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1 Introduction
The theory of fuzzy sets has evolved in many directions after investigation of the notion
of fuzzy sets by Zadeh []. Many authors have introduced the concept of a fuzzy metric
space in different ways [, ]. George and Veeramani [, ] modified the concept of a fuzzy
metric space introduced by Kramosil and Michalek [] and defined a Hausdorff topology
on this fuzzy metric space. They showed also that every metric induces a fuzzy metric.
Later, many fixed point theorems in fuzzy metric spaces and probabilistic metric spaces
have been obtained by [–].
Nieto and Lopez [], Ran and Reurings [], Petrusel and Rus [] presented some new

results for contractions in partially ordered metric spaces. The main idea in [, ] in-
volves combining the ideas of the iterative technique in the contractive mapping principle
with those in the monotone technique, discussing the existence of a solution to first-order
ordinary differential equations with periodic boundary conditions and some applications
to linear and nonlinear matrix equations.
Bhaskar and Lakshmikantham [], Lakshmikantham and Ćirić [] discussed coupled

coincidence and coupled fixed point theorems for two mappings F and g , where F has the
mixed g-monotone property and F and g commute. The results were used to study the
existence of a unique solution to a periodic boundary value problem. In [], Choudhury
and Kundu established a similar result under the condition that F and g are compatible
mappings and the function g is monotone increasing. For more details on ordered metric
spaces, we refer to [–] and references mentioned therein.
Alternatively Mustafa and Sims [] introduced a new notion of a generalized metric

space calledG-metric space. Mujahid Abbas et al. [] proved a unique fixed point of four
R-weakly commuting maps in G-metric spaces, and Mujahid Abbas et al. [] obtained
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some common fixed point results of maps satisfying the generalized (ϕ,ψ)-weak com-
muting condition in partially ordered G-metric spaces. Rao et al. [] proved two unique
common coupled fixed-point theorems for three mappings in symmetric G-fuzzy metric
spaces. Sun and Yang [] introduced the concept of G-fuzzy metric spaces and proved
two common fixed-point theorems for four mappings. Some interesting references on G-
metric spaces are [–].
In this paper, we introduce the concept of a mixed g-monotone mapping, which is a

generalization of themixedmonotonemapping, and prove coupled coincidence point and
coupled common fixed point theorems for mappings under φ-contractive conditions in
partially orderedG-fuzzy metric spaces. The work is an extension of the fixed point result
in fuzzy metric spaces and the condition is different from [–] even in metric spaces.
We also give an example to illustrate the theorems.
Recall that if (X,≤) is a partially ordered set and F : X → X satisfies that for x, y ∈ X,

x ≤ y implies F(x)≤ F(y), then a mapping F is said to be non-decreasing. Similarly, a non-
increasing mapping is defined.
Before giving our main results, we recall some of the basic concepts and results in G-

metric spaces and G-fuzzy metric spaces.

2 Preliminaries
Definition . [] Let X be a nonempty set, and let G : X ×X ×X → [, +∞) be a func-
tion satisfying the following properties:
(G-) G(x, y, z) =  if x = y = z,
(G-)  <G(x,x, y) for all x, y ∈ X with x �= y,
(G-) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with y �= z,
(G-) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · , symmetry in all three variables,
(G-) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X .
The function G is called a generalized metric or a G-metric on X and the pair (X,G) is

called a G-metric space.

Definition . [] The G-metric space (X,G) is called symmetric if G(x,x, y) =G(x, y, y)
for all x, y ∈ X.

Definition. [] Let (X,G) be aG-metric space, and let {xn} be a sequence inX. A point
x ∈ X is said to be the limit of {xn} if and only if limn,m→∞ G(x,xn,xm) = . In this case, the
sequence {xn} is said to be G-convergent to x.

Definition . [] Let (X,G) be aG-metric space, and let {xn} be a sequence in X. {xn} is
called a G-Cauchy sequence if and only if limn,m,l→∞ G(xn,xm,xl) = . (X,G) is called G-
complete if every G-Cauchy sequence in (X,G) is G-convergent in (X,G).

Proposition . [] In a G-metric space (X,G), the following are equivalent:
(i) The sequence {xn} is G-Cauchy.
(ii) For every ε > , there exists N ∈ N such that G(xn,xm,xm) < ε for all n,m ≥ N .

Proposition . [] Let (X,G) be a G-metric space; then the function G(x, y, z) is jointly
continuous in all three of its variables.
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Proposition . [] Let (X,G) be a G-metric space; then for any x, y, z,a ∈ X, it follows
that

(i) if G(x, y, z) = , then x = y = z,
(ii) G(x, y, z) ≤ G(x,x, y) +G(x,x, z),
(iii) G(x, y, y) ≤ G(x,x, y),
(iv) G(x, y, z) ≤ G(x,a, z) +G(a, y, z),
(v) G(x, y, z) ≤ 

 (G(x,a,a) +G(y,a,a) +G(z,a,a)).

