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Abstract
In this paper, we introduce a new iterative procedure which is constructed by the
modified block hybrid projection method for solving a common solution of fixed
point problems for two countable families of uniformly total quasi-φ-asymptotically
nonexpansive and uniformly Lipschitz continuous mappings. Under suitable
conditions, some strong convergence theorems are established in a uniformly
smooth and strictly convex Banach space with the Kadec-Klee property. Finally, we
apply the problem of a strong convergence theorem concerning maximal monotone
operators in Banach spaces.
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1 Introduction
Throughout this paper, we assume that E is a real Banach space, E* is the dual space of E.
Let C be a nonempty, closed, and convex subset of E and 〈·, ·〉 be the pairing between
E and E*. We denote the strong convergence and weak convergence of a sequence {xn}
by xn → x and xn ⇀ x, respectively, and J : E → E* is the normalized duality mapping
defined by

Jx =
{
f ∈ E* : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E. (.)

In the sequel, we use F(T) to denote the set of fixed points of a mapping T and use R
and R

+ to denote the set of all real numbers and the set of all nonnegative real numbers,
respectively.

Definition . Let E be a Banach space.
() E is said to be strictly convex if ‖x+y‖

 <  for all x, y ∈UE = {z ∈ E : ‖z‖ = } with x �= y.
() E is said to be uniformly convex if for each ε ∈ (, ], there exists δ >  such that

‖x+y‖
 ≤  – δ for all x, y ∈UE with ‖x – y‖ > ε.
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() E is said to be smooth if the limit (.)

lim
t–→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x, y ∈UE .
() E is said to be uniformly smooth if the limit (.) is attained uniformly for all

x, y ∈UE .

Remark . The basic properties below hold (see [, ]).
() If E is a real uniformly smooth Banach space, then J is uniformly continuous on

each bounded subset of E.
() If E is a strictly convex reflexive Banach space, then J– is hemicontinuous, that is,

J– is norm-to-weak*-continuous.
() If E is a smooth and strictly convex reflexive Banach space, then J is single-valued,

one-to-one, and onto.
() A Banach space E is uniformly smooth if and only if E* is uniformly convex.
() Each uniformly convex Banach space E has the Kadec-Klee property; that is, for any

sequence {xn} ⊂ E, if {xn} ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x.
() A Banach space E is strictly convex if and only if J is strictly monotone; that is,

〈
x – y,x* – y*

〉
> , whenever x, y ∈ E,x �= y, and x* ∈ Jx, y* ∈ Jy.

() Both uniformly smooth Banach spaces and uniformly convex Banach spaces are
reflexive.

() E* is uniformly convex, then J is uniformly norm-to-norm continuous on each
bounded subset of E.

Let E be a smooth and strictly convex reflexive Banach space, and let C be a nonempty,
closed, and convex subset of E. We assume that the Lyapunov functional φ : E × E → R

+

is defined by [, ]

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

From the definition of φ, it is easy to see that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖). (.)

Let C be a nonempty, closed, and convex subset of E. For each x ∈ E, the generalized
projection [] �C : E → C is defined by

�C(x) = argmin
y∈C φ(x, y).

Lemma . [, ] If C is a nonempty, closed, and convex subset of a smooth and strictly
convex reflexive real Banach space E, then
() for x ∈ E and u ∈ C, one has

u = �C(x) ⇔ 〈u – y, Jx – Ju〉 ≥ , ∀y ∈ C.
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() φ(x,�C(y)) + φ(�C(y), y) ≤ φ(x, y), ∀x ∈ C, y ∈ E.
() φ(x, y) =  if and only if x = y, ∀x, y ∈ C.

Remark . If E is a real Hilbert space H , then φ(x, y) = ‖x– y‖ and �C = PC (the metric
projection of H onto C).

Definition . Let E be a smooth, strictly convex, and reflexive real Banach space, C be a
nonempty, closed, and convex subset of E, T : C → C be a mapping, and Fix(T) be the set
of fixed points of T .
() A point p ∈ C is said to be an asymptotic fixed point of T if there exists a sequence

{xn} ⊂ C such that xn ⇀ p and ‖xn – Txn‖ → . We denote the set of all asymptotic
fixed points of T by F̂(T).

() A point p ∈ C is said to be a strong asymptotic fixed point of T if there exists a
sequence {xn} ⊂ C such that xn → p and ‖xn – Txn‖ → . We denote the set of all
strong asymptotic fixed points of T by F̃(T).

Definition . Let E be a smooth, strictly convex, and reflexive real Banach space, and let
C be a nonempty, closed, and convex subset of E.
() A mapping T : C → C is said to be closed if for each {xn} ⊂ C with xn → x and

Txn → y, then Tx = y.
() A mapping T : C → C is said to be relatively nonexpansive [, ] if Fix(T) �= ∅,

Fix(T) = F̂(T), and

φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,p ∈ Fix(T).

() A mapping T : C → C is said to be weak relatively nonexpansive [] if Fix(T) �= ∅,
Fix(T) = F̃(T), and

φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,p ∈ Fix(T).

() A mapping T : C → C is said to be quasi-φ-nonexpansive (relatively quasi-
nonexpansive) if Fix(T) �= ∅ and

φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,p ∈ Fix(T).

() A mapping T : C → C is said to be quasi-φ-asymptotically nonexpansive
(asymptotically relatively nonexpansive) if Fix(T) �= ∅ and there exists a sequence
{kn} ⊂ [,∞) with kn →  such that

φ
(
p,Tnx

) ≤ knφ(p,x), ∀x ∈ C,p ∈ Fix(T), and ∀n≥ .

() A mapping T : C → C is said to be total quasi-φ-asymptotically nonexpansive if
Fix(T) �= φ and there exists nonnegative real sequences {νn} and {μn} with νn → ,
μn →  (as n → ∞), and a strictly increasing continuous function ζ :R+ →R

+ with
ζ () =  such that

φ
(
p,Tnx

) ≤ φ(p,x) + νnζ
(
φ(p,x)

)
+μn, ∀x ∈ C,p ∈ Fix(T), and ∀n≥ .
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Remark . From Definition ., it is easy to know that
() every relatively nonexpansive mapping is closed;
() every quasi-φ-asymptotically nonexpansive mapping is a total quasi-φ-

asymptotically nonexpansive mapping, but the converse is not true;
() every quasi-φ-nonexpansive mapping is a quasi-φ-asymptotically nonexpansive

mapping with {kn = }, but the converse is not true;
() every weak relatively nonexpansive mapping is a quasi-φ-nonexpansive mapping

because it does not require the condition Fix(T) = F̃(T), but the converse is not true;
() every relatively nonexpansive mapping is a weak relatively nonexpansive mapping,

but the converse is not true.

Regarding the iterative methods of nonlinear operator equations for relatively nonex-
pansive mappings, in Matsushita and Takahashi [] and in  Plubtieng and Ung-
chittrakool [] proved the following result, respectively.

