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Abstract

We introduce ordered quasicontractions and g-quasicontractions in partially ordered
metric spaces and prove the respective coincidence point and (common) fixed point
results. An example shows that the new concepts are distinct from the existing ones.
We also prove fixed point theorems for mappings satisfying so-called weak
contractive conditions in the setting of partially ordered metric space. Hence,
generalizations of several known results are obtained.
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1 Introduction
It is well known that the Banach contraction principle has been generalized in various

directions. A lot of authors have used generalized contractive conditions of the type

d(fx, fy) ≤ λM(x, y),

where (X, d) is a metric space, f, g : X ® X, l Î [0,1) and M(x, y) is the maximum of

one of the sets{
d(gx, gy)

}
,

{
d(gx, gy), d(gx, fx), d(gy, fy)

}
,{

d(gx, gy), d(gx, fx), d(gy, fy),
1
2
(d(fx, gy) + d(gx, fy))

}
,

and alike. To obtain results about coincidence points or common fixed points of

mappings f and g, in the case when f X ⊂ gX, usually the technique of so-called Jungck

sequence yn = fxn = gxn+1 was used (see, [1,2]).

In the case when

M(x, y) = max
{
d(gx, gy), d(gx, fx), d(gy, fy), d(gx, fy), d(gy, fx)

}
,

the mapping f is called a g-quasicontraction (or simply quasicontraction if g = iX), see

[3,4]. In this case different techniques were used to obtain common fixed point results

in the cited and subsequent articles.
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The existence of fixed points in partially ordered metric spaces was first investigated

by Ran and Reurings [5], and then by Nieto and Lopez [6,7]. Further results in this

direction were proved, e.g., in [8-16].

In Section 2 of this article, we introduce ordered quasicontractions and

g-quasicontractions in partially ordered metric spaces and prove the respective (com-

mon) fixed point results. An example shows that the new concepts are distinct from

the existing ones, so our results are extensions of known ones.

Recently, several authors (see, e.g., [13,17-23]) have begun to use more general con-

ditions (so-called weak contractive conditions) of the type

ψ
(
d(fx, fy)

) ≤ ψ(M(x, y)) − ϕ(M(x, y)),

where ψ and � are so-called control functions (see definition in Section 3). The

usage of Jungck sequence is here also possible, but becomes more involved. Also, some

applications were obtained, in particular when dealing with differential, matrix and

integral equations (see, e.g., [5-7,10]).

In Section 3 of the present article, we consider weak contractive conditions in the

setting of partially ordered metric space (it is then restricted to the case when gx and

gy are comparable) and prove respective common fixed point theorems. These results

can be considered as generalizations of theorems from [9-11] since control functions

are more general than comparison functions used in these articles.

2 Common fixed points of ordered g-quasicontractions
Consider a partially ordered set (X, ≼) and two self-maps f, g : X ® X such that f X ⊂ gX.

Following [9] we shall say that the mapping f is g-nondecreasing (resp., g-nonincreasing)

if gx ≼ gy ⇒ fx ≼ fy (resp., gx ≼ gy ⇒ fx ≽ fy) holds for each x, y Î X.

For arbitrary x0 Î X one can construct a so-called Jungck sequence {yn} in the fol-

lowing way: denote y0 = fx0 Î f X ⊂ gX; there exists x1 Î X such that gx1 = y0 = fx0;

now y1 = fx1 Î f X ⊂ gX and there exists x2 Î X such that gx2 = y1 = fx1 and the pro-

cedure can be continued. The following properties of this sequence can be easily

deduced.

Lemma 1 1° If f is g-nondecreasing and gx0 ≼ fx0 (resp., gx0 ≽ fx0), then the sequence

{yn} is nondecreasing (resp., nonincreasing) w.r.t. ≼.
2° If f is g-nonincreasing and fx0 is comparable with gx0, then the sequence {yn} is not

monotonous, but arbitrary two of its adjacent terms are comparable.

Proof 1° It follows from gx0 ≼ fx0 = gx1 that fx0 ≼ fx1, i.e., y0 ≼ y1 and it is easy to

proceed by induction. The other case follows similarly.

