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Abstract
Let E be a uniformly convex and uniformly smooth Banach space, let C be a
nonempty closed convex subset of E, let {Tn} : C → C be a countable family of weak
relatively nonexpansive mappings such that F =

⋂∞
n=1 F(Tn) �= ∅. For any given gauss

x0 ∈ C, define a sequence {xn} in C by the following algorithm:⎧⎪⎨⎪⎩
C0 = C,

Cn+1 = {z ∈ Cn : φ(z, Tnxn) = φ(z, xn)}, n = 0, 1, 2, 3, . . . ,
xn+1 =�Cn+1x0.

Then {xn} converges strongly to q =�Fx0.
MSC: 47H05; 47H09; 47H10

Keywords: relatively nonexpansive mapping; weak relatively nonexpansive
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1 Introduction
Let E be a real Banach space with the dual E*. We denote by J the normalized duality
mapping from E to E* defined by

Jx =
{
f ∈ E* : 〈x, f 〉 = ‖x‖ = ‖f ‖},

where 〈·, ·〉 denotes the generalized duality pairing. The duality mapping J has the follow-
ing properties: () if E is smooth, then J is single-valued; () if E is strictly convex, then J is
one-to-one; () if E is reflexive, then J is surjective; () if E is uniformly smooth, then J is
uniformly norm-to-norm continuous on each bounded subset of E; () if E* is uniformly
convex, then J is uniformly continuous on bounded subsets of E and J is singe-valued and
also one-to-one (see [–]).
Let E be a smooth Banach spacewith the dual E*. The functional φ : E×E → R is defined

by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖,

for all x, y ∈ E.
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Let C be a closed convex subset of E, and let T be a mapping from C into itself. We
denote by F(T) the set of fixed points of T . A point p in C is said to be an asymptotic
fixed point of T [] if C contains a sequence {xn} which converges weakly to p such that
the strong limn→∞(xn – Txn) = . The set of asymptotic fixed points of T will be denoted
by F̂(T). A mapping T from C into itself is called nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for
all x, y ∈ C and relatively nonexpansive if F(T) = F̂(T) and φ(p,Tx) ≤ φ(p,x) for all x ∈ C
and p ∈ F(T). The asymptotic behavior of a relatively nonexpansive mapping was studied
in [, –].
Three classical iteration processes are often used to approximate a fixed point of a non-

expansive mapping. The first one was introduced in  by Mann [] and is well known
as Mann’s iteration process defined as follows:⎧⎨⎩x chosen arbitrarily,

xn+ = αnxn + ( – αn)Txn, n≥ ,
(.)

where the sequence {αn} is chosen in [, ]. Fourteen years later, Halpern [] proposed
the new innovation iteration process which resembled Mann’s iteration (.). It is defined
by ⎧⎨⎩x chosen arbitrarily,

xn+ = αnu + ( – αn)Txn, n≥ ,
(.)

where the element u ∈ C is fixed. Seven years later, Ishikawa [] enlarged and improved
Mann’s iteration (.) to the new iteration method, which is often cited as Ishikawa’s iter-
ation process and defined recursively by

⎧⎪⎪⎨⎪⎪⎩
x chosen arbitrarily,

yn = βnxn + ( – βn)Txn,

xn+ = αnxn + ( – αn)Tyn, n ≥ ,

(.)

where {αn} and {βn} are sequences in the interval [, ].
In both Hilbert space [–] and uniformly smooth Banach space [–] the iteration

process (.) has been proved to be strongly convergent if the sequence {αn} satisfies the
following conditions:

(i) αn → ;
(ii)

∑∞
n= αn = ∞;

(iii)
∑∞

n= |αn+ – αn| < ∞ or limn→∞ αn
αn+

= .
By the restriction of condition (ii), it is widely believed thatHalpern’s iteration process (.)
has slow convergence though the rate of convergence has not been determined. Halpern
[] proved that conditions (i) and (ii) are necessary in the strong convergence of (.) for
a nonexpansive mapping T on a closed convex subset C of a Hilbert space H . Moreover,
Wittmann [] showed that (.) converges strongly to PF(T)u when {αn} satisfies (i), (ii)
and (iii), where PF(T)(·) is the metric projection onto F(T).
Both iteration processes (.) and (.) have only weak convergence in a general Banach