Let (X,d) be a metric space. One can verify that (X,G) is a G-metric space, where

G(x, y, z) =max
{
d(x, y),d(y, z),d(z,x)

}
or

G(x, y, z) =


(
d(x, y) + d(y, z) + d(z,x)

)
.

If (X,G) is a G-metric space, it easy to verify that (X,dG) is a metric space, where
dG(x, y) = 

 (G(x,x, y) +G(x, y, y)).

Definition . [] A binary operation ∗ : [, ] × [, ] → [, ] is a continuous t-norm
if ∗ satisfies the following conditions:

(i) ∗ is commutative and associative;
(ii) ∗ is continuous;
(iii) a ∗  = a for all a ∈ [, ];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a,b, c,d ∈ [, ].

Definition . [] A -tuple (X,G,∗) is said to be a G-fuzzy metric space (denoted by
GF space) if X is an arbitrary nonempty set, ∗ is a continuous t-norm and G is a fuzzy set
on X × (, +∞) satisfying the following conditions for each t, s > :
(GF-) G(x,x, y, t) >  for all x, y ∈ X with x �= y;
(GF-) G(x,x, y, t)≥ G(x, y, z, t) for all x, y, z ∈ X with y �= z;
(GF-) G(x, y, z, t) =  if and only if x = y = z;
(GF-) G(x, y, z, t) =G(p(x, y, z), t), where p is a permutation function;
(GF-) G(x,a,a, t) ∗G(a, y, z, s) ≤ G(x, y, z, t + s) (the triangle inequality);
(GF-) G(x, y, z, ·) : (,∞) → [, ] is continuous.

Remark . Let x = w, y = u, z = u, a = v in (GF-), we have

G(w,u,u, t + s)≥ G(w, v, v, t) ∗G(v,u,u, s),

which implies that

G(u,u,w, s + t) ≥ G(u,u, v, s) ∗G(v, v,w, t),

for all u, v,w ∈ X and s, t > .
AGF space is said to be symmetric if G(x,x, y, t) =G(x, y, y, t) for all x, y ∈ X and for each

t > .

http://www.fixedpointtheoryandapplications.com/content/2012/1/196


Hu and Luo Fixed Point Theory and Applications 2012, 2012:196 Page 4 of 17
http://www.fixedpointtheoryandapplications.com/content/2012/1/196

Example . Let X be a nonempty set, and let G be a G-metric on X. Define the t-norm
a ∗ b = min{a,b} and for all x, y, z ∈ X and t > , G(x, y, z, t) = t

t+G(x,y,z) . Then (X,G,∗) is a
GF space.

Remark . If (X,M,∗) is a fuzzy metric space [], then (X,G,∗) is a GF space, where

G(x, y, z, t) =min
{
M(x, y, t),M(y, z, t),M(z,x, t)

}
.

In fact, we only need to verify (GF-). Since

G(x, y, z, t) =min
{
M(x, y, t),M(y, z, t),M(z,x, t)

}
, G(x,a,a, t) =M(x,a, t),

G(a, y, z, s) =min
{
M(a, y, s),M(y, z, s),M(z,a, s)

}
,

we have

G(x,a,a, t) ∗G(a, y, z, s)

=M(x,a, t) ∗min
{
M(a, y, s),M(y, z, s),M(z,a, s)

}
≤ min

{
M(x,a, t) ∗M(a, y, s),M(x,a, t) ∗M(y, z, s),M(x,a, t) ∗M(z,a, s)

}
≤ min

{
M(x, y, t + s),M(y, z, s),M(x, z, t + s)

}
≤ min

{
M(x, y, t + s),M(y, z, t + s),M(x, z, t + s)

}
=G(x, y, z, t + s),

which implies that (GF-) holds.

Remark . If (X,G,∗) is a symmetric GF space, letM(x, y, t) =G(x, y, y, t), then (X,M,∗)
is a fuzzy metric space [].

Let (X,G,∗) be aGF space. For t > , the open ball BG(x, r, t) with center x ∈ X and radius
 < r <  is defined by

BG(x, r, t) =
{
y ∈ X :G(x, y, y, t) >  – r

}
.

A subset A ⊂ X is called an open set if for each x ∈ A, there exist t >  and  < r <  such
that BG(x, r, t)⊂ A.