2° Let, e.g., gx0 ≼ fx0 = gx1. Then, by assumption, fx0 ≽ fx1, i.e., y0 ≽ y1. Now gx1 ≽
gx2 implies fx1 ≼ fx2, i.e., y1 ≼ y2 and the conclusion again follows.

Putting g = iX (identity map) in the previous lemma, we obtain

Corollary 1 1° If f is nondecreasing and x0 ≼ fx0 (resp. x0 ≽ fx0), then the Picard

sequence {fnx0} is nondecreasing (nonincreasing) w.r.t. ≼.
2° If f is nonincreasing and fx0 is comparable with x0, then the sequence {fnx0} is not

monotonous, but arbitrary two of its adjacent terms are comparable.

Quasicontractions and g-quasicontractions in metric spaces were first studied in

[3,4]. We shall call the mapping f an ordered g-quasicontraction if there exists l Î
(0,1) such that for each x, y Î X satisfying gy ≼ gx, the inequality
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d(fx, fy) ≤ λ · M(x, y)

holds, where

M(x, y) = max
{
d(gx, gy), d(gx, fx), d(gy, fy), d(gx, fy), d(gy, fx)

}
. (2:1)

Theorem 1 Let (X, d, ≼) be a partially ordered metric space and let f, g : X ® X be

two self-maps on X satisfying the following conditions:

(i) fX ⊂ gX;

(ii) gX is complete;

(iii) f is g-nondecreasing;

(iv) f is an ordered g-quasicontraction;

(v) there exists x0 Î X such that gx0 ≼ fx0;

(vi) if {gxn} is a nondecreasing sequence that converges to some gz Î gX then gxn ≼ gz

for each n Î N and gz ≼ g(gz).

Then f and g have a coincidence point, i.e., there exists z Î X such that fz = gz. If, in

addition, (vii) f and g are weakly compatible ([1,2]), i.e., fx = gx implies f gx = g fx, for

each x Î X, then they have a common fixed point.

Proof Starting with the point x0 from condition (v), construct a Jungck sequence yn =

fxn = gxn+1. By Lemma 1, using condition (iii) we conclude that {yn} is nondecreasing.

It can be proved by the Das-Naik’s method (as in [8]) that {yn} is a Cauchy sequence.

Since gX is complete (condition (ii)), there exists z Î X such that yn ® w = gz Î gX.

We shall prove that fz = w.

By condition (vi), gxn ≼ gz holds. Hence, putting in the contractive condition (iv) x =

xn, y = z, we obtain that

d
(
f xn, fz

) ≤ λmax
{
d(gxn, gz), d

(
gxn, f xn

)
, d

(
gz, fz

)
, d

(
gxn, fz

)
, d

(
f xn, gz

)}
,

and passing to the limit when n ® ∞ (and using that d(gxn, fz) ≤ d(gxn, gz) + d(gz,

fz)) we deduce that

d
(
fz, gz

) ≤ λmax
{
0, 0, d

(
fz, gz

)
, 0 + d

(
gz, fz

)
, 0

}
= λd

(
fz, gz

)
.

It follows that fz = gz = w and f and g have a coincidence point.

In the case when condition (vii) holds, we obtain that fw = fgz = gfz = gw and it

remains to prove that fw = w. By condition (vi) we have that gz ≼ ggz = gw and then d

(fw, w) = d(fw, fz) ≤ lM(w, z), where

M(w, z) = max
{
d(gw, gz), d(gw, fw), d(gz, fz), d(gw, fz), d(gz, fw)

}
= max

{
d(fw,w), 0, 0, d(fw,w), d(w, fw)

}
= d(fw,w).

It follows that fw = w and w is a common fixed point for f and g.

Remark 1 If condition (v) in the previous theorem is replaced by fx0 ≼ gx0, the

respective Jungck sequence is nonincreasing and the conclusion of the theorem holds.

Theorem 2 Let the conditions of Theorem 1 be satisfied, except that (iii), (v), and (vi)

are, respectively, replaced by:

(iii’) f is g-nonincreasing;

(v’) there exists x0 Î X such that fx0 and gx0 are comparable;
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(vi’) if {gxn} is a sequence in gX which has comparable adjacent terms and that con-

verges to some gz Î gX, then there exists a subsequence
{
gxnk

}
of {gxn} having all the

terms comparable with gz and gz is comparable with ggz.