space (see [] for more details). As a matter of fact, the process (.) may fail to converge,
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while the process (.) can still converge for a Lipschitz pseudo-contractive mapping in a
Hilbert space []. For example, Reich [] proved that if E is a uniformly convex Banach
spacewith the Fréchet differentiable norm and if {αn} is chosen such that∑∞

n= αn(–αn) =
∞, then the sequence {xn} defined by (.) convergesweakly to a fixed point ofT . However,
we note that Mann’s iteration process (.) has only weak convergence even in a Hilbert
space [].
Some attempts tomodify theMann iterationmethod so that strong convergence is guar-

anteed have recently beenmade. Nakajo and Takahashi [] proposed the followingmod-
ification of the Mann iteration method for a single nonexpansive mapping T in a Hilbert
space H :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = αnxn + ( – αn)Txn,

Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn∩Qn (x),

(.)

where C is a closed convex subset of H , PK denotes the metric projection from H onto
a closed convex subset K of H . They proved that if the sequence {αn} is bounded above
from one, then the sequence {xn} generated by (.) converges strongly to PF(T)(x), where
F(T) denotes the fixed point set of T .
The ideas to generalize the process (.) from a Hilbert space to a Banach space have

recently been made. By using available properties on a uniformly convex and uniformly
smooth Banach space,Matsushita and Takahashi [] presented their ideas as the following
method for a single relatively nonexpansive mapping T in a Banach space E:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = J–(αnJx + ( – αn)JTxn),

Cn = {z ∈ C : φ(z, yn) ≤ φ(z,xn)},
Qn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ = �Cn∩Qn (x).

(.)

They proved the following convergence theorem.

TheoremMT Let E be a uniformly convex and uniformly smooth Banach space, let C be a
nonempty closed convex subset of E, let T be a relatively nonexpansivemapping fromC into
itself, and let {αn} be a sequence of real numbers such that  ≤ αn <  and lim supn→∞ αn < .
Suppose that {xn} is given by (.),where J is the duality mapping on E. If F(T) is nonempty,
then {xn} converges strongly to �F(T)x, where �F(T)(·) is the generalized projection from C
onto F(T).

In , Plubtieng and Ungchittrakool [] proposed the following hybrid algorithms
for two relatively nonexpansive mappings in a Banach space and proved the following
convergence theorems.
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TheoremSK Let E be a uniformly convex and uniformly smooth real Banach space, let C
be a nonempty closed convex subset of E, let T , S be two relatively nonexpansive mappings
from C into itself with F := F(T)∩ F(S) is nonempty. Let a sequence {xn} be defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = J–(αnJxn + ( – αn)Jzn),

zn = J–(β ()
n Jxn + β

()
n JTxn + β

()
n JSxn),

Hn = {z ∈ C : φ(z, yn) ≤ φ(z,xn)},
Wn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ = �Hn∩Wn (x)

(.)

with the following restrictions:
(i)  ≤ αn < , lim supn→∞ αn < ;
(ii)  ≤ β

()
n ,β ()

n ,β ()
n ≤ , limn→∞ β

()
n = , lim infn→∞ β

()
n β

()
n > .

Then {xn} converges strongly to�Fx,where�F is the generalized projection from C onto F .

Theorem SK Let E be a uniformly convex and uniformly smooth Banach space, let C be
a nonempty closed convex subset of E, let T , S be two relatively nonexpansive mappings
from C into itself with F := F(T)∩ F(S) is nonempty. Let a sequence {xn} be defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = J–(αnJx + ( – αn)Jzn),

zn = J–(β ()
n Jxn + β

()
n JTxn + β

()
n JSxn),

Hn = {z ∈ C : φ(z, yn) ≤ φ(z,xn) + αn(‖x‖ + 〈z, Jxn – Jx〉)},
Wn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ = �Hn∩Wn (x)

(.)

with the following restrictions:
(i)  < αn < , lim supn→∞ αn < ;
(ii)  ≤ β

()
n ,β ()

n ,β ()
n ≤ , limn→∞ β

()
n = , lim infn→∞ β

()
n β

()
n > .

Then {xn} converges strongly to�Fx,where�F is the generalized projection from C onto F .

In , Su, Xu and Zhang [] proposed the following hybrid algorithms for two count-
able families of weak relatively nonexpansive mappings in a Banach space and proved the
following convergence theorems.

