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Abstract
It is known that the proximal point algorithm converges weakly to a zero of a maximal
monotone operator, but it fails to converge strongly. Then, in (Math. Program.
87:189-202, 2000), Solodov and Svaiter introduced the new proximal-type algorithm
to generate a strongly convergent sequence and established a convergence property
for the algorithm in Hilbert spaces. Further, Kamimura and Takahashi (SIAM J. Optim.
13:938-945, 2003) extended Solodov and Svaiter’s result to more general Banach
spaces and obtained strong convergence of a proximal-type algorithm in Banach
spaces. In this paper, by introducing the concept of an occasionally pseudomonotone
operator, we investigate strong convergence of the proximal point algorithm in
Hilbert spaces, and so our results extend the results of Kamimura and Takahashi.
MSC: 47H05; 47J25

Keywords: proximal point algorithm; monotone operator; maximal monotone
operator; pseudomonotone operator; occasionally pseudomonotone operator;
maximal pseudomonotone operator; maximal occasionally pseudomonotone
operator; Banach space; strong convergence

1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉, and let T : H → H be a maximal
monotone operator (or a multifunction) on H . We consider the classical problem:
Find x ∈H such that

 ∈ Tx. (.)

A wide variety of the problems, such as optimization problems and related fields, min-
max problems, complementarity problems, variational inequalities, equilibrium problems
and fixed point problems, fall within this general framework. For example, ifT is the subd-
ifferential ∂f of a proper lower semicontinuous convex function f :H → (–∞,∞), then T
is a maximal monotone operator and the equation  ∈ ∂f (x) is reduced to f (x) =min{f (z) :
z ∈ H}. One method of solving  ∈ Tx is the proximal point algorithm. Let I denote the
identity operator on H . Rockafellar’s proximal point algorithm generates, for any starting
point x = x ∈H , a sequence {xn} in H by the rule

xn+ = (I + rnT)–xn, ∀n≥ , (.)
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where {rn} is a sequence of positive real numbers. Note that (.) is equivalent to

 ∈ Txn+ +

rn
(xn+ – xn), ∀n≥ .

This algorithmwas first introduced byMartinet [] and generally studied byRockafellar []
in the framework of Hilbert spaces. Later, many authors studied the convergence of (.)
in Hilbert spaces (see Agarwal et al. [], Brezis and Lions [], Cho et al. [], Cholamjiak
et al. [], Güler [], Lions [], Passty [], Qin et al. [], Song et al. [], Solodov and
Svaiter [], Wei and Cho [] and the references therein). Rockafellar [] proved that,
if T– 	= ∅ and lim infn→∞ rn > , then the sequence {xn} generated by (.) converges
weakly to an element of T–. Further, Rockafellar [] posed an open question of whether
the sequence {xn} generated by (.) converges strongly or not. This question was solved
by Güler [], who introduced an example for which the sequence {xn} generated by (.)
converges weakly, but not strongly.
On the other hand, Kamimura and Takahashi [, ], Solodov and Svaiter [] one

decade ago modified the proximal point algorithm to generate a strongly convergent se-
quence. In , Solodov and Svaiter [] introduced the following algorithm {xn}:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈H ,

 = vn + 
rn (yn – xn), vn ∈ Tyn,

Hn = {z ∈ E : 〈z – yn, vn〉 ≤ },
Wn = {z ∈ E : 〈z – xn,x – xn〉 ≤ },
xn+ = PHn∩Wnx, ∀n≥ .

(.)

To explain how the sequence {yn} is generated, we formally state the above algorithm as
follows.
Choose any x ∈H and σ ∈ [, ). At iteration n, having xn, choose rn >  and find (yn, vn),

an inexact solution of  = vn + 
rn (yn – xn), vn ∈ Tyn with tolerance σ . Define Hn andWn as

in (.). Take xn+ = PHn∩Wnx. Note that at each iteration, there are two subproblems to be
solved: find an inexact solution of the proximal point subproblem and find the projection
of x onto Hn ∩Wn, the intersection of two half-spaces. By a classical result of Minty [],
the proximal subproblem always has an exact solution, which is unique. Notice that com-
puting an approximate solutionmakes things easier. Hence, this part of the method is well
defined. Regarding the projection step, it is easy to prove thatHn∩Wn is never empty, even
when the solution set is empty. Therefore, the whole algorithm is well defined in the sense
that it generates an infinite sequence {xn} and an associated sequence of pairs {(yn, vn)}.
In , Kamimura and Takahashi [] extended Solodov and Svaiter’s result to more

general Banach spaces like the spaces Lp ( < p < ∞) by further modifying the proximal-
point algorithm (.) in the following form in a smooth Banach space E:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E,

