of (nonexpansive) mappings of C into itself. For each j = , , . . . ,N , let αj =
(αj

,α
j
,α

j
) ∈ I × I × I , where I ∈ [, ] and α

j
 + α

j
 + α

j
 = . Define the mapping S : C → C

as follows:

U = I,

U = α
TU + α

U + α
I,

U = α
TU + α

U + α
I,

U = α
TU + α

U + α
I,

... (.)

UN– = αN–
 TN–UN– + αN–

 UN– + αN–
 I,

S =UN = αN
 TNUN– + αN

 UN– + αN
 I.

(.)

This mapping is called an S-mapping generated by T, . . . ,TN and α,α, . . . ,αN .

The next lemma is very useful for our consideration.

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space. Let {Ti}Ni=
be a finite family of nonspreading mappings of C into C with

⋂N
i= F(Ti) �= ∅, and let αj =

(αj
,α

j
,α

j
) ∈ I × I × I , j = , , , . . . ,N , where I = [, ], αj

 + α
j
 + α

j
 = , αj

,α
j
 ∈ (, ) for

all j = , , . . . ,N –  and αN
 ∈ (, ], αN

 ∈ [, ), αj
 ∈ [, ) for all j = , , . . . ,N . Let S be

the mapping generated by T, . . . ,TN and α,α, . . . ,αN . Then F(S) =
⋂N

i= F(Ti) and S is a
quasi-nonexpansive mapping.

Proof It easy to see that
⋂N

i= F(Ti) ⊆ F(S). Let x ∈ F(S) and x∗ ∈ ⋂N
i= F(Ti). Since {Ti}Ni=

is a finite family of nonspreading mappings of C into itself, for every y ∈ C, we have

∥∥Tiy – x*
∥∥ ≤ 


(∥∥Tiy – x*

∥∥ +
∥∥y – x*

∥∥). (.)

This implies that

∥∥Tiy – x*
∥∥ ≤ ∥∥y – x*

∥∥, ∀y ∈ C and i = , , . . . ,N . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/188
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From the definition of S and (.),

∥∥Sx – x∗∥∥ =
∥∥αN

 TNUN–x + αN
 UN–x + αN

 x – x∗∥∥

=
∥∥αN


(
TNUN–x – x∗) + αN


(
UN–x – x∗) + αN


(
x – x∗)∥∥

≤ αN

∥∥TNUN–x – x∗∥∥ + αN


∥∥UN–x – x∗∥∥ + αN


∥∥x – x∗∥∥

≤ (
 – αN


)∥∥UN–x – x∗∥∥ + αN


∥∥x – x∗∥∥

=
(
 – αN


)∥∥αN–


(
TN–UN–x – x∗) + αN–


(
UN–x – x∗)

+ αN–


(
x – x∗)∥∥ + αN


∥∥x – x∗∥∥

≤ (
 – αN


)(

αN–


∥∥TN–UN–x – x∗∥∥ + αN–


∥∥UN–x – x∗∥∥

+ αN–


∥∥x – x∗∥∥) + αN

∥∥x – x∗∥∥

≤ (
 – αN


)((

 – αN–


)∥∥UN–x – x∗∥∥ + αN–


∥∥x – x∗∥∥)
+ αN


∥∥x – x∗∥∥

=
(
 – αN


)(
 – αN–


)∥∥UN–x – x∗∥∥ + αN–


(
 – αN


)∥∥x – x∗∥∥

+ αN

∥∥x – x∗∥∥

=
N∏

j=N–

(
 – α

j

)∥∥UN–x – x∗∥∥ +

(
 –

N∏
j=N–

(
 – α

j

))∥∥x – x∗∥∥

...

≤
N∏
j=

(
 – α

j

)∥∥Ux – x∗∥∥ +

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

≤
N∏
j=

(
 – α

j

)∥∥Ux – x∗∥∥ +

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

=
N∏
j=

(
 – α

j

)∥∥α


(
Tx – x∗) + (

 – α

)(
x – x∗)∥∥

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

=
N∏
j=

(
 – α

j

)(

α

∥∥Tx – x∗∥∥ +

(
 – α


)∥∥x – x∗∥∥

– α

(
 – α


)‖Tx – x‖

)
+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

≤
N∏
j=

(
 – α

j

)(∥∥x – x∗∥∥ – α


(
 – α


)‖Tx – x‖

)

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥. (.)
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From (.), we have

∥∥x – x∗∥∥ ≤
N∏
j=

(
 – α

j

)(∥∥x – x∗∥∥ – α


(
 – α


)‖Tx – x‖

)

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥,

which implies that

∥∥x – x∗∥∥ ≤ ∥∥x – x∗∥∥ – α

(
 – α


)‖Tx – x‖. (.)

Since α
j
 ∈ (, ) for all j = , , . . . ,N –  and (.), we have x ∈ F(T). From x = Tx and

the definition of S, we have

Ux = α
Tx + α

x + α
x = x.