Theorem SKZ Let E be a uniformly convex and uniformly smooth real Banach space,
let C be a nonempty closed convex subset of E, let {Tn}, {Sn} be two countable families of
weak relatively nonexpansive mappings from C into itself such that F := (

⋂∞
n= F(Tn)) ∩

http://www.fixedpointtheoryandapplications.com/content/2012/1/205
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(
⋂∞

n= F(Sn)) �= ∅. Define a sequence {xn} in C by the following algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

zn = J–(β ()
n Jxn + β

()
n JTnxn + β

()
n JSnxn),

yn = J–(αnJxn + ( – αn)Jzn),

Cn = {z ∈ Cn– ∩Qn– : φ(z, yn) ≤ φ(z,xn)},
C = {z ∈ C : φ(z, y) ≤ φ(z,x)},
Qn = {z ∈ Cn– ∩Qn– : 〈xn – z, Jx – Jxn〉 ≥ },
Q = C,

xn+ = �Cn∩Qn (x)

(.)

with the conditions
(i) lim infn→∞ β

()
n β

()
n > ;

(ii) lim infn→∞ β
()
n β

()
n > ;

(iii) ≤ αn ≤ α <  for some α ∈ (, ).
Then {xn} converges strongly to�Fx,where�F is the generalized projection from C onto F .

Unfortunately, in recent years,many hybrid algorithms have been very complex, so these
complex algorithms are not applicable or are very difficult in applications. Naturally, we
hope to obtain some simple and practical algorithms. The purpose of this article is to
present a simple projection algorithm for a countable family of weak relatively nonexpan-
sive mappings and to prove strong convergence theorems in Banach spaces.
In addition, we shall give an example which is a countable family of weak relatively non-

expansive mappings, but not a countable family of relatively nonexpansive mappings.

2 Preliminaries
Let E be a smooth Banach space with the dual E*. The functional φ : E× E → R is defined
by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, (.)

for all x, y ∈ E. Observe that in aHilbert spaceH , (.) reduces to φ(x, y) = ‖x–y‖, x, y ∈H .
Recall that if C is a nonempty, closed and convex subset of a Hilbert space H and PC :

H → C is the metric projection of H onto C, then PC is nonexpansive. This is true only
when H is a real Hilbert space. In this connection, Alber [] has recently introduced a
generalized projection operator�C in a Banach space E which is an analogue of themetric
projection in Hilbert spaces. The generalized projection �C : E → C is a map that assigns
to an arbitrary point x ∈ E the minimum point of the functional φ(y,x), that is, �Cx = x̄,
where x̄ is the solution to the minimization problem

φ(x̄,x) =min
y∈C φ(y,x). (.)

The existence and uniqueness of the operator �C follow from the properties of the func-
tional φ(y,x) and strict monotonicity of the mapping J . In a Hilbert space, �C = PC . It is

http://www.fixedpointtheoryandapplications.com/content/2012/1/205
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obvious from the definition of the functional φ that

(‖x‖ – ‖y‖) ≤ φ(y,x)≤ (‖y‖ + ‖x‖) (.)

and

φ(x, y) = φ(x, z) + φ(z, y) – 〈x – z, Jz – Jy〉 (.)

for all x, y ∈ E. See [] for more details.
This section collects some definitions and lemmas which will be used in the proofs for

themain results in the next section. Some of themare known; others are not hard to derive.

Remark . If E is a reflexive strictly convex and smooth Banach space, then for x, y ∈ E,
φ(x, y) =  if and only if x = y. It is sufficient to show that if φ(x, y) =  then x = y. From
(.), we have ‖x‖ = ‖y‖. This implies 〈x, Jy〉 = ‖x‖ = ‖Jy‖. From the definition of J , we
have Jx = Jy. Since J is one-to-one, then we have x = y; see [, , ] for more details.