Then all the conclusions of Theorem 1 hold.

Proof Regardless whether fx0 ≼ gx0 or gx0 ≼ fx0 (condition( v’)), Lemma 1 implies that

the adjacent terms of the Jungck sequence {yn} are comparable. This is again sufficient

to imply that {yn} is a Cauchy sequence. Hence, it converges to some gz Î gX.

By (vi’), there exists a subsequence ynk = f xnk = gxnk+1, k ∈ N, having all the terms

comparable with gz. Hence, we can apply the contractive condition to obtain

d
(
fz, f xnk

) ≤ λM
(
z, xnk

)
where

M
(
z, xnk

)
= max

{
d
(
gz, gxnk

)
, d(gz, fz), d

(
gxnk , f xnk

)
, d

(
gxnk , fz

)
, d

(
gz, f xnk

)}
→ max

{
0, d

(
fz, gz

)
, 0, d(gz, fz), 0

}
= d(fz, gz) (k → ∞),

and since d
(
fz, gz

) ≤ d
(
fz, f xnk

)
+ d

(
f xnk , gz

)
and f xnk → gz, k → ∞, it follows that

fz = gz = w. The rest of conclusions follow in the same way as in Theorem 1.

Remark 2 If the five-term set in condition (2.1) is replaced by any of the following

sets

{
d(gx, gy)

}
,

{
d(gx, gy), d(gx, fx), d(gy, fy)

}
,{

d
(
gx, gy

)
,
1
2

(
d(gx, fx) + d(gy, fy)

)
,
1
2

(
d(gx, fy) + d(gy, fx)

)}
,{

d
(
gx, gy

)
, d(gx, fx), d(gy, fy),

1
2

(
d(gx, fy) + d(gy, fx)

)}
,

then conclusions of both Theorems 1 and 2 remain valid. Thus, “ordered” versions of

several generalized contraction theorems proved recently are obtained. In particular,

the case of the set {d(gx, gy)} gives a generalization of the results of Ran and Reurings

[5], and Nieto and Lopez [6,7]. Note also that in most of these cases the proof that the

Jungck sequence is a Cauchy sequence is directly obtained from the famous Jungck

relation

d
(
yn+1, yn

) ≤ λd
(
yn, yn−1

)
.

Remark 3 Taking g = iX we obtain “ordered” variants of various fixed point theorems

involving one function f. In particular, the following “ordered” version of the known

result of Ćirić on quasicontractions [3] is obtained.

Corollary 2 (a) Let (X, d, ≼) be a partially ordered complete metric space and let f :

X ® X be a nondecreasing self-map such that for some l Î (0,1),

d
(
fx, fy

) ≤ λmax
{
d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)

}
(2:2)

holds for all x, y Î X such that y ≼ x. Suppose also that either

(i) f is continuous or

(ii) for each nondecreasing sequence {xn} converging to some u Î X, xn ≼ u holds for

each n Î N.

If there exists x0 Î X such that x0 ≼ fx0, then f has at least one fixed point.
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(b) The same holds if f is nonincreasing, there exists x0 comparable with fx0 and (ii)

is replaced by

(ii’) if a sequence {xn} converging to some u Î X has every two adjacent terms com-

parable, then there exists a subsequence
{
xnk

}
having each term comparable with x.

Proof As an illustration, we include a direct proof of case (b) when condition (ii ’) is

fulfilled.

Let u be the limit of the Picard sequence {fnx0} and let
{
f nkx0

}
be a subsequence hav-

ing all the terms comparable with u. Then we can apply contractivity condition to

obtain

d
(
fu, f nk+1x0

) ≤ λmax
{
d
(
u, f nkx0

)
, d(u, fu), d

(
f nkx0, f nk+1x0

)
,

d
(
u, f nk+1x0

)
, d

(
fu, f nkx0

)}
.