From (.) and x ∈ F(U), we have

∥∥x – x∗∥∥ ≤
N∏
j=

(
 – α

j

)∥∥Ux – x∗∥∥ +

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

=
N∏
j=

(
 – α

j

)∥∥α

TUx + α
Ux + α

x – x∗∥∥

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

=
N∏
j=

(
 – α

j

)∥∥α


(
Tx – x∗) + (

 – α

)(
x – x∗)∥∥

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

=
N∏
j=

(
 – α

j

)(

α

∥∥Tx – x∗∥∥ +

(
 – α


)∥∥x – x∗∥∥

– α

(
 – α


)‖Tx – x‖

)
+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

≤
N∏
j=

(
 – α

j

)(∥∥x – x∗∥∥ – α


(
 – α


)‖Tx – x‖

)

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥,

http://www.fixedpointtheoryandapplications.com/content/2012/1/188
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which implies that

∥∥x – x∗∥∥ ≤ ∥∥x – x∗∥∥ – α

(
 – α


)‖Tx – x‖. (.)

Since α
j
 ∈ (, ) for all j = , , . . . ,N –  and (.), we have x ∈ F(T). From the definition

of S and x = Tx, we have

Ux = α
TUx + α

Ux + α
x = x.

By continuing in this way, we can show that x ∈ F(Ti) and x ∈ F(Ui) for all i =
, , . . . ,N – .
Finally, we shall show that x ∈ F(TN ).
Since

 = Sx – x = αN
 TNUN–x + αN

 UN–x + αN
 x – x

= αN
 (TNx – x),

and αN
 ∈ (, ], we obtain TNx = x so that x ∈ F(TN ). Then we have x ∈ ⋂N

i= F(Ti).
Hence, F(S)⊆ ⋂N

i= F(Ti).
Next, we show that S is a quasi-nonexpansive mapping. Let x ∈ C and y ∈ F(S). From

(.), we can imply that

‖Sx – y‖ ≤
N∏
j=

(
 – α

j

)(‖x – y‖ – α


(
 – α


)‖Tx – x‖)

+

(
 –

N∏
j=

(
 – α

j

))‖x – y‖

≤ ‖x – y‖.

Then we have the S-mapping is quasi-nonexpansive. �

Example . Let T : [–, ]→ [–, ] be a mapping defined by

Tx =

⎧⎨
⎩

x+
 if x ∈ (, ],
–x+
 if x ∈ [–, ]

for all x ∈ [–, ].
Let T : [–, ] → [–, ] be a mapping defined by

Tx =

⎧⎨
⎩

x+
 if x ∈ (, ],

–x+
 if x ∈ [–, ]

for all x ∈ [–, ].

http://www.fixedpointtheoryandapplications.com/content/2012/1/188
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To see that T is a nonspreading mapping, observe that if x, y ∈ (, ], we have Tx = x+


and Ty = y+
 . Then we have

|Tx – Ty| =
∣∣∣∣x + 


–
y + 


∣∣∣∣


=



|x – y|

and

〈x – Tx, y – Ty〉 = 
〈
x –

(
x + 


)
, y –

(
y + 


)〉

= 
〈
x – 


,
y – 


〉

=


(x – )(y – )

≥ 
(
since x ≤ , y≤ , then (x – )(y – ) ≥ 

)
.

From above, we have

|x – y| + 〈x – Tx, y – Ty〉 ≥ |x – y|

≥ 


|x – y|

= |Tx – Ty|.

For every x, y ∈ [–, ], we have Tx = –x+
 and Ty = –y+

 . From the definition of T, we
have

|Tx – Ty| =
∣∣∣∣–x + 


–

(
–y + 


)∣∣∣∣


=
∣∣∣∣y – x



∣∣∣∣


=



|x – y|

and

〈x – Tx, y – Ty〉 = 
〈
x –

(
 – x


)
, y –

(
 – y


)〉

= 
〈
x – 


,
y – 


〉

=


(x – )(y – )

=


(
x(y – ) – (y – )

)
=



(xy – x – y + )

>  (since – ≤ x, y≤ , then xy, –x, –y≥ ).

http://www.fixedpointtheoryandapplications.com/content/2012/1/188
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From above, we have

|x – y| + 〈x – Tx, y – Ty〉 > |x – y|

≥ 


|x – y|

= |Tx – Ty|.

Finally, for every x ∈ (, ] and y ∈ [–, ], we have Tx = x+
 and Ty = –y+

 . From the
definition of T, we have

|Tx – Ty| =
∣∣∣∣x + 


–
–y + 


∣∣∣∣


=



|x + y|

and

〈x – Tx, y – Ty〉 = 
〈
x –

(
x + 


)
, y –

(
–y + 


)〉

= 
〈
x – 


,
y – 


〉

=


(x – )(y – )

=


(
x(y – ) – (y – )

)
=



(xy – x – y + )

=


(
y(x – ) + ( – x)

)
≥ 

(
since  < x≤  and –≤ y ≤ , then y(x – ), ( – x) ≥ 

)
.