In this paper, we give the definitions of a countable family of relatively nonexpansive
mappings and a countable family of weak relatively nonexpansive mappings which are
generalizations of a relatively nonexpansive mapping and a weak relatively nonexpansive
mapping respectively. We also give an example which is a countable family of weak rela-
tively nonexpansive mappings, but not a countable family of relatively nonexpansive map-
pings.
Let C be a closed convex subset of E, and let {Tn}∞n= be a countable family of mappings

from C into itself. We denote by F the set of common fixed points of {Tn}∞n=. That is
F =

⋂∞
n= F(Tn), where F(Tn) denotes the set of fixed points of Tn for all n ≥ . A point p

in C is said to be an asymptotic fixed point of {Tn}∞n= if C contains a sequence {xn} which
convergesweakly to p such that limn→∞ ‖Tnxn–xn‖ = . The set of asymptotic fixed points
of {Tn}∞n= will be denoted by F̂({Tn}∞n=). A point p in C is said to be a strong asymptotic
fixed point of {Tn}∞n= if C contains a sequence {xn} which converges strongly to p such
that limn→∞ ‖Tnxn – xn‖ = . The set of strong asymptotic fixed points of {Tn}∞n= will be
denoted by F̃({Tn}∞n=).

Definition . The countable family of mappings {Tn}∞n= is said to be a countable family
of relatively nonexpansive mappings if the following conditions are satisfied:
() F({Tn}∞n=) is nonempty;
() φ(u,Tnx) ≤ φ(u,x), ∀u ∈ F(Tn), x ∈ C, n ≥ ;
() F̂({Tn}∞n=) =

⋂∞
n= F(Tn).

Definition . The countable family of mappings {Tn}∞n= is said to be a countable family
of weak relatively nonexpansive mappings if the following conditions are satisfied:
() F({Tn}∞n=) is nonempty;
() φ(u,Tnx) ≤ φ(u,x), ∀u ∈ F(Tn), x ∈ C, n ≥ ;
() F̃({Tn}∞n=) =

⋂∞
n= F(Tn).

Definition . [] The mapping T is said to be a relatively nonexpansive mapping if the
following conditions are satisfied:

http://www.fixedpointtheoryandapplications.com/content/2012/1/205
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() F(T) is nonempty;
() φ(u,Tx) ≤ φ(u,x), ∀u ∈ F(T), x ∈ C;
() F̃(T) = F(T).

Definition . The mapping T is said to be a weak relatively nonexpansive mapping if
the following conditions are satisfied:
() F(T) is nonempty;
() φ(u,Tx) ≤ φ(u,x), ∀u ∈ F(T), x ∈ C;
() F̃(T) = F(T).

Definition . (Definition .) is a special form of Definition . (Definition .) as Tn ≡
T for all n ≥ .
The hybrid algorithms for a fixed point of relatively nonexpansive mappings and appli-

cations have been studied by many authors; see, for example, [, , , , , ]. In recent
years, the definition of a weak relatively nonexpansive mapping has been presented and
studied by many authors [, , , ], but they have not given an example of a mapping
which is weak relatively nonexpansive, but not relatively nonexpansive.
In the next section, we shall give an example which is a countable family of weak rela-

tively nonexpansive mappings, but not a countable family of relatively nonexpansive map-
pings.
We need the following lemmas for the proof of our main results.

Lemma . [] Let E be a uniformly convex and smooth real Banach space and let {xn},
{yn} be two sequences of E. If φ(xn, yn) →  and either {xn} or {yn} is bounded, then ‖xn –
yn‖ → .

Lemma. [, , ] Let C be a nonempty closed convex subset of a smooth real Banach
space E and x ∈ E. Then, x = �Cx if and only if

〈x – y, Jx – Jx〉 ≥  for all y ∈ C.

Lemma . [, , ] Let E be a reflexive, strictly convex and smooth real Banach space,
let C be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y,�cx) + φ(�cx,x)≤ φ(y,x) for all y ∈ C.

Lemma . [] Let E be a uniformly convex Banach space and Br() = {x ∈ E : ‖x‖ ≤ r}
be a closed ball of E. Then there exists a continuous strictly increasing convex function
g : [,∞) → [,∞) with g() =  such that

‖λx +μy + γ z‖ ≤ λ‖x‖ +μ‖y‖ + γ ‖z‖ – λμg
(‖x – y‖) (.)

for all x, y, z ∈ Br() and λ,μ,γ ∈ [, ] with λ +μ + γ = .

It is easy to prove the following result.

http://www.fixedpointtheoryandapplications.com/content/2012/1/205
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Lemma . Let E be a strictly convex and smooth real Banach space, let C be a closed
convex subset of E, and let T be a weak relatively nonexpansive mapping from C into itself.
Then F(T) is closed and convex.