Definition . [] Let (X,G,∗) be a GF space, then
() a sequence {xn} in X is said to be convergent to x (denoted by limn→∞ xn = x) if

lim
n→∞G(xn,xn,x, t) = 

for all t > .
() a sequence {xn} in X is said to be a Cauchy sequence if

lim
n,m→∞G(xn,xn,xm, t) = ,
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that is, for any ε >  and for each t > , there exists n ∈N such that

G(xn,xn,xm, t) >  – ε,

for n,m ≥ n.
() A GF space (X,G,∗) is said to be complete if every Cauchy sequence in X is

convergent.

Lemma. [] Let (X,G,∗) be aGF space.ThenG(x, y, z, t) is non-decreasing with respect
to t for all x, y, z ∈ X.

Lemma . [] Let (X,G,∗) be a GF space. Then G is a continuous function on X ×
(, +∞).

In the rest of the paper, (X,G,∗) will denote a GF space with a continuous t-norm ∗
defined as a ∗ b =min{a,b} for all a,b ∈ [, ], and we assume that

lim
t→∞G(x, y, z, t) = , ∀x, y, z ∈ X. (P)

Define � = {φ : R+ → R+}, where R+ = [,+∞) and each φ ∈ � satisfies the following
conditions:

(�-) φ is strict increasing;
(�-) φ is upper semi-continuous from the right;
(�-)

∑∞
n= φn(t) < +∞ for all t > , where φn+(t) = φ(φn(t)).

Let φ(t) = t
t+ , φ(t) = kt, where  < k < , then φ,φ ∈ �.

It is easy to prove that if φ ∈ �, then φ(t) < t for all t > .
Using (P), one can prove the following lemma.

Lemma . Let (X,G,∗) be a GF space. If there exists φ ∈ � such that if G(x, y, z,φ(t)) ≥
G(x, y, z, t) for all t > , then x = y = z.

Lemma . Let (X,G,∗) be a GF space. If we define Eλ : X ×X ×X → [,∞) by

Eλ(x, y, z) = inf
{
t > ,G(x, y, z, t) >  – λ

}
(.)

for all λ ∈ (, ] and x, y, z ∈ X, then we have:
() for each λ ∈ (, ], there exists μ ∈ (, ] such that

Eλ(x,x,xn) ≤
n–∑
i=

Eμ(xi,xi,xi+), ∀x, . . . ,xn ∈ X.

() The sequence {xn}n∈N in X is convergent if and only if Eλ(xn,xn,x) →  as n→ ∞ for
all λ ∈ (, ].
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Proof () For any λ ∈ (, ], let μ ∈ (, ] and μ < λ, and so, by the triangular inequality
(GF-) and Remark ., for any δ > , we have

G

(
x,x,xn,

n–∑
i=

Eμ(xi,xi,xi+) + (n – )δ

)

≥ G
(
x,x,x,Eμ(x,x,x) + δ

) ∗G
(
x,x,x,Eμ(x,x,x) + δ

) ∗ · · ·
∗G

(
xn–,xn–,xn,Eμ(xn–,xn–,xn) + δ

)
≥ min

{
( –μ), ( –μ), . . . , ( –μ)

} ≥  – λ,

which implies, by Definition . of Eμ, that

Eλ(x,x,xn) ≤ Eμ(x,x,x) + Eμ(x,x,x) + · · · + Eμ(xn–,xn–,xn) + (n – )δ.

Since δ >  is arbitrary, we have

Eλ(x,x,xn) ≤ Eμ(x,x,x) + Eμ(x,x,x) + · · · + Eμ(xn–,xn–,xn).

() Since G is continuous in its fourth argument, by Definition . of Eμ, we have

G(xn,xn,x,η) >  – λ for all η > .

This proved the lemma. �

Lemma . Let (X,G,∗) be a GF space and {yn} be a sequence in X. If there exists φ ∈ �

such that

G
(
yn, yn, yn+,φ(t)

) ≥ G(yn–, yn–, yn, t) ∗G(yn, yn, yn+, t) (.)

for all t >  and n = , , . . . , then {yn} is a Cauchy sequence in X.

Proof Let {Eλ(x, y, z)}λ∈(,] be defined by (.). For each λ ∈ (, ] and n ∈ N, putting an =
Eλ(yn–, yn–, yn), we will prove that

an+ ≤ φ(an), ∀n ∈N. (.)

Since φ is upper semi-continuous from right, for given ε >  and each an, there exists
pn > an such that φ(pn) < φ(an) + ε. From the definition of Eλ by (.), it follows from
pn > an = Eλ(yn–, yn–, yn) that G(yn–, yn–, yn,pn) >  – λ for all n ∈N.
Thus, by (.), (.) and Lemma ., we get

G
(
yn, yn, yn+,φ

(
max{pn,pn+}

))
≥ G

(
yn–, yn–, yn,max{pn,pn+}

) ∗G
(
yn, yn, yn+,max{pn,pn+}

)
≥ G(yn–, yn–, yn,pn) ∗G(yn, yn, yn+,pn+) >  – λ.
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Again by Definition ., we get

Eλ(yn, yn, yn+) ≤ φ
(
max{pn,pn+}

)
=max

{
φ(pn),φ(pn+)

}
≤ max

{
φ(an),φ(an+)

}
+ ε.

