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Abstract
Using a dual problem in Wolfe type, the Lagrange function of an inequality
constrained nonconvex programming problem is proved to be constant not only on
its optimal solution set but also on a wider set. In addition, it is also constant on the
set of Lagrange multipliers corresponding to solutions of the dual problem.
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1 Introduction
In mathematical programming, Lagrange functions play a key role in finding maxima or
minima of the problems subject to constraint functions. In several papers, to establish
characterizations of solution sets of inequality constrained programming problems, La-
grange functions which were associated to the problems were proved to be constant on
their optimal solution sets [–]. The aim of this paper is to show some more proper-
ties of Lagrange functions. Concretely, we will show that such Lagrange functions can be
constant not only on optimal solution sets but also on wider sets.
Let us consider the following nonconvex problem:

(P) Minimize f (x)

subject to ft(x)≤ , t ∈ T ,

x ∈ C,

where f , ft : X → R, t ∈ T , are locally Lipschitz functions on a Banach space X, T is an
arbitrary (possibly infinite) index set, andC is a closed convex subset ofX. Our new results
on the Lagrange function of (P) will be obtained via its dual problem (D) in Wolfe type.

(D) Maximize L(y,λ) := f (y) +
∑
t∈T

λt ft(y)

s.t.  ∈ ∂cf (y) +
∑
t∈T

λt∂
cft(y) +N(C, y),

(y,λ) ∈ C ×R
(T)
+ ,
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where the Lagrange function L is formulated by

L(y,λ) =

⎧⎨
⎩
f (y) +

∑
t∈T λt ft(y), (y,λ) ∈ C ×R

(T)
+ ,

+∞, otherwise.

We denote by G the feasible set of (D). Let (y∗,λ∗) be a solution of (D). We will prove that
the function L(·,λ∗) is constant on a subset of X which is wider than the solution set of (P)
and the function L(y∗, ·) is constant on the set of Lagrange multipliers corresponding to
solutions of (P).
Our main results are divided into two parts. In the first one, we present some new prop-

erties of a Lagrange function. The second one is devoted to finding saddle points. Some
remarks and further developments will be given.

2 Preliminaries
Let R(T) be a linear space of generalized finite sequences λ = (λ)t∈T such that λt ∈ R for
all t ∈ T , but only finitely many λt �= . For each λ ∈ R

(T), the corresponding supporting
set T(λ) := {t ∈ T | λt �= } is a finite subset of T . We denote by R(T)

+ := {λ = (λt)t∈T ∈R
(T) |

λt ≥ , t ∈ T} the nonnegative cone of R(T). For λ ∈ R
(T) and {zt}t∈T ⊂ Z, Z being a real

linear space, we understand that

∑
t∈T

λtzt =

⎧⎨
⎩

∑
t∈T(λ) λtzt if T(λ) �= ∅,

 if T(λ) = ∅.

The following concepts can be found in Clarke’s book [, ]. Let C ⊂ X be a convex set,
and let z ∈ C. The normal cone to C at z, denoted by N(C, z), is defined by

N(C, z) :=
{
v ∈ X∗ | v(x – z) ≤ ,∀x ∈ C

}
,

where X∗ is the dual space of X. Let g : X → R be a locally Lipschitz function. The direc-
tional derivative and the Clarke generalized directional derivative of g at z ∈ X in direction
d ∈ X are defined respectively by

g ′(z;d) := lim
t↓

[
g(z + td) – g(z)

]
/t and

gc(z;d) := lim sup
x→z
t↓

[
g(x + td) – g(x)

]
/t.

The Clarke subdifferential of g at z ∈ X, denoted by ∂cg(z), is defined by

∂cg(z) :=
{
v ∈ X∗ | v(d)≤ gc(z;d),∀d ∈ X

}
.

A locally Lipschitz function g is said to be quasidifferentiable (or regular in the sense of
Clarke) at z ∈ X if the directional derivative g ′(z;d) exists and

gc(z;d) = g ′(z;d), ∀d ∈ X.
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Definition . [] Let C be a subset of X. A function g : X → R is said to be semiconvex
at z ∈ C if g is locally Lipschitz, regular at z, and

d ∈ X, z + d ∈ C, g ′(z;d) ≥  ⇒ g(z + d) ≥ f (z).

The function g is said to be semiconvex on C if g is semiconvex at every z ∈ C.

3 Main results
Let us denote by Sol(P) the solution set of (P) and by A the feasible set of (P). Suppose that
Sol(P) �= ∅. For z ∈ Sol(P), we assume that, under some constraint qualification condition
(see []), there exists λ ∈ R

(T)
+ such that

 ∈ ∂cf (z) +
∑
t∈T

λt∂
cft(z) +N(C, z), λt ft(z) = ,∀t ∈ T . (.)

Note that in [],T is a compact topological space.Wedenote byV (P) andV (D) the optimal
values of (P) and (D), respectively. The following lemma is needed for our further research.