 = vn + 
rn (J(yn) – J(xn)), vn ∈ Tyn,

Hn = {z ∈ E : 〈z – yn, vn〉 ≤ },
Wn = {z ∈ E : 〈z – xn, J(x) – J(xn)〉 ≤ },
xn+ = PHn∩Wnx, ∀n≥ ,

(.)
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to generate a strongly convergent sequence. They proved that if T– 	= ∅ and
lim infn→∞ rn > , then the sequence {xn} generated by (.) converges strongly to a point
PT–x.
In this paper, by introducing the concept of an occasionally pseudomonotone operator,

we investigate strong convergence of the proximal point algorithm in Hilbert spaces, and
so our results extend the results of Kamimura and Takahashi.

2 Preliminaries and definitions
Let E be a real Banach space with norm ‖ · ‖, and let E* denote the dual space of E. Let
〈x, f 〉 denote the value of f ∈ E* at x ∈ E. Let {xn} be a sequence in E. We denote the strong
convergence of {xn} to x ∈ E by xn → x and the weak convergence by xn ⇀ x, respectively.

Definition . A multivalued operator T : E → E* with domain D(T) = {z ∈ E : Tz 	= ∅}
and range R(T) =

⋃{Tz : z ∈D(T)} is said to bemonotone if 〈x –x, y –y〉 ≥  for any xi ∈
D(T) and yi ∈ Txi, i = , . Amonotone operatorT is said to bemaximal if its graphG(T) =
{(x, y) : y ∈ Tx} is not properly contained in the graph of any other monotone operator.

Definition . A multivalued operator T : E → E* with domain D(T) and range R(T) is
said to be pseudomonotone (see also Karamardian []) if 〈x – x, y〉 ≥  implies 〈x –
x, y〉 ≥  for any xi ∈D(T) and yi ∈ Txi, i = , .

It is obvious that each monotone operator is pseudomonotone, but the converse is not
true.
We now introduce the concept of occasionally pseudomonotone as follows.

Definition. Amultivalued operatorT : E → E* is said to be occasionally pseudomono-
tone if, for any xi ∈ D(T), there exist yi ∈ Txi, i = , , such that 〈x – x, y〉 ≥  implies
〈x – x, y〉 ≥ .

It is clear that everymonotone operator is pseudomonotone and every pseudomonotone
operator is occasionally pseudomonotone, but the converse implications need not be true.
To this end, we observe the following examples.

Example . Let E =R
 and T : E → E* be a multi-valued operator defined by

Tx = {y = Arx : r ∈ R}, ∀x ∈ E,

where

Ar =

⎡
⎢⎣
  –
 –r 
  

⎤
⎥⎦ .

Then for any x = (x() ,x() ,x() )T , x = (x() ,x() ,x() )T in R, if y = Arx and y = Arx, then
we have

〈x – x, y – y〉 = –r
(
x() – x()

).

http://www.fixedpointtheoryandapplications.com/content/2012/1/190
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Thus, if r ≤ , then T is monotone. However, if r > , then T is neither monotone nor
pseudomonotone. Indeed, for x = (, , ), then we have y = Arx = (,–r, ), x = (, , )
and 〈x – x, y〉 =  ≥ , but 〈x – x, y〉 = –r < .
Further, we see that T is occasionally pseudomonotone. To effect this, for any x =

(x() ,x() ,x() )T and x = (x() ,x() ,x() )T in R, if yi = Axi, i = , , then we have

〈x – x, y〉 =  ≥  =⇒ 〈x – x, y〉 =  ≥ .

Example . The rotation operator on R given by

A =

[
 
– 

]

is monotone and hence it is pseudomonotone. Thus, it follows that A is also occasionally
pseudomonotone.
Maximality of pseudomonotone and occasionally pseudomonotone operators are de-

fined as similar to maximality of a monotone operator. We denote by L[x,x] the ray
passing through x, x.