By the arbitrariness of ε, we have

an+ = Eλ(yn, yn, yn+)≤ max
{
φ(an),φ(an+)

}
. (.)

So, we can infer that an+ ≤ φ(an). If not, then by (.), we have an+ ≤ φ(an+) < an+, which
is a contradiction. Hence, (.) implies that an+ ≤ φ(an), and (.) is proved.
Again and again using (.), we get

Eλ(yn, yn, yn+) ≤ φ
(
Eλ(yn–, yn–, yn)

) ≤ · · · ≤ φn(Eλ(y, y, y)
)

for all n ∈ N.

By Lemma ., for each λ ∈ (, ], there exists μ ∈ (,λ] such that

Eλ(yn, yn, ym) ≤
m–∑
i=n

Eμ(yi, yi, yi+), ∀m,n ∈ N withm > n. (.)

Since φ ∈ �, by condition (�-) we have
∑∞

n= φn(Eμ(y, y, y)) < +∞. So, for given ε >
, there exists n ∈ N such that

∑∞
i=n φi(Eμ(y, y, y)) < ε. Thus, it follows from (.) that

Eλ(yn, yn, ym) ≤
∞∑
i=n

φi(Eμ(y, y, y)
)
< ε, ∀n≥ n,

which implies that G(yn, yn, ym, ε) >  – λ for all m,n ∈ N with m > n ≥ n. Therefore, {yn}
is a Cauchy sequence in X. �

3 Main results
Definition . [] Let (X,≤) be a partially ordered set. The mapping F is said to have
the mixed monotone property if F is monotone non-decreasing in its first argument and
is monotone non-increasing in its second argument; that is, for any x, y ∈ X,

x,x ∈ X, x ≤ x ⇒ F(x, y) ≤ F(x, y), (.)

and

y, y ∈ X, y ≤ y ⇒ F(x, y) ≥ F(x, y). (.)

Definition . [] An element (x, y) ∈ X × X is called a coupled fixed point of the map-
ping F : X ×X if

F(x, y) = x, F(y,x) = y.

http://www.fixedpointtheoryandapplications.com/content/2012/1/196
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Definition . [] Let (X,≤) be a partially ordered set and F : X×X → X and g : X → X.
We say F has the mixed g-monotone property if F is monotone g-non-decreasing in its
first argument and is monotone g-non-increasing in its second argument; that is, for any
x, y ∈ X,

x,x ∈ X, g(x) ≤ g(x) =⇒ F(x, y) ≤ F(x, y), (.)

and

y, y ∈ X, g(y) ≤ g(y) =⇒ F(x, y) ≥ F(x, y). (.)

Note that if g is the identity mapping, then Definition . reduces to Definition ..

Example . Let X = [–, ] with the natural ordering of real numbers. Let g : X → X and
F : X ×X → X be defined as

g(x) = x, F(x, y) = x – y.

Then F is not mixed monotone but mixed g-monotone.

Definition . [] Let X be a nonempty set, F : X ×X → X and g : X → X, then
() An element (x, y) ∈ X ×X is called a coupled coincidence point of the mappings F

and g if

F(x, y) = g(x), F(y,x) = g(y).

() An element (x, y) ∈ X ×X is called a common coupled fixed point of the mappings F
and g if

F(x, y) = g(x) = x, F(y,x) = g(y) = y.

Definition . The mappings F : X ×X → X and g : X → X are said to be compatible if

lim
n→∞G

(
gF(xn, yn), gF(xn, yn),F

(
g(xn), g(yn)

)
, t

)
= 

and

lim
n→∞G

(
gF(yn,xn), gF(yn,xn),F

(
g(yn), g(xn)

)
, t

)
= 

for all t >  whenever {xn} and {yn} are sequences in X such that

lim
n→∞F(xn, yn) = lim

n→∞ g(xn) = x, lim
n→∞F(yn,xn) = lim

n→∞ g(yn) = y

for all x, y ∈ X are satisfied.

http://www.fixedpointtheoryandapplications.com/content/2012/1/196
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Definition . [] The mappings F : X ×X → X and g : X → X are called w-compatible
if

g
(
F(x, y)

)
= F(gx, gy), g

(
F(y,x)

)
= F(gy, gx)

whenever g(x) = F(x, y) and g(y) = F(y,x) for some (x, y) ∈ X ×X.