Lemma . For the problem (P), suppose that f , ft , t ∈ T , are regular on C and the function
L(·,λ) is semiconvex on C for every λ ∈ R

(T)
+ . Let z be a solution of (P) and λ̄ be such that

(.) holds. Then (z, λ̄) is a solution of (D) and V (P) = V (D).

Proof Suppose that z is a solution of (P) and λ̄ is such that (.) holds. We get

 ∈ ∂cf (z) +
∑
t∈T

λ̄t∂
cft(z) +N(C, z), λ̄t ft(z) = ,∀t ∈ T . (.)

Hence, (z, λ̄) is a feasible solution of (D). Since λ̄t ft(z) = , for all t ∈ T ,

L(z, λ̄) = f (z).

On the other hand, since λ̄t ft(z) = , for all t ∈ T ,

L(z, λ̄) – L(x,λ) = f (z) – L(x,λ).

By the weak duality between (P) and (D), f (z)–L(x,λ) ≥  for all feasible point (x,λ) of (D).
Consequently, L(z, λ̄) ≥ L(x,λ) for all feasible point (x,λ) of (D). The desired results fol-
low. �

3.1 Some new results of the Lagrange function
Theorem . Suppose that f , ft , t ∈ T , are regular on C and (y∗,λ∗) is a solution of (D).
Suppose further that the function L(·,λ∗) is semiconvex on C. The following holds:

L
(
y,λ∗) = L

(
y∗,λ∗), ∀y ∈G :=

{
y ∈ C | (y,λ∗) ∈ G

}
. (.)

Proof Let (y∗,λ∗) be a solution of (D). We obtain (y∗,λ∗) ∈ C ×R
(T)
+ and

 ∈ ∂cf
(
y∗) +

∑
t∈T

λ∗
t ∂

cft
(
y∗) +N

(
C, y∗).
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Thus, there exist u ∈ ∂cf (y∗), ut ∈ ∂cft(y∗), t ∈ T , and w ∈N(C, y∗) such that

u
(
y – y∗) +

∑
t∈T

λ∗
t ut

(
y – y∗) = –w

(
y – y∗) ≥ , ∀y ∈ C.

Since f , ft , t ∈ T , are regular onC and L(·,λ∗) is semiconvex onC, it follows that L(y∗,λ∗) ≤
L(y,λ∗) for all y ∈ C. Hence,

L
(
y∗,λ∗) ≤ L

(
y,λ∗), ∀y ∈G. (.)

On the other hand, we have that infG L(y,λ∗) ≤ supG L(y,λ
∗) ≤ sup(x,λ)∈G L(x,λ). Combin-

ing this and (.), we get

L
(
y∗,λ∗) ≤ inf

y∈G
L
(·,λ∗) ≤ sup

y∈G
L
(·,λ∗) ≤ sup

(x,λ)∈G
L(x,λ) = L

(
y∗,λ∗).

We obtain the desired result. �

Corollary . Suppose that f , ft , t ∈ T , are regular on C, z is a solution of (P), and there
exists λ∗ such that (.) holds. If the function L(·,λ) is semiconvex on C for every λ ∈ R

(T)
+ ,

then

L
(
y,λ∗) = f

(
y∗), ∀y ∈G.

In addition, λ∗
t ft(y) =  for all y ∈ Sol(P).

Proof Suppose that y∗ is a solution of (P) and the condition (.) holds for (y∗,λ∗). Then by
Lemma ., (y∗,λ∗) is a solution of (D). Note that λ∗

t ft(y∗) =  for all t ∈ T . By Theorem .,
we obtain L(y,λ∗) = f (y∗) for all y ∈ G. If y ∈ Sol(P), then f (y) = f (y∗). From the equality
above, we can deduce that λ∗

t ft(y) =  for all t ∈ T . �

Remark .
() Corollary . covers Lemma . in []. It also shows that the Lagrange function can

be constant on a subset of X which is wider than a solution set.
() If the involved functions of (P) are convex, Corollary . covers Lemma . in [].
() Using the same method as above, we can establish the results which cover

Theorem . in [] and Theorem .. in [].

There exists a question: Which behavior does the function L(y∗, ·) achieve for y∗ ∈ G?
The question will be adapted below.

Theorem . Let (y∗,λ∗) be a solution of (D). Suppose that f , ft , t ∈ T , are regular on C
and the function L(·,λ∗) is semiconvex on C. If f (y∗) ≥ V (P), then the function L(y∗, ·) is
constant on G, where

G =
{
λ ∈ R

(T)
+

∣∣ (
y∗,λ

) ∈G,λt ft
(
y∗) ≥ 

}
.

http://www.fixedpointtheoryandapplications.com/content/2012/1/192


Kim and Son Fixed Point Theory and Applications 2012, 2012:192 Page 5 of 7
http://www.fixedpointtheoryandapplications.com/content/2012/1/192

Proof Since (y∗,λ∗) is a solution of (D) and f (y∗) ≥ V (P),

L
(
y∗,λ∗) ≥ L

(
y∗,λ

) ≥ f
(
y∗) ≥ V (P), ∀λ ∈G.