A Banach space E is said to be strictly convex if ‖ x+y
 ‖ <  for all x, y ∈ E with ‖x‖ =

‖y‖ =  and x 	= y. It is also said to be uniformly convex if limn→∞ ‖xn – yn‖ =  for any two
sequences {xn}, {yn} in E such that ‖xn‖ = ‖yn‖ =  and limn→∞ ‖ xn+yn

 ‖ = .
It is known that a uniformly convex Banach space is reflexive and strictly convex. The

spaces � and L are neither reflexive nor strictly convex. Note also that a reflexive Banach
space is not necessarily uniformly convex. For example, consider a finite dimensional Ba-
nach space in which the surface of the unit ball has a ‘flat’ part.We note that such a Banach
space is reflexive because of finite dimension. But the ‘flat’ portion in the surface of the ball
makes it nonuniformly convex. It is alsowell known that a Banach space E is reflexive if and
only if every bounded sequence of elements of E contains a weakly convergent sequence.
Let U = {x ∈ E : ‖x‖ = }. A Banach space E is said to be smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for all x, y ∈ U . It is also said to be uniformly smooth if the limit (.) is attained
uniformly for x, y ∈ U .
It is well known that the spaces �p, Lp andWm (Sobolev space) ( < p < ∞,m is a positive

integer) are uniformly convex and uniformly smooth Banach spaces.
For any p ∈ (,∞), the mapping Jp : E → E* defined by

Jpx =
{
f ∈ E* : 〈x, f 〉 = ‖f ‖ · ‖x‖,‖f ‖ = ‖x‖p–}, ∀x ∈ E,

is called thedualitymapping with the gauge function ϕ(t) = tp–. In particular, for p = , the
duality mapping J with gauge function ϕ(t) = t is called the normalized duality mapping.
The following proposition gives some basic properties of the duality mapping.

Proposition . Let E be a real Banach space. For  < p < ∞, the duality mapping Jp : E →
E* has the following properties:

http://www.fixedpointtheoryandapplications.com/content/2012/1/190


Pathak and Cho Fixed Point Theory and Applications 2012, 2012:190 Page 5 of 13
http://www.fixedpointtheoryandapplications.com/content/2012/1/190

() Jp(x) 	= φ for all x ∈ E and D(Jp) = E, where D(Jp) denotes the domain of Jp;
() Jp(x) = ‖x‖p– · Jx for all x ∈ E with x 	= ;
() Jp(αx) = αp– · Jx for all α ∈ [,∞);
() Jp(–x) = –Jp(x);
() ‖x‖p – ‖y‖p ≥ p〈x – y, j〉 for all x, y ∈ E and j ∈ Jpy;
() If E is smooth, then Jp is norm-to-weak* continuous;
() If E is uniformly smooth, then Jp is uniformly norm-to-norm continuous on each

bounded subset of E;
() Jp is bounded, i.e., for any bounded subset A⊂ E, Jp(A) is a bounded subset in E*;
() Jp can be equivalently defined as the subdifferential of the functional ψ(x) = p–‖x‖p

(Asplund []), i.e.,

Jp(x) = ∂ψ(x) =
{
f ∈ E* :ψ(y) –ψ(x)≥ 〈y – x, f 〉,∀y ∈ E

}
;

() E is a uniformly smooth Banach space (equivalently, E* is a uniformly convex
Banach space) if and only if Jp is single-valued and uniformly continuous on any
bounded subset of E (see, for instance, Xu and Roach [], Browder []).

Proposition . Let E be a real Banach space, and let Jp : E → E* ,  < p < ∞, be the
duality mapping. Then for any x, y ∈ E,

‖x + y‖p ≤ ‖x‖p + p〈y, jp〉, ∀jp ∈ Jp(x + y).

Proof It is a straightforward consequence of the assertion () of Proposition . applied
for x and x+ y. Alternatively, from Proposition .(), it follows that Jp(x) = ∂ψ(x) (subdif-
ferential of the functionalψ(x)), where ψ(x) = p–‖x‖p. Also, it follows from the definition
of the subdifferential of ψ that

ψ(x) –ψ(x + y) ≥ 〈
x – (x + y), jp

〉
, ∀jp ∈ Jp(x + y).

Now, substituting ψ(x) by p–‖x‖p, we have

‖x + y‖p ≤ ‖x‖p + p〈y, jp〉, ∀jp ∈ Jp(x + y).