From above, we have

|x – y| + 〈x – Tx, y – Ty〉 ≥ |x – y|

= x – xy + y

= x + xy + y – xy

≥ x + xy + y (since –xy≥ )

= (x + y)

≥ 

(x + y)

= |Tx – Ty|.

Then for all x, y ∈ [–, ], we have

|Tx – Ty| ≤ |x – y| + 〈x – Tx, y – Ty〉.

Hence, we have T is a nonspreading mapping.

http://www.fixedpointtheoryandapplications.com/content/2012/1/188
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Next, we show that T is a nonspreading mapping. Let x, y ∈ (, ], then we have Tx =
x+
 and Ty = y+

 . From the definition of T, we have

|Tx – Ty| =
∣∣∣∣x + 


–
y + 


∣∣∣∣


=


|x – y|

and

〈x – Tx, y – Ty〉 = 
〈
x –

(
x + 


)
, y –

(
y + 


)〉

= 
〈
x – 


,
y – 


〉

=


(x – )(y – )

≥ 
(
since  < x, y≤ , then (x – )(y – ) ≥ 

)
.

From above, we have

|x – y| + 〈x – Tx, y – Ty〉 ≥ |x – y|

≥ 

|x – y|

= |Tx – Ty|.

For every x, y ∈ [–, ], we have Tx = –x
 and Ty = –y

 . From the definition of T, we
have

|Tx – Ty| =
∣∣∣∣ – x


–
 – y


∣∣∣∣


=
∣∣∣∣y – x



∣∣∣∣


=


|x – y|

and

〈x – Tx, y – Ty〉 = 
〈
x –

(
 – x


)
, y –

(
 – y


)〉

= 
〈
x – 


,
y – 


〉

=


(x – )(y – )

=


(
x(y – ) – (y – )

)
=


(xy – x – y + )

>  (since – ≤ x, y≤ , then xy, –x, –y≥ ).
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From above, we have

|x – y| + 〈x – Tx, y – Ty〉 > |x – y|

≥ 

|x – y|

= |Tx – Ty|.

Finally, for every x ∈ (, ] and y ∈ [–, ], we have Tx = x+
 and Ty = –y

 . From the
definition of T, we have

|Tx – Ty| =
∣∣∣∣x + 


–
 – y


∣∣∣∣


=


|x + y|

and

〈x – Tx, y – Ty〉 = 
〈
x –

(
x + 


)
, y –

(
 – y


)〉

= 
〈
x – 


,
y – 


〉

=


(x – )(y – )

=


(
x(y – ) – (y – )

)
=



(xy – x – y + )

=


(
y(x – ) + ( – x)

)
≥ 

(
since  < x ≤  and –≤ y ≤ , then y(x – ), ( – x)≥ 

)
.

From above, we have

|x – y| + 〈x – Tx, y – Ty〉 ≥ |x – y|

= x – xy + y

= x + xy + y – xy

≥ (x + y) (since –xy ≥ )

≥ 

|x + y|

= |Tx – Ty|.

Then for every x, y ∈ [–, ], we have

|Tx – Ty| ≤ |x – y| + 〈x – Tx, y – Ty〉.
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Hence, we have T is a nonspreading mapping. Observe that  ∈ F(T) ∩ F(T). Let the
mapping S : [–, ] → [–, ] be the S-mapping generated by T, T and α, α, where α =
(  ,


 ,


 ) and ( 

 ,

 ,


 ). From Lemma ., we have  ∈ F(S).

3 Main result
Theorem . Let C be a nonempty closed convex subset of a Hilbert space H . For every
i = , , . . . ,N , let Ai : C → H be an αi-inverse strongly monotone mapping, and let {Ti}Ni=
be a finite family of nonspreading mappings with F =

⋂N
i= F(Ti) ∩ ⋂N

i=VI(C,Ai) �= ∅. For
every i = , , . . . ,N , define the mapping Gi : C → C by Gix = PC(I – λAi)x ∀x ∈ C and λ ∈
[c,d] ⊂ (, αi). Let ρj = (αj

,α
j
,α

j
) ∈ I × I × I , j = , , , . . . ,N , where I = [, ], αj

 + α
j
 +

α
j
 = , αj

,α
j
 ∈ (, ) for all j = , , . . . ,N –  and αN

 ∈ (, ], αN
 ∈ [, ) α

j
 ∈ (, ) for all

j = , , . . . ,N , and let S be the S-mapping generated by T,T, . . . ,TN and ρ,ρ, . . . ,ρN . Let
{xn} be a sequence generated by x ∈ C = C and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zn =
∑N

i= δ
i
nGixn,

yn = αnxn + βnSxn + γnzn,

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, ∀n≥ ,

(.)

where {αn}, {βn}, {γn} ⊆ [, ], αn + βn + γn =  and suppose the following conditions hold:

(i) lim
n→∞ δin = δi ∈ (, ), ∀i = , , . . . ,N and

N∑
i=

δin = ,

(ii) {αn}, {βn}, {γn} ⊆ [a,b]⊂ (, ).

