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Abstract
Owning the concept of complex valued metric spaces introduced by Azam et al., we
prove several fixed point theorems for mappings satisfying certain point-dependent
contractive conditions. The main results announced by Sintunavarat and Kumam (J.
Inequal. Appl. 2012:84, 2012), Rouzkard and Imdad (Comput. Math. Appl., 2012,
doi:10.1016/j.camwa.2012.02.063), and Dass and Gupta (Indian J. Pure Appl. Math.
6(12):1455-1458, 1975) are deduced from our results under weaker assumptions.

1 Introduction
The concept of a complex valued metric space which is a generalization of the classical
metric space was recently introduced by Azam, Fisher and Khan (see []). To mention
this, let us recall a natural relation � on C, the set of complex numbers as follows: for
z, z ∈C

z � z
def⇐⇒ Re(z) ≤ Re(z) and Im(z) ≤ Im(z),

z ≺ z
def⇐⇒ Re(z) < Re(z) and Im(z) < Im(z).

Definition . Let X be a nonempty set. A mapping d : X × X → C is called a complex
valued metric on X if the following conditions are satisfied:
(CM) � d(x, y) for all x, y ∈ X and d(x, y) =  ⇐⇒ x = y;
(CM) d(x, y) = d(y,x) for all x, y ∈ X ;
(CM) d(x, y)� d(x, z) + d(z, y) for all x, y, z ∈ X .

In this case, we say that (X,d) is a complex valued metric space.
It is obvious that this concept is a generalization of the classical metric. In fact, if d :

X×X → R satisfies (CM)-(CM), then this d is ametric in the classical sense; that is, the
following conditions are satisfied:
(M)  ≤ d(x, y) for all x, y ∈ X and d(x, y) =  ⇐⇒ x = y;
(M) d(x, y) = d(y,x) for all x, y ∈ X ;
(M) d(x, y)≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

The following definition is an analogue of several concepts in the classical theory ofmetric
spaces and they are discussed in []. There are also other interesting types of generalization
of metric spaces; for example, see [, ].

Definition . Suppose that (X,d) is a complex valued metric space.
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• We say that a sequence {xn} is a Cauchy sequence if for every  ≺ c ∈ C there exists an
integer N such that d(xn,xm) ≺ c for all n,m ≥ N .

• We say that {xn} converges to an element x ∈ X if for every  ≺ c ∈C there exists an
integer N such that d(xn,x)≺ c for all n≥ N . In this case, we write xn

d→ x.
• We say that (X,d) is complete if every Cauchy sequence in X converges to a point in X .

The following fact is summarized from Azam, Fisher and Khan’s paper []. In fact, (b) and
(c) of Proposition . are their Lemmas  and .

Proposition . Let (X,d) be a complex value metric space. Suppose that d = d + id
where d,d : X ×X →R, that is, d = Re(d) and d = Im(d). Then the following assertions
hold.
(a) |d| = (d

 + d
)/ : X ×X →R is a (classical)metric on X .

(b) If {xn} is a sequence in X and x ∈ X , then xn
d→ x if and only if xn

|d|→ x.
(c) (X,d) is complete if and only if (X, |d|) is complete.

The following common fixed point theoremwas also proved by Azam, Fisher and Khan.
This can be viewed as a generalization of the well-known Banach fixed point theorem.

Theorem . ([]) Let (X,d) be a complete complex valued metric space, and let λ, μ be
nonnegative real numbers such that λ + μ < . Suppose that S,T : X → X are mappings
satisfying:

d(Sx,Ty)� λd(x, y) +
μd(x,Sx)d(y,Ty)

 + d(x, y)
∀x, y ∈ X. ()

Then S and T have a unique common fixed point.

In this paper, we continue the study of fixed point theorems in complex valued metric
spaces. The obtained results are generalizations of recent results proved by Sintunavarat
and Kumam [], Rouzkard and Imdad []. Moreover, we improve several assumptions on
the involved mappings. It should be noted that there are also some different fixed point
theorems recently proved in [].