This completes the proof. �

Remark . If E is a uniformly smooth Banach space, it follows from Proposition .()
that Jp ( < p <∞) is a single-valuedmapping.We now define the functions
 ,φ : E×E →
R by


(x, y) = ‖x‖p – p
〈
x – y, Jp(y)

〉
– ‖y‖p, ∀x, y ∈ E,

and φ is the support function satisfying the following condition:


(x, y) = φ(x, y) + ‖x – y‖p, ∀x, y ∈ E. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/190
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It is obvious from the definition of 
 and Proposition .() that


(x, y) ≥ , ∀x, y ∈ E. (.)

Also, we see that


(x, y) = ‖x‖p – p
〈
x, Jp(y)

〉
+ (p – )‖y‖p

≥ ‖x‖p – p‖x‖∥∥Jp(y)∥∥ + (p – )‖y‖p

= ‖x‖p – p‖x‖‖y‖p– + (p – )‖y‖p. (.)

In particular, for p = , we have 
(x, y)≥ (‖x‖ – ‖y‖).

Further, we can show the following two propositions.

Proposition . Let E be a smooth Banach space, and let {yn}, {zn} be two sequences in E.
If 
(yn, zn)→ , then yn – zn → .

Proof It follows from 
(yn, zn) →  that

φ(yn, zn) → ,
∣∣‖yn‖ – ‖zn‖

∣∣ ≤ ‖yn – zn‖ → 

because of (.) and (.). Therefore, if {zn} is bounded, then {yn} (and also if {yn} is
bounded, then {zn}) is also bounded and yn – zn → . This completes the proof. �

Proposition . Let E be a reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed convex subset of E and let x ∈ E.Then there exists a unique element x ∈ C
such that


(x,x) = inf
{

(z,x) : z ∈ C

}
. (.)

Proof Since E is reflexive and ‖zn‖ → ∞ implies 
(zn,x) → ∞, there exists x ∈ C such
that 
(xo,x) = inf{
(z,x) : z ∈ C}. Since E is strictly convex, ‖ · ‖p is a strictly convex func-
tion, that is,

∥∥λx + ( – λ)x
∥∥p < λ‖x‖p + ( – λ)‖x‖p

for all x,x ∈ E with x 	= x,  ≤ p < ∞ and λ ∈ (, ). Then the function 
(·, y) is also
strictly convex. Therefore, x ∈ C is unique. This completes the proof. �

For each nonempty closed convex subset C of a reflexive, convex and smooth Banach
space E, we define themappingRC of E ontoC byRCx = x, where x is defined by (.). For
the case p = , it is easy to see that the mapping is coincident with the metric projection
in the setting of Hilbert spaces. In our discussion, instead of the metric projection, we
make use of the mapping RC . Finally, we prove two results concerning Proposition . and
the mapping RC . The first one is the usual analogue of a characterization of the metric
projection in a Hilbert space.

http://www.fixedpointtheoryandapplications.com/content/2012/1/190
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Proposition . Let E be a smooth Banach space, let C be a convex subset of E, let x ∈ E
and x ∈ C. Then


(x,x) = inf
{

(z,x) : z ∈ C

}
(.)

if and only if

〈
z – x, Jp(x) – Jp(x)

〉 ≥ , ∀z ∈ C. (.)

Proof First, we show that (.) ⇒ (.). Let z ∈ C and λ ∈ (, ). It follows from 
(x,x) ≤

(( – λ)x + λz,x) that

 ≤ ∥∥( – λ)x + λx
∥∥p – p

〈
( – λ)x + λz – x, Jp(x)

〉
– ‖x‖p – ‖x‖p + p

〈
x – x, Jp(x)

〉
+ ‖x‖p

=
∥∥( – λ)x + λz

∥∥p – ‖x‖p – pλ
〈
z – x, Jp(x)

〉
≤ pλ

〈
z – x, Jp

(
( – λ)x + λz

)〉
– pλ

〈
z – x, Jp(x)

〉
= pλ

〈
z – x, Jp

(
( – λ)x + λz

)
– Jp(x)

〉
,

which implies

〈
z – x, Jp

(
( – λ)x + λz

)
– Jp(x)

〉 ≥ .