Then the sequence {xn} converges strongly to PFx.

Proof First, we show that (I – λAi) is a nonexpansive mapping for every i = , , . . . ,N . Let
x, y ∈ C. Since A is an αi-inverse strongly monotone and λ < αi, we have

∥∥(I – λAi)x – (I – λAi)y
∥∥ =

∥∥x – y – λ(Aix –Aiy)
∥∥

= ‖x – y‖ – λ〈x – y,Aix –Aiy〉 + λ‖Aix –Aiy‖

≤ ‖x – y‖ – αiλ‖Aix –Aiy‖ + λ‖Aix –Aiy‖

= ‖x – y‖ + λ(λ – αi)‖Aix –Aiy‖

≤ ‖x – y‖.

Thus (I – λAi) is a nonexpansive mapping for every i = , , . . . ,N . Since PC is a nonex-
pansive mapping, we have Gi is a nonexpansive mapping for every i = , , . . . ,N . From
Lemma ., we have

F(Gi) = F
(
PC(I – λAi)

)
= VI(C,Ai), ∀i = , , . . . ,N . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/188
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From (.),VI(C,Ai) is closed and convex. Let z ∈ F. From (.), we have z ∈ F(PC(I–λAi))
for every i = , , . . . ,N . By nonexpansiveness of Gi, we have

‖zn – z‖ =
∥∥∥∥∥

N∑
i=

δin(Gixn – z)

∥∥∥∥∥ ≤
N∑
i=

δin‖xn – z‖ = ‖xn – z‖. (.)

Next, we show that Cn is closed and convex for every n ∈N. It is obvious that Cn is closed.
In fact, we know that for z ∈ Cn,

‖yn – z‖ ≤ ‖xn – z‖ is equivalent to ‖yn – xn‖ + 〈yn – xn,xn – z〉 ≤ .

So, for every z, z ∈ Cn and t ∈ (, ), it follows that

‖yn – xn‖ + 
〈
yn – xn,xn –

(
tz + ( – t)z

)〉
= t

(
〈yn – xn,xn – z〉 + ‖yn – xn‖

)
+ ( – t)

(
〈yn – xn,xn – z〉 + ‖yn – xn‖

)
≤ ,

then, we haveCn is convex. SinceVI(C,Ai) is closed and convex for every i = , , . . . ,N , we
have

⋂N
i=VI(C,Ai) is closed and convex. From Lemma ., we have

⋂N
i= F(Ti) is closed

and convex. Hence, we have F is closed and convex. This implies that PF is well defined.
Next, we show that F⊂ Cn for every n ∈N. Let z ∈ F, then we have

‖yn – z‖ =
∥∥αn(xn – z) + βn(Sxn – z) + γn(zn – z)

∥∥
≤ αn‖xn – z‖ + βn‖Sxn – z‖ + γn‖zn – z‖
≤ ‖xn – z‖.

It follows that z ∈ Cn. Hence, we have F ⊂ Cn for every n ∈N. This implies that {xn} is well
defined. Since xn = PCnx, for every w ∈ Cn, we have

‖xn – x‖ ≤ ‖w – x‖, ∀n ∈N. (.)

In particular, we have

‖xn – x‖ ≤ ‖PFx – x‖. (.)

By (.) we have {xn} is bounded, so are {Gixn}, {Tixn} for every i = , , . . . ,N , {zn}, {yn}
and {Sxn}. Since xn+ = PCn+x ∈ Cn+ ⊂ Cn and xn = PCnx, we have

 ≤ 〈x – xn,xn – xn+〉
= 〈x – xn,xn – x + x – xn+〉
≤ –‖xn – x‖ + ‖xn – x‖‖x – xn+‖,
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which implies that

‖xn – x‖ ≤ ‖xn+ – x‖.

Hence, we have limn→∞ ‖xn – x‖ exists. Since

‖xn – xn+‖ = ‖xn – x + x – xn+‖

= ‖xn – x‖ + 〈xn – x,x – xn+〉 + ‖x – xn+‖

= ‖xn – x‖ + 〈xn – x,x – xn + xn – xn+〉 + ‖x – xn+‖

= ‖xn – x‖ – ‖xn – x‖ + 〈xn – x,xn – xn+〉 + ‖x – xn+‖

≤ ‖x – xn+‖ – ‖xn – x‖, (.)

it implies that

lim
n→∞‖xn – xn+‖ = . (.)