Theorem MT Let E be a uniformly convex and uniformly smooth Banach space, let C
be a nonempty closed and convex subset of E. Let T : C → C be a relatively nonexpansive
mapping, and let {αn} be a real sequence in [, ) with lim supn→∞ αn < . Let {xn} be a
sequence defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = J–(αnJx + ( – αn)JTxn),

Cn = {z ∈ C : φ(z, yn) ≤ φ(z,xn)},
Qn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ = �Cn∩Qn (x), ∀n≥ ,

(.)

where J is the duality mapping on E. If Fix(T) �= ∅, then the sequence {xn} converges strongly
to �Fix(T)(x), where �Fix(T)(·) is the generalized projection from C onto Fix(T).

TheoremPU Let E be a uniformly convex and uniformly smooth Banach space, let C be a
nonempty, closed, and convex subset of E. Let T ,S : C → C be two relatively nonexpansive
mappings with 
 := Fix(T)∩ Fix(S) �= ∅. Let {xn} be a sequence defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = J–(αnJx + ( – αn)JTzn),

zn = J–(β ()
n Jxn + β

()
n JTxn + β

()
n JSxn),

Hn = {z ∈ C : φ(z, yn) ≤ φ(z,xn) + αn(‖x‖ + 〈z, Jxn – Jx〉)},
Wn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ = �Hn∩Wn (x), ∀n≥ ,

(.)

with the following restrictions:
()  < αn <  and lim supn→∞ αn < ;
()  ≤ β

()
n ,β ()

n ,β ()
n ≤ , limn→∞ β

()
n = , and lim infn→∞ β

()
n β

()
n > .

Then the sequence {xn} converges strongly to �
(x), where �
(·) is the generalized projec-
tion from C onto 
.
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In , Su et al. [] introduced the concept of a countable family of weak relatively
nonexpansive mappings and proved the following theorem which extends and improves
TheoremMT and Theorem PU.

TheoremSXZ Let E be a uniformly convex and uniformly smooth real Banach space, let C
be a nonempty, closed, and convex subset of E. Let {Tn}∞n=, {Sn}∞n= : C → C be two count-
able families of weak relatively nonexpansive mappings such that 
 := (

⋂∞
n= Fix(Tn)) ∩

(
⋂∞

n= Fix(Sn)) �= ∅.
Let {xn} be a sequence defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = J–(αnJxn + ( – αn)Jzn),

zn = J–(β ()
n Jxn + β

()
n JTnxn + β

()
n JSnxn),

Cn = {z ∈ Cn– ∩Qn– : φ(z, yn) ≤ φ(z,xn)},
C = {z ∈ C : φ(z, y) ≤ φ(z,x)},
Qn = {z ∈ Cn– ∩Qn– : 〈xn – z, Jx – Jxn〉 ≥ },
Q = C,

xn+ = �Cn∩Qn (x), ∀n≥ ,

(.)

with the conditions:
()  ≤ αn ≤ α <  for some α ∈ (, );
() β

()
n ,β ()

n ,β ()
n ∈ (, ) such that β

()
n + β

()
n + β

()
n =  for each n≥ ;

() lim infn→∞ β
()
n β

()
n >  and lim infn→∞ β

()
n β

()
n > .

Then the sequence {xn} converges strongly to �
(x), where �
(·) is the generalized projec-
tion from C onto 
.

In , Chang et al. [] proved some approximation theorems for common fixed points
of countable families of total quasi-φ-asymptotically nonexpansive mappings which con-
tain several kinds of mappings as their special cases in Banach spaces. Next, Chang et al.
[] modified the Halpern-type iteration algorithm for a total quasi-φ-asymptotically non-
expansive mapping to have the strong convergence under a limit condition only in the
framework of Banach spaces. Recently, Chang, Lee, and Chan [] introduced a block
hybrid projection algorithm for solving the convex feasibility problem and the general-
ized equilibrium problems for an infinite family of total quasi-φ-asymptotically nonex-
pansive mappings and they proved strong convergence theorems in a uniformly smooth
and strictly convex Banach space with the Kadec-Klee property.

Theorem CLCY Let E be a uniformly smooth and strictly convex Banach space with
the Kadec-Klee property, let C be a nonempty, closed, and convex subset of E, and let
{Ti}∞i= : C → C be a countable family of closed, uniformly Li-Lipschitz continuous, and
uniformly total quasi-φ-asymptotically nonexpansive mappings with nonnegative real se-
quences {νn}, {μn}, and a strictly increasing continuous function ζ : R+ → R

+ such that

http://www.fixedpointtheoryandapplications.com/content/2012/1/198
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μ = , νn → , μn →  (as n→ ∞), and ζ () = . Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,C = C,

zn = J–(αnJxn + ( – αn)Jzn),

yn = J–(βn,Jxn +
∑∞

i= βn,iJTn
i xn),

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) + ξn},
xn+ = �Cn+ (x), ∀n≥ ,

(.)

where ξn = νn supp∈
 ζ (φ(p,xn)) +μn, �Cn+ is the generalized projection of E onto Cn+. Let
{βn,}, {βn,i}, and {αn} be sequences in [, ] satisfying the following conditions:
() for each n≥ , βn, +

∑∞
i= βn,i = ;

() lim infn→∞ βn,βn,i >  for all i≥ ;
()  ≤ αn ≤ α <  for some α ∈ (, ).

If
 :=
⋂∞

i= Fix(Ti) is a nonempty and bounded subset of C, then the sequence {xn} converges
strongly to �
(x).

Theorem CLCZ Let E be a uniformly smooth and strictly convex Banach space with
the Kadec-Klee property, let C be a nonempty, closed, and convex subset of E, and let
{Tm}∞m= : C → C be a countable family of closed, uniformly Lm-Lipschitz continuous, and
uniformly total quasi-φ-asymptotically nonexpansive mappings with nonnegative real se-
quences {νn}, {μn}, and a strictly increasing continuous function ζ : R+ → R

+ such that
μ = , νn → , μn →  (as n→ ∞), and ζ () = . Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,C = C,

yn,m = J–(αnJx + ( – αn)JTn
mxn), m ≥ ,

Cn+ = {z ∈ Cn : supm≥ φ(z, yn,m) ≤ αnφ(z,x) + ( – α)φ(z,xn) + ξn},
xn+ = �Cn+ (x), ∀n≥ ,

(.)

where ξn = νn supp∈
 ζ (φ(p,xn))+μn, and�Cn+ is the generalized projection of E onto Cn+.
If 
 :=

⋂∞
m= Fix(Tm) is a nonempty and bounded subset of C, then the sequence {xn} con-

verges strongly to �
(x).