Taking λ ↓ , since Jp is norm-to-weak* continuous, we obtain

〈
z – x, Jp(x) – Jp(x)

〉 ≥ ,

which shows (.).
Next, we show that (.) ⇒ (.). For any z ∈ C, we have


(z,x) –
(x,x) = ‖z‖p – p
〈
z – x, Jp(x)

〉
– ‖x‖p

– ‖x‖p + p
〈
x – x, Jp(x)

〉
+ ‖x‖p

= ‖z‖p – ‖x‖p – p
〈
z – x, Jp(x)

〉
≥ p

〈
z – x, Jp(x)

〉
– p

〈
z – x, Jp(x)

〉
= p

〈
z – x, Jp(x) – Jp(x)

〉
≥ ,

which proves (.). This completes the proof. �

Proposition . Let E be a reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed convex subset of E, let x ∈ E and RCx ∈ C with

‖y – x‖ = ‖y – RCx‖ + ‖RCx – x‖, ∀y ∈ L[x,RCx]∩C.

http://www.fixedpointtheoryandapplications.com/content/2012/1/190
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Then we have


(y,RCx) +
(RCx,x)≤ 
(y,x), ∀y ∈ L[x,RCx]∩C.

Proof It follows from Proposition . that


(y,x) –
(y,RCx) –
(RCx,x)

= ‖y‖p – p
〈
y – x, Jp(x)

〉
– ‖x‖p + ‖y – x‖ – ‖y‖p

+ p
〈
y – RCx, Jp(RCx)

〉
+ ‖RCx‖p – ‖y – RCx‖ – ‖RCx‖p

+ p
〈
RCx – x, Jp(xP

〉
+ ‖x‖p – ‖RCx – x‖

= –p
〈
y – x, Jp(x)

〉
+ p

〈
y – RCx, Jp(RCx)

〉
+ p

〈
RCx – x, Jp(x)

〉
= p

〈
y – RCx, Jp(RCx) – Jp(x)

〉
≥ , ∀y ∈ L[x,RCx]∩C.

This completes the proof. �

3 Main results
Throughout this section, unless otherwise stated, we assume that T : E → E* is a oc-
casionally pseudomonotone maximal monotone operator. In this section, we study the
following algorithm {xn} in a smooth Banach space E, which is an extension of (.):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E,

 = vn + 
rn (Jp(yn) – Jp(xn)), vn ∈ Tyn,

Hn = {z ∈ E : 〈z – yn, vn〉 ≤ },
Wn = {z ∈ E : 〈z – xn, Jp(xn) – Jp(xn)〉 ≤ },
xn+ = RHn∩Wnxn, ∀n≥ ,

(.)

where {rn} is a sequence of positive real numbers.
First, we investigate the condition under which the algorithm (.) is well defined. Rock-

afellar [] proved the following theorem.

Theorem . Let E be a reflexive, strictly convex and smooth Banach space, and let T :
E → E* be a monotone operator. Then T is maximal if and only if R(Jp + rT) = E* for all
r > .

By the appropriate modification of arguments in Theorem ., we can prove the follow-
ing.

Theorem . Let E be a reflexive, strictly convex and smooth Banach space, and let T :
E → E* be an occasionally pseudomonotone operator. Then T is maximal if and only if
R(Jp + rT) = E* for all r > .

Using Theorem ., we can show the following result.

http://www.fixedpointtheoryandapplications.com/content/2012/1/190
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Proposition . Let E be a reflexive, strictly convex and smooth Banach space. If T– 	= ∅,
then the sequence generated {xn} by (.) is well defined.

Proof From the definition of the sequence {xn}, it is obvious that both Hn and Wn are
closed convex sets. Let w ∈ T–. From Theorem ., there exists (y, v) ∈ E × E* such
that

 = v +

r

(
Jp(y) – Jp(x)

)
, v ∈ Ty.

Since T is occasionally pseudomonotone and 〈y – w, 〉 =  ≥ , from Tw � , it follows
that

〈y –w, v〉 ≥ 

for some v ∈ Ty. It follows that w ∈ H. On the other hand, it is clear that w ∈ W = E.
Then w ∈H ∩W and so x = RH∩Wx is well defined. Suppose that w ∈Hn– ∩Wn– is
well defined for some n≥ . Again, by Theorem ., we obtain (yn, vn) ∈ E × E* such that

 = vn +

rn

(
Jp(yn) – Jp(xn)

)
, vn ∈ Tyn.