3 Main results
Firstly, we give an example which is a countable family of weak relatively nonexpansive
mappings, but not a countable family of relatively nonexpansive mappings in the Banach
space l.

Example  Let E = l, where

l =

{
ξ = (ξ, ξ, ξ, . . . , ξn, . . .) :

∞∑
n=

|xn| < ∞
}
,

‖ξ‖ =
( ∞∑

n=

|ξn|
) 



, ∀ξ ∈ l,

〈ξ ,η〉 =
∞∑
n=

ξnηn, ∀ξ = (ξ, ξ, ξ, . . . , ξn, . . .),η = (η,η,η, . . . ,ηn . . .) ∈ l.

It is well known that l is a Hilbert space, so (l)* = l. Let {xn} ⊂ E be a sequence defined
by

x = (, , , , . . .),

x = (, , , , . . .),

x = (, , , , , . . .),

x = (, , , , , , . . .),

· · ·
xn = (ξn,, ξn,, ξn,, . . . , ξn,k , . . .),

· · · ,

where

ξn,k =

⎧⎨⎩ if k = ,n + ,

 if k �= ,k �= n + ,

for all n ≥ .

Define a countable family of mappings Tn : E → E as follows:

Tn(x) =

⎧⎨⎩ n
n+xn if x = xn,

–x if x �= xn,

for all n ≥ .

http://www.fixedpointtheoryandapplications.com/content/2012/1/205
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Conclusion . {xn} converges weakly to x.

Proof For any f = (ζ, ζ, ζ, . . . , ζk , . . .) ∈ l = (l)*, we have

f (xn – x) = 〈f ,xn – x〉 =
∞∑
k=

ζkξn,k = ζn+ → ,

as n→ ∞. That is, {xn} converges weakly to x. �

Conclusion . {xn} is not a Cauchy sequence, so, it does not converge strongly to any
element of l.

Proof In fact, we have ‖xn – xm‖ = √
 for any n �=m. Then {xn} is not a Cauchy sequence.

�

Conclusion . Tn has a unique fixed point , that is, F(Tn) = {} for all n ≥ .

Proof The conclusion is obvious. �

Conclusion . x is an asymptotic fixed point of {Tn}∞n=.

Proof Since {xn} converges weakly to x and

‖Tnxn – xn‖ =
∥∥∥∥ n
n + 

xn – xn
∥∥∥∥ =


n + 

‖xn‖ → 

as n→ ∞, so, x is an asymptotic fixed point of {Tn}∞n=. �

Conclusion . {Tn}∞n= has a unique strong asymptotic fixed point , so,
⋂∞

n= F(Tn) =
F̃({Tn}∞n=).

Proof In fact, for any strong convergent sequence {zn} ⊂ E such that zn → z and ‖zn –
Tnzn‖ →  as n→ ∞, fromConclusion ., there exists a sufficiently large natural number
N such that zn �= xm for any n,m > N . Then Tzn = –zn for n > N , it follows from ‖zn –
Tnzn‖ →  that zn →  and hence zn → z = . �

Conclusion . {Tn}∞n= is a countable family of weak relatively nonexpansive mappings.

Proof Since E = L is a Hilbert space, for any n≥ , we have

φ(,Tnx) = ‖ – Tnx‖ = ‖Tnx‖

≤ ‖x‖ = ‖x – ‖ = φ(,x), ∀x ∈ E.

From Conclusion ., we have
⋂∞

n= F(Tn) = F̃({Tn}∞n=), then {Tn}∞n= is a countable family
of weak relatively nonexpansive mappings. �

Conclusion . {Tn}∞n= is not a countable family of relatively nonexpansive mappings.

http://www.fixedpointtheoryandapplications.com/content/2012/1/205
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Proof From Conclusions . and ., we have
⋂∞

n= F(Tn) �= F̂({Tn}∞n=), so, {Tn}∞n= is not
a countable family of relatively nonexpansive mappings. �

Secondly, we give another example which is a weak relatively nonexpansive mapping,
but not a relatively nonexpansive mapping in the Banach space l.