Using that d(fu, u) ≤ d
(
fu, f nk+1x0

)
+ d

(
f nk+1x0, u

)
and passing to the limit when k ®

∞ we get

d
(
fu, u

) ≤ λmax
{
0, d

(
u, fu

)
, 0, 0, d

(
u, fu

)}
= λd

(
u, fu

)
,

and it follows that fu = u.

Note also that instead of the completeness of X, its f-orbitally completeness is suffi-

cient to obtain the conclusion of the corollary.

It is clear that the following diagram, where arrows stand for implications, is valid:

contraction → quasicontraction
↓ ↓

ordered contraction → ordered quasicontraction

Reverse implications do not hold. An example of a quasicontraction which is not a

contraction was given in [3]. We shall present an example of an ordered quasicontrac-

tion which is not a quasicontraction.

Example 1 Let X = [0,4], equipped with the usual metric and ordered by

x�y ⇔ (x = y) or
(
x, y ∈ [1, 4] and x ≤ y

)
.

Consider the function f: X ® X, fx =

{
2x, 0 ≤ x < 1,
1
3
(x + 5) 1 ≤ x ≤ 4.

Then

M(x, y) = max
0≤x<1

{
d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fy)

}
= max

0≤x<1.

{∣∣x − y
∣∣ , |x| , ∣∣y∣∣ , ∣∣x − 2y

∣∣ , ∣∣y − 2x
∣∣} ,

and we have to check the condition d(fx,fy) = 2|x - y| ≤ lM(x, y). Taking in each of

the possible five inequalities that (x ® 1- and y = 0) or (x = 0 and y ® 1-) we obtain

that l cannot be in the interval [0,1). Hence, f is not a quasicontraction. But it is an

ordered contraction, and so an ordered quasicontraction, since d(fx, fy) ≤ ld(x, y)
holds for λ ∈ [ 1

3 , 1
)
and all x, y Î X such that y ≼ x.
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2.1 Uniqueness of the fixed point

The following simple example shows that conditions of theorems in the previous sec-

tion are not sufficient for the uniqueness of fixed points (resp., common fixed points).

Example 2 Let X = {(1, 0), (0,1)}, let (a, b) ≼ (c, d) if and only if a ≤ c and b ≤ d, and

let d1 be the Euclidean metric. The function f((x, y)) = (x, y) is continuous. The only

comparable pairs of points in X are (x, x) for x Î X and then (2.2) reduces to d1(fx, fx)

= 0, and is trivially fulfilled. However, f has two fixed points (1,0) and (0,1).

We shall give a sufficient condition for the uniqueness of the fixed point in the case

of an ordered quasicontraction.

Theorem 3 Let all the conditions of Corollary 2 be satisfied with l Î (0, 1/2) in the

contractivity condition (2.2) and let for all x, y Î X there exists z Î X comparable with

both of them. Then:

1. f has a unique fixed point u;

2. for arbitrary x0 which can be a starting point of the Picard sequence {fnx0} this

sequence converges to u.

Proof Let u and v be two fixed points of f. If these two points are comparable, then

d(u, v) = d(fu, fv)

≤ λmax
{
d(u, v), d(u, fu), d(v, fv), d(u, fv), d(v, fu)

}
= λd(u, v),

implying u = v.

Suppose that u and v are incomparable and that w Î X is comparable with both of

them. We shall prove that d(u, fnw) ® 0 and d(v, fnw) ® 0 when n ® ∞, which, taking

into account that d(u, v) ≤ d(u, fnw) + d(fnw, v), will imply that d(u, v) = 0 and u = v.

Indeed,

d
(
u, f nw

)
= d

(
f f n−1u, f f n−1w

)
≤ λmax

{
d
(
f n−1u, f n−1w

)
, d

(
f n−1u, f nu

)
, d

(
f n−1w, f nw

)
,

d
(
f n−1u, f nw

)
, d

(
f n−1w, f nu

)}
≤ λmax

{
d
(
u, f n−1w

)
, 0, d

(
f n−1w, u

)
+ d

(
u, f nw

)
d
(
u, f nw

)
, d

(
f n−1w, u

)}
= λ(d(u, f n−1w) + d(u, f nw)).