Theorem CLC Let E be a uniformly smooth and strictly convex Banach space with
the Kadec-Klee property, let C be a nonempty, closed, and convex subset of E, and let
{Si}∞i= : C → C be a countable family of closed, uniformly Li-Lipschitz continuous, and
uniformly total quasi-φ-asymptotically nonexpansive mappings with nonnegative real se-
quences {νn}, {μn}, and a strictly increasing continuous function ζ : R+ → R

+ such that
μ = , νn → , μn →  (as n → ∞), and ζ () = . Let Bi : C → E* (i = , , , . . . ,N ) be
a finite family of continuous and monotone mappings. Let ψi : C → R (i = , , , . . . ,N )
be a finite family of lower semi-continuous and convex functions, and let Fi : C × C → R

(i = , , , . . . ,N ) be a finite family of bifunctions satisfying the conditions (A)-(A). Sup-
pose that 
 := (

⋂N
i= Fi) ∩ (

⋂∞
i= Fix(Si)) is a nonempty and bounded subset of C, where Fi

(i = , , , . . . ,N ) is the set of the following generalized mixed quasi-equilibrium problems:

Fi(u, y) + 〈Biu, y – u〉 +ψi(y) –ψi(u) ≥ , ∀y ∈ C, i = , , , . . . ,N .

http://www.fixedpointtheoryandapplications.com/content/2012/1/198


Phuangphoo and Kumam Fixed Point Theory and Applications 2012, 2012:198 Page 7 of 23
http://www.fixedpointtheoryandapplications.com/content/2012/1/198

Let {xn} be a sequence generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily, C = C,

yn = J–(βnJxn + ( – βn)Jzn),

zn = J–(αn,Jxn +
∑∞

i= αn,iJSni xn),

u(i)n = Kfi ,riKfi–,ri– · · ·Kf,rKf,ryn, i = , , , . . . ,N ,

Cn+ = {v ∈ Cn :maxi=,,,...,N φ(v,u(i)n ) ≤ φ(v,xn) + ξn},
xn+ = �Cn+ (x), ∀n≥ ,

(.)

where ξn = νn supp∈
 ζ (φ(u,xn)) + μn, ∀n ≥ , �Cn+ is the generalized projection of E onto
Cn+. Let {αn,i}, {βn} be sequences in [, ] satisfying the following conditions:
() for each n≥ ,

∑∞
i= αn,i = ;

() lim infn→∞( – βn)αn,αn,i >  for all i≥ .
Then the sequence {xn} converges strongly to �
(x).

In this paper, motivated and inspired by the previously mentioned results, we introduce
a new iterative procedure by the modified block hybrid projection method for solving a
common solution of fixed point problems for two countable families of uniformly total
quasi-φ-asymptotically nonexpansive and uniformly Lipschitz continuous mappings in a
uniformly smooth and strictly convex Banach space with the Kadec-Klee property. Then,
we prove a strong convergence theorem of the iterative procedure generated by these con-
ditions. The results obtained in this paper extend and improve several recent results in this
area.

2 Preliminaries
Definition . Let C be a nonempty, closed, and convex subset of a real Banach space E.
() A mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

() A mapping T : C → C is said to be uniformly L-Lipschitz continuous if there exists a
constant L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, ∀x, y ∈ C,∀n≥ .

Definition . [] Let C be a nonempty, closed, and convex subset of a real Banach
space E.
() A countable family of mappings {Ti}∞i= is said to be a uniformly quasi-φ-

asymptotically nonexpansive mapping if
⋂∞

i= Fix(Ti) �= ∅ and there exists a sequence
{kn} ⊂ [,∞) with kn →  such that for each i≥ ,

φ
(
p,Tn

i x
) ≤ knφ(p,x), ∀x ∈ C,p ∈

∞⋂
i=

Fix(Ti), and ∀n≥ .

() A countable family of mappings {Ti}∞i= is said to be a uniformly total quasi-φ-
asymptotically nonexpansive mapping if

⋂∞
i= Fix(Ti) �= ∅ and there exist

http://www.fixedpointtheoryandapplications.com/content/2012/1/198
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nonnegative real sequences {νn} and {μn} with νn → , μn →  (as n→ ∞), and a
strictly increasing continuous function ζ :R+ → R

+ with ζ () =  such that for each
i ≥ ,

φ
(
p,Tn

i x
) ≤ φ(p,x) + νnζ

(
φ(p,x)

)
+μn, ∀x ∈ C,p ∈

∞⋂
i=

Fix(Ti), and ∀n≥ .

Lemma . [] Let E be a uniformly smooth and strictly convex real Banach space, and
let {xn} and {yn} be two sequences of E. If φ(xn, yn) →  and either {xn} or {yn} is bounded,
then ‖xn – yn‖ → .

Lemma . [] Let E be a uniformly smooth and strictly convex real Banach space with
the Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E. Let {xn}
and {yn} be two sequences in C and p ∈ E. If xn → p and φ(xn, yn) → , then yn → p.

Lemma. [] Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property,and let C be a nonempty, closed,and convex subset of E.Let T : C → C
be a closed and total quasi-φ-asymptotically nonexpansive mapping with nonnegative real
sequences {νn}, {μn}, and a strictly increasing continuous function ζ : R+ → R

+ such that
νn → , μn →  (as n → ∞), and ζ () = . If μ = , then the fixed point set Fix(T) is a
closed and convex subset of C.

Lemma . [] Let E be a uniformly convex Banach space, r >  be a positive number,
and Br() be a closed ball of E. Then for any given sequence {xn}∞n= ⊂ Br() and for any
given {λn}∞n= ⊂ (, ) with

∑∞
n= λn = , there exists a continuous, strictly increasing, and

convex function g : [, r) → [,∞) with g() =  such that for any positive integers i, j with
i < j,

∥∥∥∥∥
∞∑
n=

λnxn

∥∥∥∥∥


≤
∞∑
n=

λn‖xn‖ – λiλjg
(‖xi – xj‖

)
.

3 Main results
In this section, we shall use the modified block hybrid projection method to study a
common solution of fixed point problems for two countable families of closed and Li,�i-
Lipschitz continuous and uniformly total quasi-φ-asymptotically nonexpansive mappings
in Banach spaces. For the purpose, we assume the following hypotheses.
(A) Let {Ti}∞i= : C → C be a countable family of closed, uniformly Li-Lipschitz contin-

uous, and uniformly total quasi-φ-asymptotically nonexpansive mappings with nonneg-
ative real sequences {νn}, {μn} and a strictly increasing function ζ : R+ → R

+ such that
νn → , μn →  (as n→ ∞), μ = , and ζ () = , and for each i ≥ ,

φ
(
p,Tn

i x
) ≤ φ(p,x) + νnζ

(
φ(p,x)

)
+μn, ∀x ∈ C,p ∈

∞⋂
i=

Fix(Ti), and ∀n≥ .

(A) Let {Si}∞i= : C → C be a countable family of closed, uniformly �i-Lipschitz contin-
uous, and uniformly total quasi-φ-asymptotically nonexpansive mappings with nonneg-
ative real sequences {κn}, {ωn} and a strictly increasing function ρ : R+ → R

+ such that

http://www.fixedpointtheoryandapplications.com/content/2012/1/198
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κn → , ωn →  (as n→ ∞), ω = , and ρ() = , and for each i≥ ,

φ
(
p,Sni x

) ≤ φ(p,x) + κnρ
(
φ(p,x)

)
+ωn, ∀x ∈ C,p ∈

∞⋂
i=

Fix(Si), and ∀n≥ .