Remark . It is easy to prove that if F and g are compatible then they are w-compatible.

Theorem . Let (X,≤) be a partially ordered set and (X,G,∗) be a complete GF space.
Let F : X ×X → X and g : X → X be two mappings such that F has the mixed g-monotone
property and there exists φ ∈ � such that

G
(
F(x, y),F(x, y),F(u, v),φ(t)

)
≥ G(gx, gx, gu, t) ∗G

(
gx, gx,F(x, y), t

) ∗G
(
gu, gu,F(u, v), t

)
(.)

for all x, y,u, v ∈ X, t >  forwhich g(x)≤ g(u) and g(y) ≥ g(v), or g(x) ≥ g(u) and g(y) ≤ g(v).
Suppose F(X ×X) ⊆ g(X), g is continuous and F and g are compatible. Also suppose
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence xn → x, then xn ≤ x for all n, (.)

(ii) if a non-increasing sequence yn → y, then yn ≥ y for all n. (.)

If there exists x, y ∈ X such that g(x) ≤ F(x, y) and g(y) ≥ F(y,x), then there exist
x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y,x); that is, F and g have a coupled coincidence
point in X.

Proof Let x, y ∈ X be such that g(x) ≤ F(x, y) and g(y) ≥ F(y,x). Since F(X ×X) ⊆
g(X), we can choose x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y,x). Continuing
in this way, we construct two sequences {xn} and {yn} in X such that

g(xn+) = F(xn, yn), g(yn+) = F(yn,xn), for all n ≥ . (.)

We shall show that

g(xn)≤ g(xn+), (.)

g(yn) ≥ g(yn+) (.)

for all n ≥ .
We shall use the mathematical induction. Let n = . Since g(x) ≤ F(x, y) and g(y) ≥

F(y,x), and as g(x) = F(x, y) and g(y) = F(y,x), we have g(x) ≤ g(x) and g(y) ≥
g(y). Thus, (.) and (.) hold for n = . Suppose now that (.) and (.) hold for
some fixed n ≥ . Then since g(xn) ≤ g(xn+) and g(yn) ≥ g(yn+), and as F has the mixed

http://www.fixedpointtheoryandapplications.com/content/2012/1/196
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g-monotone property, from (.) and (.),

g(xn+) = F(xn, yn) ≤ F(xn+, yn),

F(yn+,xn) ≤ F(yn,xn) = g(yn+),

⎫⎬
⎭ (.)

and from (.) and (.),

g(xn+) = F(xn+, yn+) ≥ F(xn+, yn),

F(yn+,xn) ≥ F(yn+,xn+) = g(yn+).

⎫⎬
⎭ (.)

Now from (.) and (.), we get g(xn+) ≤ g(xn+) and g(yn+) ≥ g(yn+). Thus, by math-
ematical induction, we conclude that (.) and (.) hold for all n≥ . Therefore,

g(x)≤ g(x)≤ g(x) ≤ · · · ≤ g(xn)≤ g(xn+) ≤ · · · (.)

and

g(y) ≥ g(y) ≥ g(y)≥ · · · ≥ g(yn) ≥ g(yn+) ≥ · · · . (.)

By putting (x = xn–, y = yn–, u = xn, v = yn) in (.), we get

G
(
F(xn–, yn–),F(xn–, yn–),F(xn, yn),φ(t)

)
≥ G(gxn–, gxn–, gxn, t) ∗G

(
gxn–, gxn–,F(xn–, yn–), t

) ∗G
(
gxn, gxn,F(xn, yn), t

)
.

So, by (.), we have

G
(
g(xn), g(xn), g(xn+),φ(t)

)
≥ G(gxn–, gxn–, gxn, t) ∗G(gxn–, gxn–, gxn, t) ∗G(gxn, gxn, gxn+, t)

=G(gxn–, gxn–, gxn, t) ∗G(gxn, gxn, gxn+, t).

Now, by Lemma ., {g(xn)} is a Cauchy sequence.
By putting (x = yn, y = xn, u = yn–, v = xn–) in (.), we get

G
(
F(yn–,xn–),F(yn–,xn–),F(yn,xn),φ(t)

)
≥ G(gyn–, gyn–, gyn, t) ∗G

(
gyn–, gyn–,F(yn–,xn–), t

) ∗G
(
gyn, gyn,F(yn,xn), t

)
.

So, by (.), we have

G
(
gyn, gyn, gyn+,φ(t)

)
≥ G(gyn–, gyn–, gyn, t) ∗G(gyn–, gyn–, gyn, t) ∗G(gyn)gyn, gyn+, t)

=G(gyn–, gyn–, gyn, t) ∗G(gyn, gyn, gyn+, t).