It follows that

d(u, f nw) ≤ λ

1 − λ
d(u, f n−1w) = μd(u, f n−1w).

Since 0 <l < 1/2, it is μ < 1 and it follows that d(u, fnw) ≤ μnd(u,w) ® 0, when n ®
∞. Similarly, d(v, fnw) ® 0 and the proof is complete in the case, when f is nondecreas-

ing. The proof is similar when f is nonincreasing.

It is an open question whether the previous theorem is true for l Î [1/2,1). Also, an

open problem is to find sufficient conditions for the uniqueness of the common fixed

point in the case of an ordered g-quasicontraction.

3 Weak ordered contractions
Functions ψ, � : [0, ∞) ® [0, ∞) will be called control functions if:

(i) ψ is a continuous nondecreasing function with ψ(t) = 0 if and only if t = 0,
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(ii) � is a lower semi-continuous function with �(t) = 0 if and only if t = 0.

Let (X, d) be a metric space and let f,g : X ® X. In the articles [20,21] (in the setting

of metric spaces) and [12,13] (in the setting of ordered metric spaces) contractive con-

ditions of the form

ψ
(
d(fx, gy)

) ≤ ψ
(
M(x, y)

) − ϕ(M(x, y)),

where

M(x, y) = max
{
d(x, y), d(x, fx), d(y, gy),

1
2

(
d(x, gy) + d(y, fx)

)}
,

were used to obtain common fixed points results. We shall use here the following

condition

ψ
(
d(fx, fy)

) ≤ ψ(M(x, y)) − ϕ(M(x, y)), (3:1)

where

M(x, y) = max
{
d(gx, gy), d(gx, fx), d(gy, fy),

1
2

(
d(gx, fy) + d(gy, fx)

)}
. (3:2)

Note that the respective result in the setting of ordered cone metric spaces is proved

in [14].

Assertions similar to the following lemma (see, e.g., [24]) were used (and proved) in

the course of proofs of several fixed point results in various articles.

Lemma 2 [24]Let (X, d) be a metric space and let {yn} be a sequence in X such that

the sequence {d(yn+1, yn)} is nonincreasing and

lim
n→∞ d

(
yn+1, yn

)
= 0.

If {y2n} is not a Cauchy sequence, then there exist ε > 0 and two sequences {mk} and

{nk} of positive integers such that the following four sequences tend to ε, when k ® ∞:

d
(
y2mk , y2nk

)
, d

(
y2mk , y2nk+1

)
, d

(
y2mk−1, y2nk

)
, d

(
y2mk−1, y2nk+1

)
. (3:3)

Theorem 4 Let (X, d, ≼) be a partially ordered metric space and let f, g be two self-

maps on X satisfying the following conditions:

(i) fX ⊂ gX;

(ii) gX is complete;

(iii) f is g-nondecreasing;

(iv) f and g satisfy condition (3.1) for each x, y Î X such that gy ≼ gx, where (ψ,�) is a

pair of control functions and M(x,y) is defined by (3.2);

(v) there exists x0 Î X such that gx0 ≼ fx0;

(vi) if {gxn} is a nondecreasing sequence that converges to some gz Î gX then gxn ≼ gz

for each n Î N and gz ≼ g(gz).

Then f and g have a coincidence point. If in addition,

(vii) f and g are weakly compatible,

then they have a common fixed point.

Proof As in the proof of Theorem 1, a nondecreasing Jungck sequence yn with yn =

fxn = gxn+1 can be constructed. Consider the following two possibilities: 1° yn0 = yn0+1

for some n0 Î N and 2° yn ≠ yn+1 for each n Î N.
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1° We shall prove that in this case yn = yn0 for each n ≥ n0. Using that gxn0+1≺gxn0+2
we obtain

ψ
(
d
(
yn0+1, yn0+2

))
= ψ

(
d
(
f xn0+1, f xn0+2

))
≤ ψ

(
M

(
xn0+1, xn0+2

)) − ϕ
(
M

(
xn0+1, xn0+2

))
,

where

M(xn0+1, xn0+2) = max
{
d(gxn0+1, gxn0+2), d(gxn0+1, f xn0+1), d(gxn0+2, f xn0+2),

1
2
(d(gxn0+1, f xn0+2) + d(gxn0+2, f xn0+1))

}
= max

{
d(yn0 , yn0+1), d(yn0 , yn0+1), d(yn0+1, yn0+2),

1
2
(d(yn0 , yn0+2) + 0)

}

= max
{
0, 0, d(yn0+1, yn0+2),

1
2
d(yn0+1, yn0+2)

}
= d(yn0+1, yn0+2).