Since xn+ = PCn+x ∈ Cn+, we have

‖yn – xn+‖ ≤ ‖xn – xn+‖.

By (.) we have

lim
n→∞‖yn – xn+‖ = . (.)

Since

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn+ – xn‖,

by (.) and (.), we have

lim
n→∞‖yn – xn‖ = . (.)

Next, we will show that

lim
n→∞‖xn – Sxn‖ = . (.)

For every i = , , . . . ,N , we have

∥∥PC(I – λAi)xn – z
∥∥

=
∥∥PC(I – λAi)xn – PC(I – λAi)z

∥∥

≤ ∥∥(I – λAi)xn – (I – λAi)z
∥∥

=
∥∥xn – z – λ(Aixn –Aiz)

∥∥

= ‖xn – z‖ + λ‖Aixn –Aiz‖ – λ〈xn – z,Aixn –Aiz〉

http://www.fixedpointtheoryandapplications.com/content/2012/1/188
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≤ ‖xn – z‖ + λ‖Aixn –Aiz‖ – λαi‖Aixn –Aiz‖

= ‖xn – z‖ – λ(αi – λ)‖Aixn –Aiz‖. (.)

From the definition of yn and (.), we have

‖yn – z‖ ≤ αn‖xn – z‖ + βn‖Sxn – z‖ + γn‖zn – z‖

≤ αn‖xn – z‖ + βn‖Sxn – z‖ + γn

N∑
i=

δin
∥∥PC(I – λAi)xn – z

∥∥

≤ αn‖xn – z‖ + βn‖Sxn – z‖

+ γn

N∑
i=

δin
(‖xn – z‖ – λ(αi – λ)‖Aixn –Aiz‖

)
= αn‖xn – z‖ + βn‖Sxn – z‖ + γn‖xn – z‖

– γn

N∑
i=

δinλ(αi – λ)‖Aixn –Aiz‖

≤ ‖xn – z‖ – γn

N∑
i=

δinλ(αi – λ)‖Aixn –Aiz‖.

It follows that

γn

N∑
i=

δinλ(αi – λ)‖Aixn –Aiz‖ ≤ ‖xn – z‖ – ‖yn – z‖

≤ (‖xn – z‖ + ‖yn – z‖)‖yn – xn‖.

From conditions (i), (ii) and (.), it implies that

lim
n→∞‖Aixn –Aiz‖ = , ∀i = , , . . . ,N . (.)

Since

∥∥PC(I – λAi)xn – z
∥∥ ≤ 〈

(I – λAi)xn – (I – λAi)z,PC(I – λAi)xn – z
〉

=


(∥∥(I – λAi)xn – (I – λAi)z

∥∥ +
∥∥PC(I – λAi)xn – z

∥∥

–
∥∥(I – λAi)xn – (I – λAi)z – PC(I – λAi)xn + z

∥∥)
≤ 


(‖xn – z‖ + ∥∥PC(I – λAi)xn – z

∥∥

–
∥∥xn – PC(I – λAi)xn – λ(Aixn –Aiz)

∥∥)
=



(‖xn – z‖ + ∥∥PC(I – λAi)xn – z

∥∥

–
∥∥xn – PC(I – λAi)xn

∥∥ –
∥∥λ(Aixn –Aiz)

∥∥

+ λ
〈
xn – PC(I – λAi)xn,Aixn –Aiz

〉)
,
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it implies that

∥∥PC(I – λAi)xn – z
∥∥ ≤ ‖xn – z‖ – ∥∥xn – PC(I – λAi)xn

∥∥

+ λ
∥∥xn – PC(I – λAi)xn

∥∥‖Aixn –Aiz‖. (.)

From the definition of yn and (.), we have

‖yn – z‖ ≤ αn‖xn – z‖ + βn‖Sxn – z‖ + γn‖zn – z‖

≤ ( – γn)‖xn – z‖ + γn

N∑
i=

δin
∥∥PC(I – λAi)xn – z

∥∥

≤ ( – γn)‖xn – z‖ + γn

N∑
i=

δin
(‖xn – z‖ – ∥∥xn – PC(I – λAi)xn

∥∥

+ λ
∥∥xn – PC(I – λAi)xn

∥∥‖Aixn –Aiz‖
)

= ‖xn – z‖ – γn

N∑
i=

δin
∥∥xn – PC(I – λAi)xn

∥∥

+ γn
N∑
i=

δinλ
∥∥xn – PC(I – λAi)xn

∥∥‖Aixn –Aiz‖,

which implies that

γn

N∑
i=

δin
∥∥xn – PC(I – λAi)xn

∥∥ ≤ ‖xn – z‖ – ‖yn – z‖

+ γn
N∑
i=

δinλ
∥∥xn – PC(I – λAi)xn

∥∥‖Aixn –Aiz‖

≤ (‖xn – z‖ + ‖yn – z‖)‖yn – xn‖

+ γn
N∑
i=

δinλ
∥∥xn – PC(I – λAi)xn

∥∥‖Aixn –Aiz‖.