Theorem . Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, let C be a nonempty, closed, and convex subset of E, and let {Ti}∞i=
and {Si}∞i= satisfy the above conditions (A)-(A), respectively.
Suppose that 
 := (

⋂∞
i= Fix(Ti)) ∩ (

⋂∞
i= Fix(Si)) is nonempty and bounded in C. Let

{xn}∞n=, {yn}∞n=, and {zn}∞n= be sequences generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily, C = C,

zn = J–(αn,Jxn +
∑∞

i= αn,iJSni yn),

yn = J–(βn,Jxn +
∑∞

i= βn,iJTn
i xn),

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) + ξn and φ(v, zn)≤ φ(v,xn) + θn},
xn+ = �Cn+ (x), ∀n≥ ,

(.)

where ξn = νn supp∈
 ζ (φ(p,xn)) +μn and θn = κn supp∈
 ρ(φ(p,xn)) +ωn.
Let {αn,i} and {βn,i} be coefficient sequences in [, ] satisfying the following conditions:
()

∑∞
i= αn,i =  and

∑∞
i= βn,i = ;

() lim infn–→∞ αn,αn,i > , and lim infn–→∞ βn,βn,i > , ∀i≥ .
Then the sequence {xn}∞n= converges strongly to some point p*, where p* = �
(x).

Proof We shall complete this proof of Theorem . in seven steps.
Step . We will show that 
 and Cn+ are closed and convex for each n≥ .
In fact, it follows from Lemma . that Fix(Ti) and Fix(Si), for any i ≥ , are closed and

convex subsets of C. Therefore, 
 is closed and convex in C.
Clearly, C = C is closed and convex. Suppose that Cn is closed and convex for some

n≥ .
By the assumption of Cn+,

φ(v, yn) ≤ φ(v,xn) + ξn

is equivalent to

‖v‖ – 〈v, Jyn〉 + ‖yn‖ ≤ ‖v‖ – 〈v, Jxn〉 + ‖xn‖ + ξn.

So that 〈v, Jxn〉 – 〈v, Jyn〉 = 〈v, Jxn – Jyn〉 ≤ ‖xn‖ – ‖yn‖ + ξn.
Again, by the assumption of Cn+,

φ(v, zn)≤ φ(v,xn) + θn

is equivalent to

‖v‖ – 〈v, Jzn〉 + ‖zn‖ ≤ ‖v‖ – 〈v, Jxn〉 + ‖xn‖ + θn.

So that 〈v, Jxn〉 – 〈v, Jzn〉 = 〈v, Jxn – Jzn〉 ≤ ‖xn‖ – ‖zn‖ + θn.
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Hence, Cn+ = {v ∈ Cn : 〈v, Jxn – Jyn〉 ≤ ‖xn‖ – ‖yn‖ + ξn and 〈v, Jxn – Jzn〉 ≤ ‖xn‖ –
‖zn‖ + θn} is closed and convex.
Step . We will show that {xn} is bounded and {φ(xn,x)} is a convergent sequence for

all n≥ .
Indeed, it follows from (.) and Lemma .() that

φ(xn,x) = φ
(
�Cn (x),x

)
≤ φ(p,x) – φ

(
p,�Cn (x)

)
≤ φ(p,x), ∀n≥ ,p ∈ 
.

This implies that {φ(xn,x)} is bounded. By virtue of (.), the sequence {xn} is also
bounded.
By the assumption of Cn, we have Cn+ ⊂ Cn, xn = �Cn (x) and xn+ = �Cn+ (x).
This implies that xn+ ∈ Cn+ ⊂ Cn and

φ(xn,x) ≤ φ(xn+,x), ∀n≥ .

Therefore, {φ(xn,x)} is a convergent sequence. Without loss of generality, we can assume
that

lim
n→∞φ(xn,x) = d ≥ . (.)

Step . We will show that 
 ⊂ Cn for all n ≥ .
It is obvious that 
 ⊂ C = C. Suppose that 
 ⊂ Cn for some n≥ . For any given p ∈ 
,

from (.) and Lemma ., we compute

φ(p, yn) = φ

(
p, J–

(
βn,Jxn +

∞∑
i=

βn,iJTn
i xn

))

= ‖p‖ – 

〈
p,βn,Jxn +

∞∑
i=

βn,iJTn
i xn

〉
+

∥∥∥∥∥βn,Jxn +
∞∑
i=

βn,iJTn
i xn

∥∥∥∥∥


≤ ‖p‖ – βn,〈p, Jxn〉 – 
∞∑
i=

βn,i
〈
p, JTn

i xn
〉

+ βn,‖xn‖ +
∞∑
i=

βn,i
∥∥Tn

i xn
∥∥

– βn,βn,ig
(∥∥Jxn – JTn

i xn
∥∥)

= βn,φ(p,xn) + ( – βn,)‖p‖

– 
∞∑
i=

βn,i
〈
p, JTn

i xn
〉
+

∞∑
i=

βn,i
∥∥Tn

i xn
∥∥

– βn,βn,ig
(∥∥Jxn – JTn

i xn
∥∥)

= βn,φ(p,xn) +
∞∑
i=

βn,iφ
(
p,Tn

i xn
)
– βn,βn,ig

(∥∥Jxn – JTn
i xn

∥∥)
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≤ βn,φ(p,xn) +
∞∑
i=

βn,i
[
φ(p,xn) + νnζ

(
φ(p,xn)

)
+μn

]
– βn,βn,ig

(∥∥Jxn – JTn
i xn

∥∥)
=

(
βn, +

∞∑
i=

βn,i

)
φ(p,xn) +

∞∑
i=

βn,i
[
νnζ

(
φ(p,xn)

)
+μn

]
– βn,βn,ig

(∥∥Jxn – JTn
i xn

∥∥)
≤ φ(p,xn) + νnζ

(
φ(p,xn)

)
+μn – βn,βn,ig

(∥∥Jxn – JTn
i xn

∥∥)
≤ φ(p,xn) + νn sup

p∈


ζ
(
φ(p,xn)

)
+μn – βn,βn,ig

(∥∥Jxn – JTn
i xn

∥∥)
= φ(p,xn) + ξn – βn,βn,ig

(∥∥Jxn – JTn
i xn

∥∥)
. (.)

It follows that

φ(p, yn) ≤ φ(p,xn) + ξn, where ξn = νn sup
p∈


ζ
(
φ(p,xn)

)
+μn. (.)