2 Main result
Throughout the paper, let (X,d) be a complete complex valued metric space and S,T :
X → X.

Proposition . Let x ∈ X and define the sequence {xn} by

xn+ = Sxn,

xn+ = Txn+, for all n = , , , . . . .
()

Assume that there exists a mapping λ : X ×X → [, ) satisfying

λ(TSx, y)≤ λ(x, y) and λ(x,STy)≤ λ(x, y) for all x, y ∈ X.

Then λ(xn, y) ≤ λ(x, y) and λ(x,xn+) ≤ λ(x,x) for all x, y ∈ X and n = , , , . . . .

http://www.fixedpointtheoryandapplications.com/content/2012/1/189
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Proof Let x, y ∈ X and n = , , , . . . . Then we have

λ(xn, y) = λ(TSxn–, y) ≤ λ(xn–, y) = λ(TSxn–, y) ≤ · · · ≤ λ(x, y).

Similarly, we have

λ(x,xn+) = λ(x,STxn–)≤ λ(x,xn–) = λ(x,STxn–)≤ · · · ≤ λ(x,x). �

Lemma . Let λ,μ : X ×X → [, ) and x, y ∈ X. If S and T satisfy

d(Sx,TSx)� λ(x,Sx)d(x,Sx) +μ(x,Sx)
d(x,Sx)d(Sx,TSx)

 + d(x,Sx)
,

d(STy,Ty)� λ(Ty, y)d(Ty, y) +μ(Ty, y)
d(Ty,STy)d(y,Ty)

 + d(Ty, y)
,

then

∣∣d(Sx,TSx)
∣∣ ≤ λ(x,Sx)

∣∣d(x,Sx)
∣∣ +μ(x,Sx)

∣∣d(Sx,TSx)
∣∣,

∣∣d(STy,Ty)
∣∣ ≤ λ(Ty, y)

∣∣d(Ty, y)
∣∣ +μ(Ty, y)

∣∣d(Ty,STy)
∣∣,

respectively.

Proof We can write

∣
∣d(Sx,TSx)

∣
∣ ≤

∣∣
∣∣λ(x,Sx)d(x,Sx) +μ(x,Sx)

d(x,Sx)d(Sx,TSx)
 + d(x,Sx)

∣∣
∣∣

≤ λ(x,Sx)
∣
∣d(x,Sx)

∣
∣ +μ(x,Sx)

∣∣
∣∣

d(x,Sx)
 + d(x,Sx)

∣∣
∣∣
∣
∣d(Sx,TSx)

∣
∣

≤ λ(x,Sx)
∣
∣d(x,Sx)

∣
∣ +μ(x,Sx)

∣
∣d(Sx,TSx)

∣
∣. ()

Similarly, we get

∣∣d(STy,Ty)
∣∣ ≤

∣
∣∣
∣λ(Ty, y)d(Ty, y) +μ(Ty, y)

d(Ty,STy)d(y,Ty)
 + d(Ty, y)

∣
∣∣
∣

≤ λ(Ty, y)
∣∣d(y,Ty)

∣∣ +μ(Ty, y)
∣∣∣
∣

d(y,Ty)
 + d(y,Ty)

∣∣∣
∣
∣∣d(Ty,STy)

∣∣

≤ λ(Ty, y)
∣∣d(y,Ty)

∣∣ +μ(Ty, y)
∣∣d(STy,Ty)

∣∣. ()
�

Lemma . Let {xn} be a sequence in X and h ∈ [, ). If an = |d(xn,xn+)| satisfies

an ≤ han–, for all n ∈N, ()

then {xn} is a Cauchy sequence.

Proof Let h ∈ [, ). Then

an ≤ han– ≤ han– ≤ · · · ≤ hna, for all n ∈N.

http://www.fixedpointtheoryandapplications.com/content/2012/1/189
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Form,n ∈N such that m > n, we have

∣
∣d(xn,xm)

∣
∣ ≤ an + an+ + · · · + am–

≤ hn
(
 + h + h + · · · + hm–n–)a

≤ hn

 – h
a.