Now, by Lemma ., {g(yn)} is also a Cauchy sequence.
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Since X is complete, there exist x, y ∈ X such that

lim
n→∞F(xn, yn) = lim

n→∞ g(xn) = x, lim
n→∞F(yn,xn) = lim

n→∞ g(yn) = y. (.)

Since F and g are compatible, we have by (.)

lim
n→∞G

(
g
(
F(xn, yn)

)
, g

(
F(xn, yn)

)
,F

(
g(xn), g(yn)

)
, t

)
=  (.)

and

lim
n→∞G

(
g
(
F(yn,xn)

)
, g

(
F(yn,xn)

)
,F

(
g(yn), g(xn)

)
, t

)
=  (.)

for all t > . Next, we prove that g(x) = F(x, y) and g(y) = F(y,x).
Let (a) hold. Since F and g are continuous, by Lemma ., taking limits as n → ∞ in

(.) and (.), we get

G
(
g(x), g(x),F(x, y), t

)
= , G

(
g(y), g(y),F(y,x), t

)
= 

for all t > . We have g(x) = F(x, y), g(y) = F(y,x).
Next, we suppose that (b) holds. By (.), (.), (.), we have for all n≥ 

g(xn)≤ x, g(yn) ≥ y. (.)

Since F and g are compatible and g is continuous, by (.) and (.), we have

lim
n→∞ g(gxn) = gx = lim

n→∞ g
(
F(xn, yn)

)
= lim

n→∞F
(
g(xn), g(yn)

)
(.)

and

lim
n→∞ g(gyn) = gy = lim

n→∞ g
(
F(yn,xn)

)
= lim

n→∞F
(
g(yn), g(xn)

)
. (.)

Now, we have

G
(
gx, gx,F(x, y),φ(t)

) ≥ G
(
gx, gx, g(gxn+),φ(t) – φ(kt)

)
∗G

(
g(gxn+), g(gxn+),F(x, y),φ(kt)

)

for all  ≤ k < . Taking the limit as n → ∞ in the above inequality, by continuity of G,
using (.) and (.), we have

G
(
gx, gx,F(x, y),φ(t)

)
≥ lim

n→∞
{
G

(
gx, gx, g(gxn+),φ(t) – φ(kt)

)
∗G

(
g
(
F(xn, yn)

)
, g

(
F(xn, yn)

)
,F(x, y),φ(kt)

)}
≥ lim

n→∞G
(
F(gxn, gyn),F(gxn, gyn),F(x, y),φ(kt)

)
.
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By (.), (.) and the above inequality, we have that

G
(
gx, gx,F(x, y),φ(t)

)
≥ lim

n→∞
{
G

(
g(gxn), g(gxn), gx,kt

)
∗G

(
g(gxn), g(gxn),F(gxn, gyn),kt

) ∗G
(
gx, gx,F(x, y),kt

)}
≥ G

(
gx, gx,F(x, y),kt

)
.

Letting k → , which implies that gx = F(x, y) by Lemma ., and similarly, by the virtue
of (.), (.) and (.), we get gy = F(y,x). Thus, we have proved that F and g have a
coupled coincidence point in X.
This completes the proof of Theorem .. �

Taking g = I (the identity mapping) in Theorem ., we get the following consequence.

Corollary . Let (X,≤) be a partially ordered set and (X,G,∗) be a complete GF space.
Let F : X × X → X be a mapping such that F has the mixed monotone property and there
exists φ ∈ � such that

G
(
F(x, y),F(x, y),F(u, v),φ(t)

) ≥ G(x,x,u, t) ∗G
(
x,x,F(x, y), t

) ∗G
(
u,u,F(u, v), t

)
for all x, y,u, v ∈ X, t >  for which x≤ u and y ≥ v. Suppose
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence xn → x, then xn ≤ x for all n,
(ii) if a non-increasing sequence yn → y, then yn ≥ y for all n.

If there exists x, y ∈ X such that x ≤ F(x, y) and y ≥ F(y,x), then there exist x, y ∈
X such that x = F(x, y) and y = F(y,x); that is, F has a coupled fixed point in X.
Now, we shall prove the existence and uniqueness theorem of a coupled common fixed

point. Note that if (S,≤) is a partially ordered set, then we endow the product S × S with
the following partial order:

for (x, y), (u, v) ∈ S × S, (x, y) ≤ (u, v) ⇔ x≤ u, y ≥ v.

Theorem . In addition to the hypotheses of Theorem ., suppose that for every
(x, y), (x
, y
) ∈ X × X, there exists a (u, v) ∈ X × X satisfying g(u) ≤ g(v) or g(v) ≤ g(u)
such that (F(u, v),F(v,u)) ∈ X × X is comparable to (F(x, y),F(y,x)), (F(x
, y
),F(y
,x
)).
Then F and g have a unique common coupled fixed point; that is, there exists a unique
(x, y) ∈ X ×X such that

x = g(x) = F(x, y), y = g(y) = F(y,x).