From (.) and Lemma ., we compute

φ(p, zn) = φ

(
p, J–

(
αn,Jxn +

∞∑
i=

αn,iJSni yn

))

= ‖p‖ – 

〈
p,αn,Jxn +

∞∑
i=

αn,iJSni yn

〉
+

∥∥∥∥∥αn,Jxn +
∞∑
i=

αn,iJSni yn

∥∥∥∥∥


≤ ‖p‖ – αn,〈p, Jxn〉 – 
∞∑
i=

αn,i
〈
p, JSni yn

〉
+ αn,‖xn‖ +

∞∑
i=

αn,i
∥∥Sni yn∥∥

– αn,αn,ig
(∥∥Jyn – JSni yn

∥∥)
= αn,φ(p,xn) + ( – αn,)‖p‖ – 

∞∑
i=

αn,i
〈
p, JSni yn

〉
+

∞∑
i=

αn,i
∥∥Sni yn∥∥

– αn,αn,ig
(∥∥Jyn – JSni yn

∥∥)
= αn,φ(p,xn) +

∞∑
i=

αn,iφ
(
p,Sni yn

)
– αn,αn,ig

(∥∥Jyn – JSni yn
∥∥)

≤ αn,φ(p,xn) +
∞∑
i=

αn,i
[
φ(p,x) + κnρ

(
φ(p,x)

)
+ωn

]
– αn,αn,ig

(∥∥Jyn – JSni yn
∥∥)

=

(
αn, +

∞∑
i=

αn,i

)
φ(p,xn) +

∞∑
i=

αn,i
[
κnρ

(
φ(p,x)

)
+ωn

]
– αn,αn,ig

(∥∥Jyn – JSni yn
∥∥)

≤ φ(p,xn) + κnρ
(
φ(p,x)

)
+ωn – αn,αn,ig

(∥∥Jyn – JSni yn
∥∥)

≤ φ(p,xn) + κn sup
p∈


ρ
(
φ(p,x)

)
+ωn – αn,αn,ig

(∥∥Jyn – JSni yn
∥∥)

= φ(p,xn) + θn – αn,αn,ig
(∥∥Jyn – JSni yn

∥∥)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/198


Phuangphoo and Kumam Fixed Point Theory and Applications 2012, 2012:198 Page 12 of 23
http://www.fixedpointtheoryandapplications.com/content/2012/1/198

It follows that

φ(p, zn) ≤ φ(p,xn) + θn, where θn = κn sup
p∈


ρ
(
φ(p,x)

)
+ωn. (.)

By the assumptions of {νn}, {μn}, {κn}, and {ωn}, and from (.) and (.), we obtain

ξn = νn sup
p∈


ζ
(
φ(p,xn)

)
+μn →  (as n→ ∞), (.)

and

θn = κn sup
p∈


ρ
(
φ(p,xn)

)
+ωn →  (as n→ ∞). (.)

So, we get p ∈ Cn+. This implies that 
 ⊂ Cn for all n ≥ , and the sequence {xn} is well
defined.
Step . We will show that there exists some point p* ∈ C such that xn → p*.
In fact, since {xn} is bounded and E is reflexive, then there exists a subsequence {xni} ⊂

{xn} such that xni ⇀ p* (some point in C).
Since Cn is closed and convex and Cn+ ⊂ Cn, it follows that Cn is weakly closed and

p* ∈ Cn for each n≥ .
In view of xni = �Cni

(x), we have

φ(xni ,x) ≤ φ
(
p*,x

)
, ∀ni ≥ .

Since the norm ‖ · ‖ is weakly lower semi-continuous, we have

lim inf
ni→∞ φ(xni ,x) = lim inf

ni→∞
{‖xni‖ – 〈xni , Jx〉 + ‖x‖

}
≥ ‖p*‖ – 

〈
p*, Jx

〉
+ ‖x‖ = φ

(
p*,x

)
,

and so

φ
(
p*,x

) ≤ lim inf
ni→∞ φ(xni ,x) ≤ lim sup

ni→∞
φ(xni ,x) ≤ φ

(
p*,x

)
.

This implies that limni→∞ φ(xni ,x) = φ(p*,x), and so ‖xni‖ → ‖p*‖. Since xni ⇀ p*, and
by virtue of the Kadec-Klee property of E, we obtain

lim
ni→∞xni = p*, as ni → ∞.

The sequence {φ(xn,x)} is convergent, and limni→∞ φ(xni ,x) = φ(p*,x), which implies
that limn→∞ φ(xn,x) = φ(p*,x). If there exists some subsequence {xnj} ⊂ {xn} such that
xnj ⇀ q, then from Lemma .() we have

φ
(
p*,q

)
= lim

ni ,nj→∞φ(xni ,xnj )

= lim
ni ,nj→∞φ

(
xni ,�Cnj

(x)
)
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≤ lim
ni ,nj→∞

[
φ(xni ,x) – φ

(
�Cnj

(x),x
)]

= lim
ni ,nj→∞

[
φ(xni ,x) – φ(xnj ,x)

]
= φ

(
p*,x

)
– φ

(
p*,x

)
= .

This implies that p* = q, and so

lim
n→∞xn = p*. (.)

Step . We will show that limn→∞ ‖Jxn – Jyn‖ =  and limn→∞ ‖Jxn – Jzn‖ =  as n → ∞.
Since xn+ ∈ Cn+ ⊂ Cn, by the definition of Cn+, we have

φ(xn+,xn) = φ
(
xn+,�Cn (x)

)
≤ φ(xn+,x) – φ

(
�Cn (x),x

)
= φ(xn+,x) – φ(xn,x). (.)

Since limn–→∞ φ(xn,x) exists, and we are taking n→ ∞ in (.), then φ(xn+,xn) → .
It follows from Lemma . that

lim
n→∞‖xn+ – xn‖ = . (.)

By the definition of Cn+ and xn+ ∈ Cn+, we get

φ(xn+, yn) ≤ φ(xn+,xn) + ξn, and

φ(xn+, zn) ≤ φ(xn+,xn) + θn.
(.)

From φ(xn+,xn) → , ξn → , and θn → , as n → ∞, we obtain

φ(xn+, yn) → , and φ(xn+, zn) → , as n→ ∞. (.)

Since limn–→∞ xn = p*, by virtue of Lemma ., we get

lim
n→∞ yn = p*, and lim

n→∞ zn = p*. (.)

It follows from (.) and (.) that

lim
n→∞‖xn – yn‖ = , and lim

n→∞‖xn – zn‖ = . (.)

Since J is uniformly continuous on each bounded subset of E, then

lim
n→∞‖Jxn – Jyn‖ = , and lim

n→∞‖Jxn – Jzn‖ = . (.)

Step . We will show that p* ∈ 
, where 
 := (
⋂∞

i= Fix(Ti))∩ (
⋂∞

i= Fix(Si)).
(.) First, we will show that p* ∈ ⋂∞

i= Fix(Ti).

http://www.fixedpointtheoryandapplications.com/content/2012/1/198


Phuangphoo and Kumam Fixed Point Theory and Applications 2012, 2012:198 Page 14 of 23
http://www.fixedpointtheoryandapplications.com/content/2012/1/198

For any i ≥  and for any p ∈ 
, it follows from (.), (.), (.), and (.) that

βn,βn,ig
(∥∥Jxn – JTn

i xn
∥∥) ≤ φ(p,xn) – φ(p, yn) + ξn

= ‖xn‖ – ‖yn‖ – 〈p, Jxn – Jyn〉 + ξn

=
(‖xn‖ + ‖yn‖

)(‖xn‖ – ‖yn‖
)
– 〈p, Jxn – Jyn〉 + ξn

≤ (‖xn‖ + ‖yn‖
)(‖xn – yn‖

)
– ‖p‖‖Jxn – Jyn‖ + ξn

→ , as n→ ∞.