Thus, we have |d(xn,xm)| →  as n→ ∞, and hence {xn} is a Cauchy sequence. �

Theorem . Let (X,d) be a complete complex valued metric space and S,T : X → X. If
there exist mappings λ,μ,γ : X ×X → [, ) such that for all x, y ∈ X:
(a) λ(TSx, y)≤ λ(x, y) and λ(x,STy)≤ λ(x, y),

μ(TSx, y)≤ μ(x, y) and μ(x,STy) ≤ μ(x, y),
γ (TSx, y)≤ γ (x, y) and γ (x,STy)≤ γ (x, y);

(b) λ(x, y) +μ(x, y) + γ (x, y) < ;
(c)

d(Sx,Ty)� λ(x, y)d(x, y) +μ(x, y)
d(x,Sx)d(y,Ty)

 + d(x, y)
+ γ (x, y)

d(y,Sx)d(x,Ty)
 + d(x, y)

. ()

Then S and T have a unique common fixed point.

Proof Let x, y ∈ X. From (), we consider

d(Sx,TSx) � λ(x,Sx)d(x,Sx) +μ(x,Sx)
d(x,Sx)d(Sx,TSx)

 + d(x,Sx)

+ γ (x,Sx)
d(Sx,Sx)d(x,TSx)

 + d(x,Sx)

= λ(x,Sx)d(x,Sx) +μ(x,Sx)
d(x,Sx)d(Sx,TSx)

 + d(x,Sx)
.

From Lemma ., we have

∣∣d(Sx,TSx)
∣∣ ≤ λ(x,Sx)

∣∣d(x,Sx)
∣∣ +μ(x,Sx)

∣∣d(Sx,TSx)
∣∣. ()

Similarly, we get

d(STy,Ty) � λ(Ty, y)d(Ty, y) +μ(Ty, y)
d(Ty,STy)d(y,Ty)

 + d(Ty, y)

+ γ (Ty, y)
d(y,STy)d(Ty,Ty)

 + d(Ty, y)

= λ(Ty, y)d(Ty, y) +μ(Ty, y)
d(Ty,STy)d(y,Ty)

 + d(Ty, y)
.

From Lemma ., we have

∣∣d(STy,Ty)
∣∣ ≤ λ(Ty, y)

∣∣d(Ty, y)
∣∣ +μ(Ty, y)

∣∣d(Ty,STy)
∣∣. ()
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Let x ∈ X and the sequence {xn} be definedby ().We show that {xn} is aCauchy sequence.
From Proposition ., (), () and for all k = , , , . . . , we have

∣
∣d(xk+,xk)

∣
∣ =

∣
∣d(STxk–,Txk–)

∣
∣

≤ λ(Txk–,xk–)
∣∣d(Txk–,xk–)

∣∣

+μ(Txk–,xk–)
∣
∣d(Txk–,STxk–)

∣
∣

= λ(xk ,xk–)
∣∣d(xk–,xk)

∣∣ +μ(xk ,xk–)
∣∣d(xk ,xk+)

∣∣

≤ λ(x,xk–)
∣∣d(xk–,xk)

∣∣ +μ(x,xk–)
∣∣d(xk+,xk)

∣∣

≤ λ(x,x)
∣
∣d(xk–,xk)

∣
∣ +μ(x,x)

∣
∣d(xk+,xk)

∣
∣,

which implies that

∣
∣d(xk+,xk)

∣
∣ ≤ λ(x,x)

 –μ(x,x)
∣
∣d(xk–,xk)

∣
∣. ()

Similarly, we get

∣∣d(xk+,xk+)
∣∣ =

∣∣d(TSxk ,Sxk)
∣∣

≤ λ(xk ,Sxk)
∣∣d(xk ,Sxk)

∣∣ +μ(xk ,Sxk)
∣∣d(Sxk ,TSxk)

∣∣

= λ(xk ,xk+)
∣
∣d(xk ,xk+)