Hence ψ(d(yn0+1, yn0+2)) ≤ ψ(d(yn0+1, yn0+2)) − ϕ(d(yn0+1, yn0+2)) which, by the

properties of control functions, implies that d(yn0+1, yn0+2) = 0 and yn0+1 = yn0+2. By

induction, yn = yn0 for each n ≥ n0. It follows that gxn0+1 = f xn0+1 and xn0+1 is a coinci-

dence point of f and g.

Suppose that condition (vii) holds. Then also

f yn0 = fgxn0+1 = gf xn0+1 = gyn0 ,

and if we prove that f yn0 = yn0 , yn0 will be a common fixed point for f and g. Using

condition (vi) with z = yn0 we obtain that gxn0+1≺gyn0 and we can apply condition (iv)

to obtain

ψ
(
d
(
f xn0+1, f yn0

)) ≤ ψ
(
M

(
xn0+1, yn0

)) − ϕ
(
M

(
xn0+1, yn0

))
,

where

M
(
xn0+1, yn0

)
= max

{
d
(
gxn0+1, gyn0

)
, d

(
gxn0+1, f xn0+1

)
, d

(
gyn0 , f yn0

)
,

1
2

(
d
(
gn0+1, f yn0

)
+ d

(
gyn0 , f xn0+1

))}
= max

{
d
(
yn0 , f yn0

)
, d

(
yn0 , yn0

)
, d

(
f yn0 , f yn0

)
,

1
2

(
d
(
yn0 , f yn0

)
+ d

(
f yn0 , yn0

))}
= d

(
yn0 , f yn0

)
.

Thus, ψ(d(yn0 , f yn0)) ≤ ψ(d(yn0 , f yn0 )) − ϕ(d(yn0 , f yn0 )) and again using properties

of control functions it follows that f yn0 = yn0. This completes the proof of the theorem

in the first case.

2° We shall prove that in this case {yn} is a Cauchy sequence. Since gxn+1 ≼ gxn+2, we

have that

ψ(d(yn+1, yn+2)) = ψ(d(f xn+1, f xn+2))

≤ ψ(M(xn+1, xn+2)) − ϕ(M(xn+1, xn+2)),
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where

M (xn+1, xn+2) = max
{
d
(
gxn+1, gxn+2

)
, d

(
gxn+1, f xn+1

)
, d

(
gxn+2, f xn+2

)
,

1
2

(
d
(
gxn+1, f xn+2

)
+ d

(
gyn+2, f xn+1

))}

= max
{
d
(
yn, yn+1

)
, d

(
yn, yn+1

)
, d

(
yn+1, yn+2

)
,
1
2
d
(
yn, yn+2

)
+ 0

}
= max

{
d
(
yn, yn+1

)
, d

(
yn+1, yn+2

)}
(d (yn, yn+2) ≤ d(yn, yn+1)+ d(yn+1,yn+2) was used to obtain the last equality). If d (yn+1,

yn+2) ≥ d(yn, yn+1), then it follows from

ψ
(
d
(
yn+1, yn+2

)) ≤ ψ
(
d
(
yn+1, yn+2

)) − ϕ
(
d
(
yn+1, yn+2

))
(3:4)

and the properties of control functions that d(yn+1,yn+2) = 0, contrary to the assump-

tion that all terms of the sequence {yn} are distinct. Hence, d(yn+1,yn+2) <d(yn,yn+1), i.e.,

the sequence {d(yn,yn+1)} is decreasing. Therefore, it converges to some d* ≤ 0 when n

® ∞. Then, M(xn+1,xn+2) ® d*, n ® ∞.