Proof From Theorem ., the set of coupled coincidence points is nonempty. We shall
show that if (x, y) and (x
, y
) are coupled coincidence points, that is, if g(x) = F(x, y), g(y) =
F(y,x) and g(x
) = F(x
, y
), g(y
) = F(y
,x
), then

g(x) = g
(
x


)
, g(y) = g

(
y


)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/196
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By assumption, there is (u, v) ∈ X × X such that (F(u, v),F(v,u)) is comparable with
(F(x, y),F(y,x)), (F(x
, y
),F(y
,x
)). Put u = u, v = v and choose u, v ∈ X so that g(u) =
F(u, v) and g(v) = F(v,u). Then, similarly as in the proof of Theorem ., we can in-
ductively define sequences {g(un)} and {g(vn)} such that

g(un+) = F(un, vn), g(vn+) = F(vn,un).

With the similar proof as in Theorem ., we can prove that the limits of {g(un)} and
{g(vn)} exist.
Since (F(x, y),F(y,x)) = (g(x), g(y)) = (g(x), g(y)) and (F(u, v),F(v,u)) = (g(u), g(v)) are

comparable, it is easy to show that (g(x), g(y)) and (g(un), g(vn)) are comparable for all n ≥ .
Thus, from (.),

G
(
g(x), g(x), g(un+),φ(t)

)
=G

(
F(x, y),F(x, y),F(un, vn),φ(t)

)
≥ G

(
g(x), g(x), g(un), t

) ∗G
(
g(x), g(x),F(x, y), t

) ∗G
(
g(un), g(un),F(un, vn), t

)
≥ G

(
g(x), g(x), g(un), t

) ∗G
(
g(un), g(un),F(un, vn), t

)
G

(
g(y), g(y), g(vn+),φ(t)

)
=G

(
F(y,x),F(y,x),F(vn,un),φ(t)

)
≥ G

(
g(y), g(y), g(vn), t

) ∗G
(
g(y), g(y),F(y,x), t

) ∗G
(
g(vn), g(vn),F(vn,un), t

)
≥ G

(
g(y), g(y), g(vn), t

) ∗G
(
g(vn), g(vn),F(vn,un), t

)
for each n≥ . Letting n → ∞, we get

lim
n→∞ g(un) = g(x), lim

n→∞ g(vn) = g(y). (.)

Similarly, one can prove that

lim
n→∞ g(un) = g

(
x


)
, lim

n→∞ g(vn) = g
(
y


)
. (.)

By (.) and (.), we have

G
(
gx, gx, gx
, t

) ≥ G
(
gx, gx, gun+,

t


)
∗G

(
gun+, gun+, gx
,

t


)
→  (n→ ∞),

which shows that g(x) = g(x
).
Similarly, one can prove that g(y) = g(y
). Thus, we proved (.).
Since g(x) = F(x, y) and g(y) = F(y,x), by the compatibility of F and g , we can get the

w-compatibility of F and g , which implies

g
(
g(x)

)
= g

(
F(x, y)

)
= F

(
g(x), g(y)

)
, (.)

and

g
(
g(y)

)
= g

(
F(y,x)

)
= F

(
g(y), g(x)

)
. (.)
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Denote g(x) = z, g(y) = w. Then from (.) and (.),

g(z) = F(z,w), g(w) = F(w, z). (.)

Thus, (z,w) is a coupled coincidence point. From (.) with x
 = z, y
 = w, it also follows
g(z) = g(x), g(w) = g(y), that is,

g(z) = z, g(w) = w. (.)

From (.) and (.), we get

z = g(z) = F(z,w), w = g(w) = F(w, z).

Therefore, (z,w) is a common coupled fixed point of F and g . To prove the uniqueness,
assume that (p,q) is another coupled common fixed point. Then by (.) we have p =
g(p) = g(z) = z and q = g(q) = g(w) = w. �

From Remark ., let (X,G,∗) be a symmetric GF space. From Theorem ., we get the
following

Corollary . Let (X,≤) be a partially ordered set and (X,F ,∗) be a complete fuzzy metric
space. Let F : X × X → X and g : X → X be two mappings such that F has the mixed g-
monotone property and there exists φ ∈ � such that

M
(
F(x, y),F(u, v),φ(t)

) ≥ M(gx, gu, t) ∗M
(
gx,F(x, y), t

) ∗M
(
gu,F(u, v), t

)
for all x, y,u, v ∈ X, t > , for which g(x) ≤ g(u) and g(y) ≥ g(v), or g(x) ≥ g(u) and g(y) ≤
g(v).
Suppose F(X ×X) ⊆ g(X), g is continuous and F and g are compatible. Also suppose
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence xn → x, then xn ≤ x for all n,
(ii) if a non-increasing sequence yn → y, then yn ≥ y for all n.