∣
∣ +μ(xk ,xk+)

∣
∣d(xk+,xk+)

∣
∣

≤ λ(x,xk+)
∣∣d(xk ,xk+)

∣∣ +μ(x,xk+)
∣∣d(xk+,xk+)

∣∣

≤ λ(x,x)
∣
∣d(xk ,xk+)

∣
∣ +μ(x,x)

∣
∣d(xk+,xk+)

∣
∣,

which implies that

∣∣d(xk+,xk+)
∣∣ ≤ λ(x,x)

 –μ(x,x)
∣∣d(xk ,xk+)

∣∣. ()

Let h = λ(x,x)
–μ(x,x)

< . Then we have

∣
∣d(xn+,xn)

∣
∣ ≤ h

∣
∣d(xn–,xn)

∣
∣, for all n ∈N. ()

From Lemma ., we have {xn} is a Cauchy sequence in (X,d). By the completeness of X,
there exists z ∈ X such that xn → z as n→ ∞.
Next, we show that z is a fixed point of S. By () and Proposition ., we have

d(z,Sz) � d(z,Txn+) + d(Txn+,Sz)

= d(z,xn+) + d(Sz,Txn+)

� d(z,xn+) + λ(z,xn+)d(z,xn+) +μ(z,xn+)
d(z,Sz)d(xn+,Txn+)

 + d(z,xn+)

+ γ (z,xn+)
d(xn+,Sz)d(z,Txn+)

 + d(z,xn+)

http://www.fixedpointtheoryandapplications.com/content/2012/1/189
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� d(z,xn+) + λ(z,x)d(z,xn+) +μ(z,x)
d(z,Sz)d(xn+,xn+)

 + d(z,xn+)

+ γ (z,x)
d(xn+,Sz)d(z,xn+)

 + d(z,xn+)
.

Thus, d(z,Sz) =  and hence z = Sz.
We also show that z is a fixed point of T . By (), we have

d(z,Tz) � d(z,Sxn) + d(Sxn,Tz)

� d(z,xn+) + λ(xn, z)d(xn, z) +μ(xn, z)
d(xn,Sxn)d(z,Tz)

 + d(xn, z)

+ γ (xn, z)
d(z,Sxn)d(xn,Ty)

 + d(xn, z)

� d(z,xn+) + λ(x, z)d(xn, z) +μ(x, z)
d(xn,xn+)d(z,Tz)

 + d(xn, z)

+ γ (x, z)
d(z,xn+)d(xn,Ty)

 + d(xn, z)
.

Thus, d(z,Tz) =  and hence z = Tz. Therefore, z is a common fixed point of S and T .
Finally, we show the uniqueness. Suppose that there is z* ∈ X such that z* = Sz* = Tz*.

Then

d
(
z, z*

)
= d

(
Sz,Tz*

)

� λ
(
z, z*

)
d
(
z, z*

)
+μ

(
z, z*

)d(z,Sz)d(z*,Tz*)
 + d(z, z*)

+ γ
(
z, z*

)d(z*,Sz)d(z,Tz*)
 + d(z, z*)

= λ
(
z, z*

)
d
(
z, z*

)
+ γ

(
z, z*

)d(z*, z)d(z, z*)
 + d(z, z*)

.

Therefore, we have

∣
∣d

(
z, z*

)∣∣ ≤ λ
(
z, z*

)∣∣d
(
z, z*

)∣∣ + γ
(
z, z*

)∣∣d
(
z, z*

)∣∣
∣∣
∣∣

d(z, z*)
 + d(z, z*)

∣∣
∣∣

≤ λ
(
z, z*

)∣∣d
(
z, z*

)∣∣ + γ
(
z, z*

)∣∣d
(
z, z*

)∣∣

≤ (
λ
(
z, z*

)
+ γ

(
z, z*

))∣∣d
(
z, z*

)∣∣.

Since λ(z, z*) + γ (z, z*) < , we have |d(z, z*)| = . Thus z = z*. �

By setting S = T in Theorem ., we deduce the following corollary.