By the condition lim infn–→∞ βn,βn,i > , ∀i≥ , we obtain

g
(∥∥Jxn – JTn

i xn
∥∥) → , as n→ ∞.

It follows from the property of g that

∥∥Jxn – JTn
i xn

∥∥ → , as n → ∞. (.)

Since xn → p* and J is uniformly continuous on each bounded subset of E, it yields that
Jxn → Jp*.
Hence, from (.) we get

JTn
i xn → Jp*, as n→ ∞,∀i≥ . (.)

Since J– : E* → E is norm-to-weak*-continuous, we also have

Tn
i xn ⇀ p*, as n→ ∞,∀i≥ . (.)

Again, since for any i≥ ,

∣∣∥∥Tn
i xn

∥∥ –
∥∥p*∥∥∣∣ = ∣∣∥∥J(Tn

i xn
)∥∥ –

∥∥Jp*∥∥∣∣ ≤ ∥∥J(Tn
i xn

)
– Jp*

∥∥ → , as n→ ∞,

from (.) and the Kadec-Klee property of E, it follows that

lim
n→∞Tn

i xn = p*. (.)

On the other hand, by the assumption that for each i ≥ , Ti is uniformly Li-Lipschitz
continuous, we get

∥∥Tn+
i xn – Tn

i xn
∥∥ ≤ ∥∥Tn+

i xn – Tn+
i xn+

∥∥ +
∥∥Tn+

i xn+ – xn+
∥∥

+ ‖xn+ – xn‖ +
∥∥xn – Tn

i xn
∥∥

≤ (Li + )‖xn+ – xn‖ +
∥∥Tn+

i xn+ – xn+
∥∥ +

∥∥xn – Tn
i xn

∥∥.
It follows from (.), (.), and (.) that

lim
n→∞

∥∥Tn+
i xn – Tn

i xn
∥∥ = , and lim

n→∞Tn+
i xn = p*,
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and so

lim
n→∞Tn+

i xn = lim
n→∞TiTn

i xn = lim
n→∞Tip* = p*.

In view of (.) and the closeness of Ti, it yields that Tip* = p* for all i ≥ . This implies
that

p* ∈
∞⋂
i=

Fix(Ti). (.)

(.) Next, we will show that p* ∈ ⋂∞
i= Fix(Si).

For any i ≥  and for any p ∈ 
, it follows from (.), (.), (.), and (.) that

αn,αn,ig
(∥∥Jyn – JSni yn

∥∥) ≤ φ(p,xn) – φ(p, zn) + θn

= ‖xn‖ – ‖zn‖ – 〈p, Jxn – Jzn〉 + θn

=
(‖xn‖ + ‖zn‖

)(‖xn‖ – ‖zn‖
)
– 〈p, Jxn – Jzn〉 + θn

≤ (‖xn‖ + ‖zn‖
)(‖xn – zn‖

)
– ‖p‖‖Jxn – Jzn‖ + θn

→ , as n→ ∞.

By the condition lim infn–→∞ αn,αn,i > , ∀i≥ , we obtain

g
(∥∥Jyn – JSni yn

∥∥) → , as n→ ∞.

It follows from the property of g that

∥∥Jyn – JSni yn
∥∥ → , as n→ ∞. (.)

Since yn → p* and J is uniformly continuous on each bounded subset of E, it yields that
Jyn → Jp*.
Hence, from (.) we have

JSni yn → Jp*, as n→ ∞,∀i≥ . (.)

Since J– : E* → E is norm-to-weak*-continuous, we also have

Sni yn ⇀ p* as n→ ∞,∀i≥ . (.)

Again, since for any i≥ ,

∣∣∥∥Sni yn∥∥ –
∥∥p*∥∥∣∣ = ∣∣∥∥J(Sni yn)∥∥ –

∥∥Jp*∥∥∣∣ ≤ ∥∥J(Sni yn) – Jp*
∥∥ → , as n→ ∞,

from (.) and the Kadec-Klee property of E, it follows that

lim
n→∞Sni yn = p*. (.)
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On the other hand, by the assumption that for each i ≥ , Si is uniformly �i-Lipschitz
continuous, we have

∥∥Sn+i yn – Sni yn
∥∥ ≤ ∥∥Sn+i yn – Sn+i yn+

∥∥ +
∥∥Sn+i yn+ – xn+

∥∥ + ‖xn+ – xn‖
+ ‖xn – yn‖ +

∥∥yn – Sni yn
∥∥

≤ �i‖yn – yn+‖ +
∥∥Sn+i yn+ – xn+

∥∥ + ‖xn+ – xn‖
+ ‖xn – yn‖ +

∥∥yn – Sni yn
∥∥.

From xn → p*, yn → p* and Sni yn → p*, as n → ∞, we obtain

‖yn – yn+‖ → ,
∥∥Sn+i yn+ – xn+

∥∥ → , and
∥∥yn – Sni yn

∥∥ → , as n→ ∞.

And it follows from (.) and (.) that

lim
n→∞

∥∥Sn+i yn – Sni yn
∥∥ = , and lim

n→∞Sn+i yn = p*,

and so

lim
n→∞Sn+i yn = lim

n→∞SiSni yn = lim
n→∞Sip* = p*.

In view of (.) and the closeness of Si, it yields that Sip* = p* for all i ≥ . This implies
that

p* ∈
∞⋂
i=

Fix(Si). (.)

From (.) and (.), we can conclude that p* ∈ 
 := (
⋂∞

i= Fix(Ti))∩ (
⋂∞

i= Fix(Si)).
Step . Finally, we will show that xn → p* = �
(x).
Let w = �
(x). Since w ∈ 
 ⊂ Cn and xn = �Cn (x), we have

φ(xn,x) ≤ φ(w,x), ∀n≥ .

This implies that

φ
(
p*,x

)
= lim

n→∞φ(xn,x) ≤ φ(w,x). (.)

In view of the definition of �
(x), from (.), we have p* = w. Therefore, xn → p* =
�
(x).
This completes the proof of Theorem .. �

Theorem . Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E.We assume
the following:
(B) Let {Ti}∞i= : C → C be a countable family of closed, uniformly Li-Lipschitz continu-

ous, and uniformly quasi-φ-asymptotically nonexpansive mappings with a real sequence
{kn} ⊂ [,∞), kn → .
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(B) Let {Si}∞i= : C → C be a countable family of closed, uniformly �i-Lipschitz continu-
ous, and uniformly quasi-φ-asymptotically nonexpansive mappings with a real sequence
{ln} ⊂ [,∞), ln → .
Suppose that 
 := (

⋂∞
i= Fix(Ti)) ∩ (

⋂∞
i= Fix(Si)) is a nonempty and bounded in C. Let

{xn}∞n=, {yn}∞n=, and {zn}∞n= be sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily, C = C,

zn = J–(αn,Jxn +
∑∞

i= αn,iJSni yn),

yn = J–(βn,Jxn +
∑∞

i= βn,iJTn
i xn),

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) + ξn and φ(v, zn)≤ φ(v,xn) + θn},
xn+ = �Cn+ (x), ∀n≥ ,

(.)

where ξn = supp∈
(kn – )(φ(p,xn)) and θn = supp∈
(ln – )(φ(p,xn)).
Let {αn,i} and {βn,i} be coefficient sequences in [, ] satisfying the following conditions:
()

∑∞
i= αn,i =  and

∑∞
i= βn,i = ;

() lim infn–→∞ αn,αn,i >  and lim infn–→∞ βn,βn,i > , ∀i≥ .
Then the sequence {xn}∞n= converges strongly to some point p*, where p* = �
(x).