Example  Let E = l, where

l =

{
ξ = (ξ, ξ, ξ, . . . , ξn, . . .) :

∞∑
n=

|xn| < ∞
}
,

‖ξ‖ =
( ∞∑

n=

|ξn|
) 



, ∀ξ ∈ l,

〈ξ ,η〉 =
∞∑
n=

ξnηn, ∀ξ = (ξ, ξ, ξ, . . . , ξn, . . .),η = (η,η,η, . . . ,ηn . . .) ∈ l.

It is well known that l is a Hilbert space, so (l)* = l. Let {xn} ⊂ E be a sequence defined
by

x = (, , , , . . .),

x = (, , , , . . .),

x = (, , , , , . . .),

x = (, , , , , , . . .),

· · ·
xn = (ξn,, ξn,, ξn,, . . . , ξn,k , . . .),

· · · ,

where

ξn,k =

⎧⎨⎩ if k = ,n + ,

 if k �= ,k �= n + ,

for all n ≥ . Define the mapping T : E → E as follows

T(x) =

⎧⎨⎩ n
n+xn if x = xn (∃n≥ ),

–x if x �= xn (∀n≥ ).

Conclusion . {xn} converges weakly to x.

Proof For any f = (ζ, ζ, ζ, . . . , ζk , . . .) ∈ l = (l)*, we have

f (xn – x) = 〈f ,xn – x〉 =
∞∑
k=

ζkξn,k = ζn+ → ,

as n→ ∞. That is, {xn} converges weakly to x. �
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Conclusion . {xn} is not a Cauchy sequence, so, it does not converge strongly to any
element of l.

Proof In fact, we have ‖xn – xm‖ = √
 for any n �=m. Then {xn} is not a Cauchy sequence.

�

Conclusion . T has a unique fixed point , that is, F(T) = {}.

Proof The conclusion is obvious. �

Conclusion . x is an asymptotic fixed point of T .

Proof Since {xn} converges weakly to x and

‖Txn – xn‖ =
∥∥∥∥ n
n + 

xn – xn
∥∥∥∥ =


n + 

‖xn‖ → 

as n→ ∞, then x is an asymptotic fixed point of T . �

Conclusion . T has a unique strong asymptotic fixed point , so, F(T) = F̃(T).

Proof In fact, for any strong convergent sequence {zn} ⊂ E such that zn → z and ‖zn –
Tzn‖ →  as n→ ∞, from Conclusion ., there exists a sufficiently large natural number
N such that zn �= xm, for any n,m > N . Then Tzn = –zn for n > N , it follows from ‖zn –
Tzn‖ →  that zn →  and hence zn → z = . �

Conclusion . T is a weak relatively nonexpansive mapping.

Proof Since E = L is a Hilbert space, we have

φ(,Tx) = ‖ – Tx‖ = ‖Tx‖

≤ ‖x‖ = ‖x – ‖ = φ(,x), ∀x ∈ E.

From Conclusion ., we have F(T) = F̃(T), then T is a weak relatively nonexpansive
mapping. �

Conclusion . T is not a relatively nonexpansive mapping.

Proof From Conclusions . and ., we have F(T) �= F̂(T), so, T is not a relatively non-
expansive mapping. �

Next, we prove our convergence theorems as follows.

Theorem . Let E be a uniformly convex and uniformly smooth Banach space, let C
be a nonempty closed convex subset of E, let {Tn} : C → C be a countable family of weak
relatively nonexpansivemappings such that F =

⋂∞
n= F(Tn) �= ∅. For any given gauss x ∈ C,

http://www.fixedpointtheoryandapplications.com/content/2012/1/205
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define a sequence {xn} in C by the following algorithm:

⎧⎪⎪⎨⎪⎪⎩
C = C,

Cn+ = {z ∈ Cn : φ(z,Tnxn) ≤ φ(z,xn)}, n = , , , , . . . ,

xn+ = �Cn+x.

(.)

Then {xn} converges strongly to q = �Fx.

Proof Firstly, Cn is closed and convex. Since T is a closed hemi-relatively nonexpansive
mapping, then F(T) ⊆ Cn, n = , , , , . . . .
Since xn = �Cnx and Cn ⊂ Cn–, then we get

φ(xn,x) ≤ φ(xn+,x), for all n≥ . (.)