Corollary . Let (X,d) be a complete complex valued metric space and T : X → X. If
there exist mappings λ,μ,γ : X ×X → [, ) such that for all x, y ∈ X:
(a) λ(Tx, y) ≤ λ(x, y) and λ(x,Ty) ≤ λ(x, y),

μ(Tx, y) ≤ μ(x, y) and μ(x,Ty) ≤ μ(x, y),
γ (Tx, y) ≤ γ (x, y) and γ (x,Ty) ≤ γ (x, y);

(b) λ(x, y) +μ(x, y) + γ (x, y) < ;

http://www.fixedpointtheoryandapplications.com/content/2012/1/189
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(c)

d(Tx,Ty)� λ(x, y)d(x, y) +μ(x, y)
d(x,Tx)d(y,Ty)

 + d(x, y)
+ γ (x, y)

d(y,Tx)d(x,Ty)
 + d(x, y)

. ()

Then T has a unique common fixed point.

By choosing γ =  in Theorem ., we deduce the following corollary.

Corollary . Let (X,d) be a complete complex valued metric space and S,T : X → X. If
there exist mappings λ,μ : X ×X → [, ) such that for all x, y ∈ X:
(a) λ(TSx, y)≤ λ(x, y) and λ(x,STy)≤ λ(x, y),

μ(TSx, y)≤ μ(x, y) and μ(x,STy) ≤ μ(x, y);
(b) λ(x, y) +μ(x, y) < ;
(c)

d(Sx,Ty)� λ(x, y)d(x, y) +μ(x, y)
d(x,Sx)d(y,Ty)

 + d(x, y)
. ()

Then S and T have a unique common fixed point.

By choosing μ =  in Theorem ., we deduce the following corollary.

Corollary . Let (X,d) be a complete complex valued metric space and S,T : X → X. If
there exist mappings λ,γ : X ×X → [, ) such that for all x, y ∈ X:
(a) λ(TSx, y)≤ λ(x, y) and λ(x,STy)≤ λ(x, y),

γ (TSx, y)≤ γ (x, y) and γ (x,STy)≤ γ (x, y);
(b) λ(x, y) + γ (x, y) < ;
(c)

d(Sx,Ty)� λ(x, y)d(x, y) + γ (x, y)
d(y,Sx)d(x,Ty)

 + d(x, y)
. ()

Then S and T have a unique common fixed point.

The following result is closely related to Corollary . with γ = . The real valuedmetric
space version of this result is an extension of Dass and Gupta’s result [].

Theorem . Let (X,d) be a complete complex valued metric space and T : X → X. If
there exist mappings λ,μ : X ×X → [, ) such that for all x, y ∈ X:
(a) λ(Tx, y) ≤ λ(x, y) and λ(x,Ty) ≤ λ(x, y),

μ(Tx, y) ≤ μ(x, y) and μ(x,Ty) ≤ μ(x, y);
(b) λ(x, y) +μ(x, y) < ;
(c)

d(Tx,Ty)� λ(x, y)d(x, y) +μ(x, y)
d(y,Ty)[ + d(x,Tx)]

 + d(x, y)
. ()

Then T has a unique fixed point.

http://www.fixedpointtheoryandapplications.com/content/2012/1/189
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Proof Let x ∈ X and the sequence {xn} be defined by

xn+ = Txn, where n = , , , . . . . ()

We show that {xn} is a Cauchy sequence. From (), we have

d(xn+,xn+) = d(Txn,Txn+)

� λ(xn,xn+)d(xn,xn+) +μ(xn,xn+)
d(xn+,Txn+)[ + d(xn,Txn)]

 + d(xn,xn+)

= λ(xn,xn+)d(xn,xn+) +μ(xn,xn+)
d(xn+,xn+)[ + d(xn,xn+)]

 + d(xn,xn+)
= λ(xn,xn+)d(xn,xn+) +μ(xn,xn+)d(xn+,xn+).