Proof Since {Ti}∞i=, {Si}∞i= are countable families of closed and uniformly quasi-φ-
asymptotically nonexpansive mappings, by virtue of Remark .(), {Ti}∞i=, {Si}∞i= are
countable families of closed and uniformly total quasi-φ-asymptotically nonexpansive
mappings with nonnegative sequences νn = kn – , μn = , and κn = ln – , ωn = , re-
spectively, and a strictly increasing and continuous function ζ (t) = ρ(t) = t, t ≥ . Hence,
ξn = supp∈
(kn –)(φ(p,xn))→  and θn = supp∈
(ln –)(φ(p,xn)) →  (as n→ ∞). There-
fore, all the conditions in Theorem . are satisfied. The conclusion of Theorem . can
be obtained from Theorem . immediately. �

Theorem . Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E.We assume
the following:
(C) Let {Ti}∞i= : C → C be a countable family of closed and quasi-φ-nonexpansive map-

pings.
(C) Let {Si}∞i= : C → C be a countable family of closed and quasi-φ-nonexpansive map-

pings.
Suppose that 
 := (

⋂∞
i= Fix(Ti)) ∩ (

⋂∞
i= Fix(Si)) is nonempty and bounded in C. Let

{xn}∞n=, {yn}∞n=, and {zn}∞n= be sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily, C = C,

zn = J–(αn,Jxn +
∑∞

i= αn,iJSiyn),

yn = J–(βn,Jxn +
∑∞

i= βn,iJTixn),

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) and φ(v, zn)≤ φ(v,xn)},
xn+ = �Cn+ (x), ∀n≥ ,

(.)

and let {αn,i} and {βn,i} be coefficient sequences in [, ] satisfying the following conditions:
()

∑∞
i= αn,i = , and

∑∞
i= βn,i = ;
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() lim infn–→∞ αn,αn,i > , and lim infn–→∞ βn,βn,i > , ∀i≥ .
Then the sequence {xn}∞n= converges strongly to some point p*, where p* = �
(x).

Proof Since {Ti}∞i=, {Si}∞i= are countable families of closed and quasi-φ-nonexpansive
mappings, by Remark .(), {Ti}∞i=, {Si}∞i= are countable families of closed and quasi-
φ-asymptotically nonexpansive mappings with nonnegative sequences kn =  and ln = ,
respectively. Hence, ξn = supp∈
(kn – )(φ(p,xn)) =  and θn = supp∈
(ln – )(φ(p,xn)) = .
Therefore, all the conditions in Theorem . as ‘
 is bounded in C’ and ‘for each i ≥ ,
{Ti}∞i=, {Si}∞i= are uniformly Li,�i-Lipschitz continuous’ are of no use here. Thus, all the
conditions in Theorem . are satisfied. The conclusion of Theorem . can be obtained
from Theorem . immediately. �

Theorem . Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E.We assume
the following:
(D) Let {Ti}∞i= : C → C be a countable family of weak relatively nonexpansivemappings.
(D) Let {Si}∞i= : C → C be a countable family of weak relatively nonexpansive mappings.
Suppose that 
 := (

⋂∞
i= Fix(Ti)) ∩ (

⋂∞
i= Fix(Si)) is nonempty and bounded in C. Let

{xn}∞n=, {yn}∞n=, and {zn}∞n= be sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily, C = C,

zn = J–(αn,Jxn +
∑∞

i= αn,iJSiyn),

yn = J–(βn,Jxn +
∑∞

i= βn,iJTixn),

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) and φ(v, zn)≤ φ(v,xn)},
xn+ = �Cn+ (x), ∀n≥ ,

(.)

and let {αn,i} and {βn,i} be coefficient sequences in [, ] satisfying the following conditions:
()

∑∞
i= αn,i =  and

∑∞
i= βn,i = ;

() lim infn–→∞ αn,αn,i >  and lim infn–→∞ βn,βn,i > , ∀i≥ .
Then the sequence {xn}∞n= converges strongly to some point p*, where p* = �
(x).

Proof Since {Ti}∞i=, {Si}∞i= are countable families of weak relatively nonexpansive map-
pings, from Remark .(), {Ti}∞i=, {Si}∞i= are countable families of quasi-φ-nonexpansive
mappings. Therefore, all the conditions in Theorem . are satisfied. The conclusion of
Theorem . can be obtained from Theorem . immediately. �

Theorem . Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E.We assume
the following:
(E) Let {Ti}∞i= : C → C be a countable family of relatively nonexpansive mappings.
(E) Let {Si}∞i= : C → C be a countable family of relatively nonexpansive mappings.
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Suppose that 
 := (
⋂∞

i= Fix(Ti)) ∩ (
⋂∞

i= Fix(Si)) is nonempty and bounded in C. Let
{xn}∞n=, {yn}∞n=, and {zn}∞n= be sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily, C = C,

zn = J–(αn,Jxn +
∑∞

i= αn,iJSiyn),

yn = J–(βn,Jxn +
∑∞

i= βn,iJTixn),

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) and φ(v, zn)≤ φ(v,xn)},
xn+ = �Cn+ (x), ∀n≥ ,

(.)

and let {αn,i} and {βn,i} be coefficient sequences in [, ] satisfying the following conditions:
()

∑∞
i= αn,i =  and

∑∞
i= βn,i = ;

() lim infn–→∞ αn,αn,i >  and lim infn–→∞ βn,βn,i > , ∀i≥ .
Then the sequence {xn}∞n= converges strongly to some point p*, where p* = �
(x).

Proof Since {Ti}∞i=, {Si}∞i= are countable families of relatively nonexpansive mappings, it
follows from Remark .() that {Ti}∞i=, {Si}∞i= are countable families of weak relatively
nonexpansive mappings. Therefore, all the conditions in Theorem . are satisfied. The
conclusion of Theorem . can be obtained from Theorem . immediately. �

Remark . Theorems .-. generalize, improve, and extend the corresponding results
in [–, –], and [] in the following aspects:
(a) For the framework of spaces, we extend the space from a uniformly smooth and

uniformly convex Banach space to a uniformly smooth and strictly convex real Banach
space with the Kadec-Klee property. (Note that each uniformly convex Banach spacemust
have the Kadec-Klee property.)
(b) For the mappings, we extend the mappings from a nonexpansive mapping, a rel-

atively nonexpansive mapping, a weakly relatively nonexpansive mapping, a quasi-φ-
nonexpansive mapping or a quasi-φ-asymptotically nonexpansive mapping to a total
quasi-φ-asymptotically nonexpansive mapping.
(c) We extend a countable family of closed and uniformly Li-Lipschitz continuous

and uniformly total quasi-φ-asymptotically nonexpansive mappings to two countable
families of closed and uniformly Li-Lipschitz continuous and uniformly total quasi-φ-
asymptotically nonexpansive mappings.