Then since T is occasionally pseudomonotone and 〈yn – w, 〉 =  ≥ , from Tw � , it
follows that

〈yn –w, vn〉 ≥ 

for some vn ∈ Tyn, and so w ∈Hn. It follows from Proposition . that

〈
w – xn, Jp(x) – Jp(xn)

〉
=

〈
w – RHn–∩Wn–x, Jp(x) – Jp(RHn– ∩Wn–x)

〉
≤ ,

which implies w ∈ Wn. Therefore, w ∈Hn ∩Wn and hence xn– = RHn∩Wnx is well defined.
Then by induction, the sequence {xn} generated by (.) is well defined for each n ≥ .
This completes the proof. �

Remark . From the above proof, we obtain

T– ⊂Hn ∩Wn, ∀n≥ .

Now, we are ready to prove our main theorem.

Theorem . Let E be a reflexive, strictly convex and uniformly smooth Banach space. If
T– 	= ∅, φ satisfies the condition (.) and {rn} ⊂ (,∞) satisfies lim infn→∞ rn > , then
the sequence {xn} generated by (.) converges strongly to RT–x.

http://www.fixedpointtheoryandapplications.com/content/2012/1/190


Pathak and Cho Fixed Point Theory and Applications 2012, 2012:190 Page 10 of 13
http://www.fixedpointtheoryandapplications.com/content/2012/1/190

Proof It follows from the definition of Wn+ and Proposition . that xn+ = RWn+x. Fur-
ther, from x ∈ L(xn,RWn+x)∩Wn– and Proposition ., we have


(xn,RWn+x) +
(RWn+x,x) ≤ 
(xn,x)

and hence


(xn,xn+) +
(xn+,x) ≤ 
(xn,x). (.)

Since the sequence {
(xn,x)} is monotone decreasing and bounded below by , it follows
that lim infn→∞ 
(xn,x) exists and, in particular, {
(xn,x)} is bounded. Then by (.),
{xn} is also bounded. This implies that there exists a subsequence {xni} of {xn} such that
xni ⇀ w for some w ∈ E.
Now, we show that w ∈ T–. It follows from (.) that 
(xn,xn+) → . On the other

hand, we have


(RHnxn,xn) –
(yn,xn)

= ‖RHnxn‖p – p
〈
RHnxn – xn, Jp(xn)

〉
– ‖xn‖p

+ ‖RHnxn – xn‖ – ‖yn‖p + p
〈
yn – xn, Jp(xn)

〉
+ ‖xn‖p – ‖yn – xn‖

= ‖RHnxn‖p – ‖yn‖p + p
〈
yn – RHnxn, Jp(xn)

〉
+ ‖RHnxn – yn‖

≥ p
〈
RHnxn – yn, Jp(yn)

〉
+ p

〈
yn – RHnxn, Jp(xn)

〉
+ ‖RHnxn – yn‖

= p
〈
yn – RHnxn – yn, Jp(xn) – Jp(yn)

〉
+ ‖RHnxn – yn‖.

Since RHnxn ∈Hn and  = vn + 
rn (Jp(yn) – Jp(xn)), it follows that

〈
yn – RHnxn – ynJp(xn) – Jp(yn)

〉 ≥ ,

and so 
(RHnxn,xn) ≥ 
(yn,xn). Further, since xn+ ∈Hn, we have


(xn+,xn) ≥ 
(RHnxn,xn),

which yields that


(xn+,xn) ≥ 
(RHnxn,xn) ≥ 
(yn,xn).

Then it follows from
(xn,xn+)→  that
(yn,xn) → .Consequently, by Proposition .,
we have yn–xn → , which implies yni ⇀ w. Moreover, since J is uniformly norm-to-norm
continuous on bounded subsets and lim infn→∞ rn > , we obtain

vn = –

rn

(
Jp(yn) – Jp(xn)

) → .

It follows from vn ∈ Tyn with vn →  and yni ⇀ w that

lim
i,n→∞〈z – yni , vn〉 = 〈z –w, 〉 = , ∀z ∈D(T).

http://www.fixedpointtheoryandapplications.com/content/2012/1/190
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Then, since T is occasionally pseudomonotone, it follows that 〈z – w, z′〉 =  for some
z′ ∈ Tz. Therefore, from the maximality of T , we obtain w ∈ T–. Let w* ∈ RT–x. Now,
from xn+ = RHn∩Wnx and w* ∈ T– ⊂ L(xn,RWn+x)∩Hn ∩Wn, we have


(xn+,x) ≤ 

(
w*,x

)
.