From conditions (i), (ii), (.) and (.), we have

lim
n→∞

∥∥PC(I – λAi)xn – xn
∥∥ = , ∀i = , , . . . ,N . (.)

Since

‖zn – xn‖ ≤
N∑
i=

δin
∥∥PC(I – λAi)xn – xn

∥∥,
from (.), we have

lim
n→∞‖zn – xn‖ = . (.)
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Since

yn – xn = βn(Sxn – xn) + γn(zn – xn)

from (.) and (.), we have

lim
n→∞‖Sxn – xn‖ = .

Next, we will show that

lim
n→∞‖TiUi–xn –Ui–xn‖ = , ∀i = , , . . . ,N . (.)

From the definition of yn, we have

‖yn – z‖ ≤ αn‖xn – z‖ + βn‖Sxn – z‖ + γn‖zn – z‖

≤ ( – βn)‖xn – z‖ + βn
∥∥αN

 (TNUN–xn – z)

+ αN
 (UN–xn – z) + αN

 (xn – z)
∥∥

≤ ( – βn)‖xn – z‖ + βn
(
αN
 ‖TNUN–xn – z‖ + αN

 ‖UN–xn – z‖

+ αN
 ‖xn – z‖ – αN

 αN
 ‖TNUN–xn –UN–xn‖

)
≤ ( – βn)‖xn – z‖ + βn

((
 – αN


)‖UN–xn – z‖

+ αN
 ‖xn – z‖ – αN

 αN
 ‖TNUN–xn –UN–xn‖

)
= ( – βn)‖xn – z‖ + βn

((
 – αN


)∥∥αN–

 (TN–UN–xn – z)

+ αN–
 (UN–xn – z) + αN–

 (xn – z)
∥∥

+ αN
 ‖xn – z‖ – αN

 αN
 ‖TNUN–xn –UN–xn‖

)
≤ ( – βn)‖xn – z‖ + βn

((
 – αN


)(

αN–
 ‖TN–UN–xn – z‖

+ αN–
 ‖UN–xn – z‖ + αN–

 ‖xn – z‖

– αN–
 αN–

 ‖TN–UN–xn –UN–xn‖
)

+ αN
 ‖xn – z‖ – αN

 αN
 ‖TNUN–xn –UN–xn‖

)
≤ ( – βn)‖xn – z‖ + βn

((
 – αN


)((

 – αN–


)‖UN–xn – z‖

+ αN–
 ‖xn – z‖ – αN–

 αN–
 ‖TN–UN–xn –UN–xn‖

)
+ αN

 ‖xn – z‖ – αN
 αN

 ‖TNUN–xn –UN–xn‖
)

= ( – βn)‖xn – z‖ + βn
((
 – αN


)(
 – αN–


)‖UN–xn – z‖

+
(
 – αN


)
αN–
 ‖xn – z‖ – αN–

 αN–


(
 – αN


)‖TN–UN–xn –UN–xn‖

+ αN
 ‖xn – z‖ – αN

 αN
 ‖TNUN–xn –UN–xn‖

)
= ( – βn)‖xn – z‖ + βn

( N∏
j=N–

(
 – α

j

)‖UN–xn – z‖

+

(
 –

N∏
j=N–

(
 – α

j

))‖xn – z‖
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– αN–
 αN–


(
 – αN


)‖TN–UN–xn –UN–xn‖

– αN
 αN

 ‖TNUN–xn –UN–xn‖
)

= ( – βn)‖xn – z‖ + βn

( N∏
j=N–

(
 – α

j

)∥∥αN–

 (TN–UN–xn – z)

+ αN–
 (UN–xn – z) + αN–

 (xn – z)
∥∥

+

(
 –

N∏
j=N–

(
 – α

j

))‖xn – z‖

– αN–
 αN–


(
 – αN


)‖TN–UN–xn –UN–xn‖

– αN
 αN

 ‖TNUN–xn –UN–xn‖
)

≤ ( – βn)‖xn – z‖ + βn

( N∏
j=N–

(
 – α

j

)(

αN–
 ‖TN–UN–xn – z‖

+ αN–
 ‖UN–xn – z‖ + αN–

 ‖xn – z‖

– αN–
 αN–

 ‖TN–UN–xn –UN–xn‖
)

+

(
 –

N∏
j=N–

(
 – α

j

))‖xn – z‖

– αN–
 αN–


(
 – αN


)‖TN–UN–xn –UN–xn‖

– αN
 αN

 ‖TNUN–xn –UN–xn‖
)