On the other hand, since (y∗,λ∗) ∈G, using an argument as in the proof of Theorem., we
get L(y∗,λ∗) ≤ L(y,λ∗) for all y ∈ C. This implies that L(y∗,λ∗) ≤ V (P). The desired result
follows. �

Corollary . Assume that f , ft , t ∈ T , are regular on C, y∗ is a solution of (P) and there
exists λ∗ such that (.) holds. If L(·,λ) is semiconvex on C, every λ ∈R

(T)
+ , then the function

L(y∗, ·) is constant on G.

Proof If y∗ is a solution of (P) and there exists λ∗ such that (.) holds, then by Lemma .,
(y∗,λ∗) is a solution of (D). By Theorem ., we have that L(y∗, ·) is constant on G. �

3.2 Finding saddle points
In this part, by applying the results above, we can determine saddle points of the func-
tion L.

Definition . For the problem (P), a point (z̄, λ̄) ∈ C × R
(T)
+ is said to be a saddle point

of the function L if

L(z̄,λ) ≤ L(z̄, λ̄)≤ L(x, λ̄), ∀(x,λ) ∈ C ×R
(T)
+ .

We need the following lemma.

Lemma . Let (z, λ̄) ∈ G be a saddle point of the function L. Suppose that the function
L(·, λ̄) is semiconvex on C. Then z is a solution of (P), λ̄t ft(z) = , and (z, λ̄) is a solution of
(D).Moreover, V (P) = V (D).

Theorem . Assume that f , ft , t ∈ T , are regular on C and L(·,λ) is semiconvex on C for
every λ ∈R

(T)
+ . Let (y∗,λ∗) ∈G be a saddle point of the function L. Then,

(i) For every λ̄ ∈G, if (y∗, λ̄) ∈G, then it is a saddle point for L, and
(ii) For every z ∈ Sol(P), if (z,λ∗) ∈G, then it is a saddle point for L.

Proof Suppose that (y∗,λ∗) ∈G is a saddle point of the function L. We get

L
(
y∗,λ

) ≤ L
(
y∗,λ∗) ≤ L

(
x,λ∗), ∀(x,λ) ∈ C ×R

(T)
+ . (.)

Since L(·,λ∗) is semiconvex on C, by Lemma ., y∗ is a solution of (P), λ∗
t ft(y∗) = , and

(y∗,λ∗) is a solution of (D), and V (P) = V (D).
(i) (y∗, λ̄) is a saddle point. For y∗ above, by Corollary ., we obtain L(y∗, λ̄) = L(y∗,λ∗)

for all λ̄ ∈G. Note that by (.), L(y∗,λ)≤ L(y∗,λ∗) for all λ ∈R
(T)
+ . Hence,

L
(
y∗,λ

) ≤ L
(
y∗, λ̄

)
, ∀λ ∈R

(T)
+ . (.)
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Since L(y∗,λ∗) = L(y∗, λ̄) and (y∗, λ̄) ∈G, it is a solution of (D). So,

 ∈ ∂cf
(
y∗) +

∑
t∈T

λ̄t∂
cft

(
y∗) +N

(
C, y∗).

From this, it is easy to deduce that L(y∗, λ̄)≤ L(x, λ̄) for all x ∈ C. We obtain

L
(
y∗,λ

) ≤ L
(
y∗, λ̄

) ≤ L(x, λ̄), ∀(x,λ) ∈ C ×R
(T)
+ .

(ii) (z,λ∗) is a saddle point. For λ∗ above, by Corollary ., we get L(z,λ∗) = L(y∗,λ∗) for
all z ∈ Sol(P). Then by (.), we obtain L(z,λ∗)≤ L(x,λ∗) for all x ∈ C and for all z ∈ Sol(P).
It remains to prove that L(z,λ) ≤ L(z,λ∗) for all λ ∈R

(T)
+ . Indeed, since z ∈ Sol(P), L(z,λ) ≤

f (z) for all λ ∈ R
(T)
+ . By Lemma ., V (P) = V (D). Hence, f (z) = L(y∗,λ∗) = L(z,λ∗). Thus,

L(z,λ) ≤ L(z,λ∗) for all λ ∈R
(T)
+ . �

The following corollary can be deduced directly from the theorem above.

Corollary . Assume that f , ft , t ∈ T , are regular on C. If there exists a feasible point
(y∗,λ∗) of (D) being a saddle point of the function L and L(·,λ) is semiconvex on C for every
λ ∈R

(T)
+ , then every point (z, λ̄) ∈ Sol(P)×G is also the saddle point of the function L.

4 Further developments
() Using Theorem ., we can re-establish the characterizations of a solution set of the

problem given in [] via its dual problem in Wolfe type.
() The characterizations of solution sets of the problem considered in [] can be

rebuilt via its dual problem.
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