If there exist x, y ∈ X such that g(x) ≤ F(x, y) and g(y) ≥ F(y,x), then there exist
x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y,x), that is, F and g have a coupled coincidence
point in X.

Remark . Compared with the results in [, ], we can find that Theorem . is differ-
ent in the following aspects:
() We assume that F and g are compatible, which is weaker than the conditions in

[, ], where Theorem . in [] assumes commutation for F and g , and Theorem .
in [] requires g to be a monotone function.
() We have a different contractive condition from [, ] even in a metric space.
() In our paper, we assume that φ ∈ �, which is a stronger condition than that in

[, ]. But we would like to point out that in the case of φ(t) = kt, where  < k < , the
two conditions are equivalent.
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Next, we give an example to demonstrate Theorem ..

Example . Let X = [, ], a ∗ b = min{a,b}. Then (X,≤) is a partially ordered set with
the natural ordering of real numbers. Let

G(x, y, z, t) =
t

t + |x – y| + |y – z| + |z – x|

for all x, y, z ∈ [, ]. Then (X,G,∗) is a complete GF space.
Let g : X → X and F : X ×X → X be defined as

g(x) = x, for all x ∈ X,

F(x, y) =

⎧⎨
⎩

x–y
 , if x, y ∈ [, ],x≥ y,

, if x < y.

F obeys the mixed g-monotone property.
Let φ(t) = t

 for t ∈ [,∞). Let {xn} and {yn} be two sequences in X such that

lim
n→∞F(xn, yn) = a, lim

n→∞ g(xn) = a, lim
n→∞F(yn,xn) = b, lim

n→∞ g(yn) = b,

then a = , b = . Now, for all n≥ ,

g(xn) = xn, g(yn) = yn,

F(xn, yn) =

⎧⎨
⎩

xn–yn
 , if xn ≥ yn,

, if xn < yn

and

F(yn,xn) =

⎧⎨
⎩

yn–xn
 , if yn ≥ xn,

, if yn < xn.

Then it follows that

G
(
g
(
F(xn, yn)

)
, g

(
F(xn, yn)

)
,F

(
g(xn), g(yn)

)
, t

) →  as n→ ∞,

G
(
g
(
F(yn,xn)

)
, g

(
F(yn,xn)

)
,F

(
g(yn), g(xn)

)
, t

) →  as n→ ∞.

Hence, the mappings F and g are compatible in X. Also, x =  and y = c are two points
in X such that

g(x) = g() = F(, c) = F(x, y)

and

g(y) = g(c) = c ≥ c


= F(c, ) = F(y,x).
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We next verify the inequality of Theorem .. We take x, y,u, v ∈ X such that g(x) ≤ g(u)
and g(y) ≥ g(v), that is, x ≤ u, y ≥ v.
We consider the following cases:
Case : x≥ y and u≥ v, then

G
(
F(x, y),F(x, y),F(u, v),φ(t)

)
= G

(
x – y


,
x – y


,
u – v


,φ(t)

)

=
t


t
 + | (x–u)–(y–v) |

=
t

t + |(x – u) – (y – v)|
≥ t

t + |u – u–v
 |

= G
(
g(u), g(u),F(u, v), t

)
≥ G

(
g(x), g(x), g(u), t

) ∗G
(
g(x), g(x),F(x, y), t

)
∗G

(
g(u), g(u),F(u, v), t

)
.

Case : x ≥ y, u < v. Since x≤ u, then u < v cannot happen.
Case : x < y and u≥ v, then

G
(
F(x, y),F(x, y),F(u, v),φ(t)

)
= G

(
,,

u – v


,φ(t)

)

=
t


t
 + | (u–v) |

=
t

t + |u – v|
≥ t

t + |u – x|
= G

(
g(x), g(x), g(u), t

)
≥ G

(
g(x), g(x), g(u), t

) ∗G
(
g(x), g(x),F(x, y), t

)
∗G

(
g(u), g(u),F(u, v), t

)
.

Case : x < y and u < v with x ≤ u and y ≥ v, then F(x, y) =  and F(u, v) = , that is,
G(F(x, y),F(x, y),F(u, v),φ(t)) = . Obviously, (.) is satisfied.
Thus, it is verified that the functions F , g , φ satisfy all the conditions of Theorem ..

Here (, ) is the coupled coincidence point of F and g in X, which is also their common
coupled fixed point.
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