4 Deduced theorem
If we take i =  in Theorem ., then we obtain the following result.

Theorem . Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E.We assume
the following:
(F) Let T : C → C be a closed, uniformly L-Lipschitz continuous, and uniformly total

quasi-φ-asymptotically nonexpansivemapping with nonnegative real sequences {νn}, {μn},
and a strictly increasing function ζ : R+ → R

+ such that νn → , μn →  (as n → ∞),
ζ () = , and

φ
(
p,Tnx

) ≤ φ(p,x) + νnζ
(
φ(p,x)

)
+μn, ∀x ∈ C,p ∈ Fix(T), and ∀n≥ .
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(F) Let S : C → C be a closed, uniformly �-Lipschitz continuous, and uniformly total
quasi-φ-asymptotically nonexpansivemapping with nonnegative real sequences {κn}, {ωn},
and a strictly increasing function ρ : R+ → R

+ such that κn → , ωn →  (as n → ∞),
ρ() = , and

φ
(
p,Snx

) ≤ φ(p,x) + κnρ
(
φ(p,x)

)
+ωn, ∀x ∈ C,p ∈ Fix(S), and ∀n≥ .

Suppose that 
 := Fix(T) ∩ Fix(S) is nonempty and bounded in C. Let {xn}∞n=, {yn}∞n=,
and {zn}∞n= be sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily, C = C,

zn = J–(αnJxn + ( – αn)JSnyn),

yn = J–(βnJxn + ( – βn)JTnxn),

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) + ξn and φ(v, zn)≤ φ(v,xn) + θn},
xn+ = �Cn+ (x), ∀n≥ ,

(.)

where ξn = νn supp∈
 ζ (φ(p,xn)) +μn and θn = κn supp∈
 ρ(φ(p,xn)) +ωn.
Let {αn} and {βn} be coefficient sequences in [, ] satisfying the following conditions:
()  ≤ αn ≤ α <  for some α ∈ (, );
()  ≤ βn ≤ β <  for some β ∈ (, ).

Then the sequence {xn}∞n= converges strongly to some point p*, where p* = �
(x).

If we set Sni = I (identity mapping) for all i = , , , . . . in Theorem ., then we obtain the
following result.

Theorem . Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E.We assume
the following:
(G) Let {Ti}∞i= : C → C be a countable family of closed, uniformly Li-Lipschitz continu-

ous, and uniformly total quasi-φ-asymptotically nonexpansivemappings with nonnegative
real sequences {νn}, {μn}, and a strictly increasing function ζ :R+ →R

+ such that νn → ,
μn →  (as n→ ∞), μ = , and ζ () = , and for each i≥ ,

φ
(
p,Tn

i x
) ≤ φ(p,x) + νnζ

(
φ(p,x)

)
+μn, ∀x ∈ C,p ∈

∞⋂
i=

Fix(Ti), and ∀n≥ .

(G) Suppose that 
 :=
⋂∞

i= Fix(Ti) is nonempty and bounded in C. Let {xn}∞n=, {yn}∞n=,
and {zn}∞n= be sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily, C = C,

zn = J–(αnJxn + ( – αn)Jyn),

yn = J–(βn,Jxn +
∑∞

i= βn,iJTn
i xn),

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) + ξn},
xn+ = �Cn+ (x), ∀n≥ ,

(.)
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where ξn = νn supp∈
 ζ (φ(p,xn)) + μn. Let {αn} and {βn,i} be coefficient sequences in [, ]
satisfying the following conditions:
()  ≤ αn ≤ α <  for some α ∈ (, );
()

∑∞
i= βn,i = ;

() lim infn–→∞ βn,βn,i > , ∀i≥ .
Then the sequence {xn}∞n= converges strongly to some point p*, where p* = �
(x).

Remark . Theorem . contains the result of Chang et al. [].

5 Applications
Now, we apply Theorem . to prove a strong convergence theorem concerning twomax-
imal monotone operators in Banach spaces.
Let E be a smooth, strictly convex, and reflexive real Banach space, and let A : E → E*

be a maximal monotone operator. For each r > , we can define a single value mapping
Jr : E → D(A) by Jr = (J + rA)–J , and such amapping Jr is called the resolvent of A. It is easy
to prove that A–() = F(Jr) for all r > . Using Theorem ., we can obtain the following
strong convergence theorem for maximal monotone operators.

Theorem . Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E.We assume
the following:
(H) Let A, B be two maximal monotone operators from E to E*, and let JAr , JBr be the

resolvent of A and B, respectively, where r > .
(H) Suppose that 
 := A–()∩ B–() is nonempty, and let {xn}∞n=, {yn}∞n=, and {zn}∞n=

be sequences generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily, C = C

zn = J–(αn,Jxn +
∑∞

i= αn,iJJBri yn)

yn = J–(βn,Jxn +
∑∞

i= βn,iJJAri xn)

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v,xn) and φ(v, zn)≤ φ(v,xn)}
xn+ = �Cn+ (x), ∀n≥ ,

(.)

where rn >  with lim infn→∞ rn > , and let {αn,i} and {βn,i} be coefficient sequences in [, ]
satisfying the following conditions:
()

∑∞
i= αn,i = , and

∑∞
i= βn,i = ;

() lim infn–→∞ αn,αn,i > , and lim infn–→∞ βn,βn,i > , ∀i≥ .
Then the sequence {xn}∞n= converges strongly to some point p*, where p* = �
(x).

Proof It is well known that for each i ≥ , JAri is a relatively nonexpansive mapping (see, for
example, [, , ]). Therefore, for each p ∈ F(JAri ) and w ∈ E, we have

φ
(
p, JAri w

) ≤ φ(p,w).

Again, by the samemethod, we can prove that the set of strong asymptotically fixed points

F̃
({
JAri

}∞
i=

)
=

∞⋂
i=

F
(
JAri

)
= A–().
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This implies that {JAri }∞i= is a countable family of weak relatively nonexpansive mappings
with the common fixed point set

⋂∞
n= F(JAri ) = A–(). By a similar way, we can prove that

{JBri }∞i= is a countable family of weak relatively nonexpansive mappings with the common
fixed point set

⋂∞
n= F(JBri ) = B–(). Hence, the conclusion of Theorem . can be obtained

from Theorem . immediately. �

Remark . Theorem . improves and extends Theorem . of Chang et al. [] from
one maximal monotone operator to two maximal monotone operators.
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