It follows from (a) that

d(xn+,xn+) � λ(xn,xn+)d(xn,xn+) +μ(xn,xn+)d(xn+,xn+)

� λ(x,xn+)d(xn,xn+) +μ(x,xn+)d(xn+,xn+)

� λ(x,x)d(xn,xn+) +μ(x,x)d(xn+,xn+).

Therefore,

∣
∣d(xn+,xn+)

∣
∣ ≤ λ(x,x)

∣
∣d(xn,xn+)

∣
∣ +μ(x,x)

∣
∣d(xn+,xn+)

∣
∣,

and hence

∣∣d(xn+,xn+)
∣∣ ≤ λ(x,x)

 –μ(x,x)
∣∣d(xn,xn+)

∣∣, for all n = , , , . . . . ()

Let h = λ(x,x)
–μ(x,x)

< . Then

∣
∣d(xn+,xn+)

∣
∣ ≤ h

∣
∣d(xn,xn+)

∣
∣, for all n = , , , . . . .

From Lemma ., we have {xn} is a Cauchy sequence in (X,d). By the completeness of X,
there exists z ∈ X such that xn → z as n → ∞. Next, we show that z is a fixed point of T .
Then

d(z,Tz) � d(z,Txn) + d(Txn,Tz)

� d(z,xn+) + λ(xn, z)d(xn, z) +μ(xn, z)
d(z,Tz)[ + d(xn,Txn)]

 + d(z,xn)

� d(z,xn+) + λ(x, z)d(xn, z) +μ(x, z)
d(z,Tz)[ + d(xn,xn+)]

 + d(z,xn)
.

Notice that μ(x, z) ∈ [, ). Therefore, we get d(z,Tz)� μ(x, z)d(z,Tz), that is, z = Tz.

http://www.fixedpointtheoryandapplications.com/content/2012/1/189
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Finally, we show the uniqueness. Suppose that there is z* ∈ X such that z* = Tz*. Then

d
(
z, z*

)
= d

(
Tz,Tz*

)

� λ
(
z, z*

)
d
(
z, z*

)
+μ

(
z, z*

)d(z*,Tz*)[ + d(z,Tz)]
 + d(z, z*)

= λ
(
z, z*

)
d
(
z, z*

)
.

Since λ(z, z*) ∈ [, ), we have d(z, z*) = , that is, z = z*. This completes the proof. �

3 Deduced results
3.1 Sintunavarat and Kumam’s results
We deduce the main result of [] as follows.

Theorem. ([, Theorem .]) Let (X,d) be a complete complex valuedmetric space and
S,T : X → X. If there exist mappings �,� : X → [, ) such that for all x, y ∈ X:

(i) �(Sx)≤ �(x) and �(Sx)≤ �(x);
(ii) �(Tx)≤ �(x) and �(Tx) ≤ �(x);
(iii) (� +�)(x) < ;
(iv)

d(Sx,Ty)� �(x)d(x, y) +
�(x)d(x,Sx)d(y,Ty)

 + d(x, y)
.

Then S and T have a unique common fixed point.

Proof Define λ,μ : X ×X → [, ) by

λ(x, y) = �(x) and μ(x, y) = �(x), for all x, y ∈ X. ()

Then for all x, y ∈ X,
(a) λ(TSx, y) = �(TSx)≤ �(Sx)≤ �(x) = λ(x, y) and λ(x,STy) = �(x) = λ(x, y);

μ(TSx, y) = �(TSx)≤ �(Sx)≤ �(x) = μ(x, y) and μ(x,STy) = �(x) = μ(x, y);
(b) λ(x, y) +μ(x, y) = �(x) +�(x) < ;
(c)

d(Sx,Ty) � �(x)d(x, y) +
�(x)d(x,Sx)d(y,Ty)

 + d(x, y)

= λ(x, y)d(x, y) +μ(x, y)
d(x,Sx)d(y,Ty)

 + d(x, y)
.