≤ ( – βn)‖xn – z‖ + βn

( N∏
j=N–

(
 – α

j

)((

 – αN–


)‖UN–xn – z‖

+ αN–
 ‖xn – z‖ – αN–

 αN–
 ‖TN–UN–xn –UN–xn‖

)
+

(
 –

N∏
j=N–

(
 – α

j

))‖xn – z‖

– αN–
 αN–


(
 – αN


)‖TN–UN–xn –UN–xn‖

– αN
 αN

 ‖TNUN–xn –UN–xn‖
)

= ( – βn)‖xn – z‖ + βn

( N∏
j=N–

(
 – α

j

)‖UN–xn – z‖

+

(
 –

N∏
j=N–

(
 – α

j

))‖xn – z‖

– αN–
 αN–



N∏
j=N–

(
 – α

j

)‖TN–UN–xn –UN–xn‖
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– αN–
 αN–


(
 – αN


)‖TN–UN–xn –UN–xn‖

– αN
 αN

 ‖TNUN–xn –UN–xn‖
)

≤
...

≤ ( – βn)‖xn – z‖ + βn

( N∏
j=

(
 – α

j

)‖Uxn – z‖

+

(
 –

N∏
j=

(
 – α

j

))‖xn – z‖

– α
α




N∏
j=

(
 – α

j

)‖TUxn –Uxn‖

...

– αN–
 αN–



N∏
j=N–

(
 – α

j

)‖TN–UN–xn –UN–xn‖

– αN–
 αN–


(
 – αN


)‖TN–UN–xn –UN–xn‖

– αN
 αN

 ‖TNUN–xn –UN–xn‖
)

= ‖xn – z‖

– βnα

α




N∏
j=

(
 – α

j

)‖Txn – xn‖

...

– βnα
N–
 αN–



N∏
j=N–

(
 – α

j

)‖TN–UN–xn –UN–xn‖

– βnα
N–
 αN–


(
 – αN


)‖TN–UN–xn –UN–xn‖

– βnα
N
 αN

 ‖TNUN–xn –UN–xn‖. (.)

From (.) and condition (ii), we have

βnα

α




N∏
j=

(
 – α

j

)‖Txn – xn‖ ≤ ‖xn – z‖ – ‖yn – z‖

≤ (‖xn – z‖ + ‖yn – z‖)‖yn – xn‖.

Form (.), we have

lim
n→∞‖Txn – xn‖ = . (.)
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By using the same method as (.), we can conclude that

lim
n→∞‖TiUi–xn –Ui–xn‖ = , ∀i = , , . . . ,N .

Let ω(xn) be the set of all weakly ω-limit of {xn}. We shall show that ω(xn) ⊂ F. Since {xn}
is bounded, then ω(xn) �= ∅. Let q ∈ ω(xn), there exists a subsequence {xni} of {xn} which
converges weakly to q.
Put Q : C → C defined by

Qx =
N∑
i=

δiGix, ∀x ∈ C. (.)

SinceGi = PC(I–λAi) is a nonexpansivemapping, for every i = , , . . . ,N , fromLemma .
and ., we have

F(Q) =
N⋂
i=

F(Gi) =
N⋂
i=

VI(C,Ai). (.)

Since

‖xn –Qxn‖ ≤ ‖xn – zn‖ + ‖zn –Qxn‖

= ‖xn – zn‖ +
∥∥∥∥∥

N∑
i=

δinGixn –
N∑
i=

δiGixn

∥∥∥∥∥
= ‖xn – zn‖ +

∥∥∥∥∥
N∑
i=

(
δin – δi

)
Gixn

∥∥∥∥∥
≤ ‖xn – zn‖ +

N∑
i=

∣∣δin – δi
∣∣‖Gixn‖,

from the condition (i) and (.), we have

lim
n→∞‖xn –Qxn‖ = . (.)

From (.), we have

lim
i→∞‖xni –Qxni‖ = .

From (.), it is easy to see thatQ is a nonexpansive mapping. By Lemma . and xni ⇀ q
as i→ ∞, we have q ∈ F(Q) =

⋂N
i= F(Gi) From (.), we have

q ∈
N⋂
i=

VI(C,Ai). (.)

Next, we will show that q ∈ F(S). Assume that q �= Sq. From the Opial property, (.) and
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(.), we have

lim inf
i→∞ ‖xni – q‖ < lim inf

i→∞ ‖xni – Sq‖

= lim inf
i→∞

∥∥xni – Sxni + (Sxni – Sq)
∥∥

= lim inf
i→∞

(‖xni – Sxni‖ + ‖Sxni – Sq‖ + 〈xni – Sxni ,Sxni – Sq〉)
= lim inf

i→∞ ‖Sxni – Sq‖

= lim inf
i→∞

∥∥αN
 TNUN–xni + αN

 UN–xni + αN
 xni

– αN
 TNUN–q – αN

 UN–q – αN
 q

∥∥

= lim inf
i→∞

∥∥αN
 (TNUN–xni – TNUN–q)