From (3.4), passing to the (upper) limit when n ® ∞, it follows that

ψ(d∗) ≤ ψ(d∗) − lim inf
n→∞ ϕ(d∗) ≤ ψ(d∗) − ϕ(d∗),

i.e., �(d*) = 0 and d* = 0. We conclude that d(yn, yn+1) ® 0, n ® ∞. As a conse-

quence, in order to prove that {yn} is a Cauchy sequence, it is enough to prove that

{y2n} is a Cauchy sequence.

Suppose that {y2n} is not a Cauchy sequence. Then, by Lemma 2, there exist ε > 0

and two sequences {mk} and {nk} of positive integers such that the sequences (3.3) tend

to ε when k ® ∞. Now, by definition of M(x,y), we obtain that

M
(
x2mk , x2nk+1

) → ε, k → ∞. Indeed,

M(x2mk , x2nk+1)

= max
{
d(gx2mk , gx2nk+1), d(gx2mk , f x2mk), d(gx2nk+1, f x2nk+1) ,

1
2
(d(f x2mk , gx2nk+1) + d(f x2nk+1, gx2mk))

}
= max

{
d(y2mk−1, y2nk) , d(y2mk−1, y2mk), d(y2nk , y2nk+1),

1
2
(d(y2mk , y2nk) + d(y2nk+1, y2mk−1))

}

→ max
{
ε, 0, 0,

1
2
(ε + ε)

}
= ε.

Now, putting x = x2mk and y = x2nk+1 into the contractive condition (iv) (which is pos-

sible since gx2nk+1 = y2nk and gx = gx2mk = y2mk−1 are comparable), we get that

ψ
(
d
(
y2mk , y2nk+1

))
= ψ

(
d
(
f x2mk , f x2nk+1

))
≤ ψ

(
M

(
x2mk , x2nk+1

)) − ϕ
(
M

(
x2mk , x2nk+1

))
.

Passing to the limit when k ® ∞ and using properties of control functions, we obtain

that ψ(ε) ≤ ψ(ε)- �(ε), which is in contradiction with ε > 0.

The proof that {yn} is a Cauchy sequence is complete. By the assumption (ii), there

exists z Î X such that gxn ® gz, when n ® ∞. We shall prove that fz = gz.
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Condition (vi) implies that gxn ≼ gz and we can apply contractive condition to obtain

ψ
(
d
(
f xn, fz

)) ≤ ψ (M (xn, z)) − ϕ (M (xn, z)) , (3:5)

where

M(xn, z) = max
{
d(gxn, gz), d

(
gxn, f xn

)
, d(gz, fz),

1
2

(
d(gxn, fz) + d(gz, f xn)

)}

→ max
{
0, 0, d(gz, fz),

1
2
d(gz, fz)

}
= d(gz, fz).

Passing to the (upper) limit when n ® ∞ in (3.5) we obtain that

ψ
(
d
(
gz, fz

)) ≤ ψ
(
d
(
gz, fz

)) − ϕ
(
d
(
gz, fz

))
,

wherefrom gz = fz follows. Hence, z is a coincidence point of f and g.

If condition (vii) is fulfilled, put w = fz = gz, and obtain that fw = fgz = gfz = gw.

Using that gz ≼ ggz = gw it can be proved that fw = gw = w in a similar way as it was

done in the case 1°. The theorem is proved completely.

Remark 4 If the four-term set in condition (3.2) is replaced by any of the following

sets {
d(gx, gy)

}
,

{
d(gx, gy), d(gx, fx), d(gy, fy)

}
,{

d(gx, gy),
1
2

(
d(gx, fx), d(gy, fy)

)
,
1
2
(d(gx, fy) + d(gy, fx))

}
,

similar conclusions for the existence of common fixed points of mappings f and g

can be obtained.

Remark 5 In his important article [22], Jachymski showed that some fixed point

results based on weak contractive conditions involving functions ψ and � can be

reduced to their counterparts using just one function, say �’. We note that our results

do not fall into this category, since conditions of our Theorem 4 are not covered by

the conditions of [22, Theorem 7].

Remark 6 Very recently, Shatanawi et al. [25] have obtained some results closely

related to the ones given in this section. However, their assumptions on the given

mappings are different.
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