By Corollary ., S and T have a unique common fixed point. �

Remark  It is worth mentioning that (i) and (ii) of Theorem . above can be weakened
by the condition

�(TSx)≤ �(x) and �(TSx)≤ �(x), for all x ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2012/1/189
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3.2 Rouzkard and Imdad’s results
The following corollary is easily obtained from our Theorem ..

Corollary . Let (X,d) be a complete complex valued metric space and S,T : X → X. If
there exist mappings λ,μ,γ : X → [, ) such that for all x, y ∈ X:
(a) λ(TSx)≤ λ(x), μ(TSx)≤ μ(x) and γ (TSx)≤ γ (x);
(b) λ(x) +μ(x) + γ (y) < ;
(c)

d(Sx,Ty)� λ(x)d(x, y) +μ(x)
d(x,Sx)d(y,Ty)

 + d(x, y)
+ γ (x)

d(y,Sx)d(x,Ty)
 + d(x, y)

. ()

Then S and T have a unique common fixed point.

Proof Define λ,μ,γ : X ×X → [, ) by

λ(x, y) = λ(x), μ(x, y) = μ(x) and γ (x, y) = γ (x), for all x, y ∈ X. ()

Then for all x, y ∈ X,
(a) λ(TSx, y) = λ(TSx)≤ λ(x) = λ(x, y) and λ(x,STy) = λ(x) = λ(x, y);

μ(TSx, y) = μ(TSx)≤ μ(x) = μ(x, y) and μ(x,STy) = μ(x) = μ(x, y);
γ (TSx, y) = γ (TSx)≤ γ (x) = γ (x, y) and γ (x,STy) = γ (x) = γ (x, y);

(b) λ(x, y) +μ(x, y) + γ (x, y) = λ(x) +μ(x) + γ (x) < ;
(c)

d(Sx,Ty) � λ(x)d(x, y) +μ(x)
d(x,Sx)d(y,Ty)

 + d(x, y)
+ γ (x)

d(y,Sx)d(x,Ty)
 + d(x, y)

= λ(x, y)d(x, y) +μ(x, y)
d(x,Sx)d(y,Ty)

 + d(x, y)
+ γ (x, y)

d(y,Sx)d(x,Ty)
 + d(x, y)

.

By Theorem ., S and T have a unique common fixed point. �

Letting λ(·) = λ, μ(·) = μ and γ (·) = γ in Corollary . gives the following result proved
by Rouzkard and Imdad in [].

Corollary . ([]) If S and T are self-mappings defined on a complete complex valued
metric space (X,d) satisfying the condition

d(Sx,Ty)� λd(x, y) +μ
d(x,Sx)d(y,Ty)

 + d(x, y)
+ γ

d(y,Sx)d(x,Ty)
 + d(x, y)

for all x, y ∈ X, where λ, μ, γ are nonnegative reals with λ+μ+ γ < , then S and T have a
unique common fixed point.

3.3 Dass and Gupta’s results
Applying the proof of our Theorem ., we can deduce the following result of Dass and
Gupta [] in the context of real valued metric spaces.

http://www.fixedpointtheoryandapplications.com/content/2012/1/189
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Theorem . ([]) Let (X,d) be a real valued metric space. Let T : X → X be such that
(i)

d(Tx,Ty) ≤ λd(x, y) +
μd(y,Ty)[ + d(x,Tx)]

 + d(x, y)

for all x, y ∈ X , λ > , μ > , λ +μ < , and
(ii) for some x ∈ X , the sequence of iterates {Tn(x)} has a subsequence {Tnk (x)} with

z = limk→∞ Tnk (x).
Then z is a unique fixed point of T .

Proof Define λ,μ : X ×X → [, ) by

λ(x, y) = λ and μ(x, y) = μ, for all x, y ∈ X.

Then the conditions (a), (b) and (c) of Theorem . are satisfied. Hence, we have {xn} is a
Cauchy sequence in (X,d). By (ii), the whole sequence xn → z as n → ∞. It follows again
from the proof of Theorem . that z is a unique fixed point of T as desired. �
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