Then we have



(
xn,w*) = 
(xn,x) +


(
x,w*) – p

〈
xn,x, Jp

(
w*) – Jp(x)

〉
+

∥∥xn –w*∥∥ – ‖xn – x‖ –
∥∥x –w*∥∥

≤ 

(
w*,x

)
+


(
x,w*) – p

〈
xn – x, Jp

(
w*) – Jp(x)

〉
+

∥∥xn –w*∥∥ – ‖xn – x‖ –
∥∥x –w*∥∥,

which yields

lim sup
i→∞



(
xni,w*) ≤ 


(
w*,x

)
+


(
x,w*) – p

〈
w – x, Jp

(
w*) – Jp(x)

〉
+

∥∥w –w*∥∥ – ‖w – x‖ –
∥∥x –w*∥∥.

Thus, from Proposition ., we have



(
w*,x

)
+


(
x,w*) – p

〈
w – x, Jp

(
w*) – Jp(x)

〉
+

∥∥w –w*∥∥ – ‖w – x‖ –
∥∥x –w*∥∥

= p
〈
w –w*, Jp(x) – Jp

(
w*)〉

≤ .

Then we obtain lim supi→∞ 
(xni ,w*) ≤ , and hence 
(xni ,w*) → . It follows from
Proposition . that xni → w*. This means that the whole sequence {xn} generated by
(.) converges weakly to w* and each weakly convergent subsequence of {xn} converges
strongly to w*. Therefore, {xn} converges strongly to w* ∈ RT–x. This completes the
proof. �

4 An application
Let f : E → (–∞,∞] be a proper convex lower semicontinuous function. Then the subd-
ifferential ∂f of f is defined by

∂f (x) =
{
v ∈ E* : f (y) – f (x) ≥ 〈y – x, v〉,∀y ∈ E

}
.

Using Theorem ., we consider the problem of finding a minimizer of the function f .

Theorem . Let E be reflexive, strictly convex and uniformly smooth Banach space, and
let f : E → (–∞,∞] be a proper convex lower semicontinuous function.Assume that {rn} ⊂

http://www.fixedpointtheoryandapplications.com/content/2012/1/190
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(,∞) satisfies lim infn→∞ rn >  and {xn} is the sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E,

yn = argminz∈E{f (z) + 
prn ‖z‖p – 

rn 〈z, Jp(xn)〉},
 = vn + 

rn (Jp(yn) – Jp(xn)), vn ∈ Tyn,

Hn = {z ∈ E : 〈z – yn, vn〉 ≤ },
Wn = {z ∈ E : 〈z – xn, Jp(xn)〉 ≤ },
xn+ = RHn∩Wnx, ∀n≥ .

(.)

If (∂f )– 	= ∅, then the sequence {xn} generated by (.) converges strongly to the minimizer
of f .

Proof Since f : E → (–∞,∞] is a proper convex lower semicontinuous function, by Rock-
afelllar [], the subdifferential ∂f of f is a maximal monotone operator and so it is also
an occasionally pseudomonotone maximal operator. We also know that

yn = argmin
z∈E

{
f (z) +


prn

‖z‖p – 
rn

〈
z, Jp(xn)

〉}

is equivalent to the following:


rn

(
Jp(z) – Jp(xn)

) ∈ ∂f (yn), ∀z ∈ E.

This implies that

 ∈ ∂f (yn) +

rn

(
Jp(yn) – Jp(xn)

)
.

Thus, we have vn ∈ ∂f (yn) such that  = vn + 
rn (Jp(yn) – Jp(xn)). Therefore, using Theo-

rem ., we get the conclusion. This completes the proof. �

5 Concluding remarks
We presented a modified proximal-type algorithm with the varied degree of rate of the
convergence depending upon the choice of p ( < p < ∞) for an occasionally pseudomono-
tone operator, which is a generalization of a monotone operator, to extend Kamimura and
Takahashi’s result tomore general Banach spaces which are not necessarily uniformly con-
vex like locally uniformly Banach spaces. As an application, we consider the problem of
finding a minimizer of a convex function in a more general setting of Banach spaces than
what Kamimura and Takahashi have considered.
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