+ αN
 (UN–xni –UN–q) + αN

 (xni – q)
∥∥

≤ lim inf
i→∞

(
αN
 ‖TNUN–xni – TNUN–q‖

+ αN
 ‖UN–xni –UN–q‖ + αN

 ‖xni – q‖)
≤ lim inf

i→∞
(
αN

(‖UN–xni –UN–q‖

+ 〈UN–xni – TNUN–xni ,UN–q – TNUN–q〉
)

+ αN
 ‖UN–xni –UN–q‖ + αN

 ‖xni – q‖)
= lim inf

i→∞
((
 – αN


)‖UN–xni –UN–q‖ + αN

 ‖xni – q‖)
= lim inf

i→∞
((
 – αN


)∥∥αN–

 (TN–UN–xni – TN–UN–q)

+ αN–
 (UN–xni –UN–q) + αN–

 (xni – q)
∥∥ + αN

 ‖xni – q‖)
≤ lim inf

i→∞
((
 – αN


)(

αN–
 ‖TN–UN–xni – TN–UN–q‖

+ αN–
 ‖UN–xni –UN–q‖ + αN–

 ‖xni – q‖) + αN
 ‖xni – q‖)

≤ lim inf
i→∞

((
 – αN


)(

αN–


(‖UN–xni –UN–q‖

+ 〈UN–xni – TN–UN–xni ,UN–q – TN–UN–q〉
)

+ αN–
 ‖UN–xni –UN–q‖ + αN–

 ‖xni – q‖) + αN
 ‖xni – q‖)

= lim inf
i→∞

((
 – αN


)((

 – αN–


)‖UN–xni –UN–q‖

+ αN–
 ‖xni – q‖) + αN

 ‖xni – q‖)
= lim inf

i→∞

( N∏
j=N–

(
 – α

j

)‖UN–xni –UN–q‖

+

(
 –

N∏
j=N–

(
 – α

j

))‖xni – q‖

)

≤
...
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≤ lim inf
i→∞

( N∏
j=

(
 – α

j

)‖Uxni –Uq‖

+

(
 –

N∏
j=

(
 – α

j

))‖xni – q‖

)

= lim inf
i→∞

( N∏
j=

(
 – α

j

)‖xni – q‖

+

(
 –

N∏
j=

(
 – α

j

))‖xni – q‖

)

= lim inf
i→∞ ‖xni – q‖.

This is a contradiction. Then, we have q ∈ F(S). From Lemma ., we have

q ∈
N⋂
i=

F(Ti). (.)

From (.) and (.), we have q ∈ F. Hence, ω(xn) ⊂ F. Therefore, by (.) and
Lemma ., we have {xn} converges strongly to PFx. This completes the proof. �

The following result can be obtained from Theorem .. We, therefore, omit the proof.

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H . For every
i = , , . . . ,N , let Ai : C → H be an αi-inverse strongly monotone mapping, and let T : C →
C be a nonspreading mapping with F = F(T) ∩ ⋂N

i=VI(C,Ai) �= ∅. For every i = , , . . . ,N ,
define the mapping Gi : C → C by Gix = PC(I – λAi)x ∀x ∈ C and λ ∈ [c,d] ⊂ (, αi). Let
{xn} be a sequence generated by x ∈ C = C and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zn =
∑N

i= δ
i
nGixn,

yn = αnxn + βnTxn + γnzn,

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, ∀n≥ ,

(.)

where {αn}, {βn}, {γn} ⊆ [, ], αn + βn + γn =  and suppose the following conditions hold:

(i) lim
n→∞ δin = δi ∈ (, ), ∀i = , , . . . ,N and

N∑
i=

δin = ;

(ii) {αn}, {βn}, {γn} ⊆ [a,b]⊂ (, ).

Then the sequence {xn} converges strongly to PFx.

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H . Let A :
C → H be an α-inverse strongly monotone mapping, and let {Ti}Ni= be a finite family of
nonspreading mappings with F =

⋂N
i= F(Ti)∩VI(C,A) �= ∅. Let ρj = (αj

,α
j
,α

j
) ∈ I × I × I ,

j = , , , . . . ,N , where I = [, ], αj
 + α

j
 + α

j
 = , αj

,α
j
 ∈ (, ) for all j = , , . . . ,N –  and
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αN
 ∈ (, ], αN

 ∈ [, ), αj
 ∈ (, ) for all j = , , . . . ,N , and let S be the S-mapping generated

by T,T, . . . ,TN and ρ,ρ, . . . ,ρN . Let {xn} be a sequence generated by x ∈ C = C and

⎧⎪⎪⎨
⎪⎪⎩
yn = αnxn + βnSxn + γnPC(I – λA)xn,

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, ∀n≥ ,

(.)

where {αn}, {βn}, {γn} ⊆ [a,b] ⊂ (, ), αn + βn + γn =  and λ ⊆ [c,d] ⊂ (, α). Then the
sequence {xn} converges strongly to PFx.
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