Therefore, {φ(xn,x)} is nondecreasing. On the other hand, by Lemma . we have

φ(xn,x) = φ(�Cnx,x)

≤ φ(p,x) – φ(p,xn) ≤ φ(p,x),

for all p ∈ F(T)⊂ Cn and for all n≥ . Therefore, φ(xn,x) is also bounded. This together
with (.) implies that the limit of {φ(xn,x)} exists. Put

lim
n→∞φ(xn,x) = d. (.)

From Lemma ., we have, for any positive integer m, that

φ(xn+m,xn) = φ(xn+m,�Cnx)

≤ φ(xn+m,x) – φ(�Cnx,x)

= φ(xn+m,x) – φ(xn+,x),

for all n ≥ . This together with (.) implies that

lim
n→∞φ(xn+m,xn) = 

holds, uniformly for allm. By using Lemma ., we get that

lim
n→∞‖xn+m – xn‖ = 

holds, uniformly for allm. Then {xn} is a Cauchy sequence. Therefore, there exists a point
p ∈ C such that xn → p.
Since xn+ = �Cn+x ⊂ Cn+ ⊂ Cn, then

φ(xn+,Tnxn) ≤ φ(xn+,xn), n = , , , , . . . .

By using Lemma ., we have ‖xn – Tnxn‖ → ; therefore, p ∈ F(T).

http://www.fixedpointtheoryandapplications.com/content/2012/1/205
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Finally, we prove that p = �Fx. From Lemma ., we have

φ(p,�Fx) + φ(�Fx,x) ≤ φ(p,x).

On the other hand, since xn+ = �Cn+x and F ⊂ Cn for all n, also from Lemma ., we
have

φ(�Fx,xn+) + φ(xn+,x) ≤ φ(�Fx,x). (.)

By the definition of φ(x, y), we know that

lim
n→∞φ(xn+,x) = φ(p,x). (.)

Combining (.) and (.), we know that φ(p,x) = φ(�Fx,x). Therefore, it follows from
the uniqueness of �Fx that p = �Fx. This completes the proof. �

Theorem . Let E be a uniformly convex and uniformly smooth Banach space, let C
be a nonempty closed convex subset of E, let {Tn} : C → C be a countable family of weak
relatively nonexpansivemappings such that F =

⋂∞
n= F(Tn) �= ∅. For any given gauss x ∈ C,

define a sequence {xn} in C by the following algorithm:

⎧⎪⎪⎨⎪⎪⎩
C = C,

Cn+ = {z ∈ Cn : φ(z,Tnxn) = φ(z,xn)}, n = , , , , . . . ,

xn+ = �Cn+x.

(.)

Then {xn} converges strongly to q = �Fx.

Proof Let {xn} be defined by (.). We claim that

xn+ ∈ {
z ∈ Cn : φ(z,Tnxn) = φ(z,xn)

}
, n = , , , , . . . .

Therefore,

xn+ = �{z∈Cn :φ(z,Tnxn)=φ(z,xn)}x.

If not, there exists xn+ such that

φ(xn+,Tnxn) < φ(xn+,xn).

We define

z(t) = ( – t)xn+ + tx ∈ C, t ∈ [, ].

Observe that z() = xn+. Since φ(·,Tnxn), φ(·,xn) are continuous, then there exists t ∈
(, ) such that

φ
(
z(t),Tnxn

)
< φ

(
z(t),xn

)
,

http://www.fixedpointtheoryandapplications.com/content/2012/1/205
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that is, z(t) ∈ Cn+. On the other hand, we have

φ
(
z(t),x

)
= φ

(
( – t)xn+ + tx,x

)
=

∥∥( – t)xn+ + tx
∥∥

– 
〈
( – t)xn+ + tx, Jx

〉
+ ‖x‖

≤ ( – t)‖xn+‖ + t‖x‖

– ( – t)〈xn+, Jx〉 – t〈x, Jx〉 + ‖x‖

= ( – t)‖xn+‖ + t‖x‖

– ( – t)〈xn+, Jx〉 – t‖x‖ + ‖x‖

= ( – t)‖xn+‖ + ( – t)‖x‖

– ( – t)〈xn+, Jx〉
= ( – t)φ(xn+,x) < φ(xn+,x).

This is a contradiction to xn+ = �Cn+x and z(t) ∈ Cn+. This completes the proof. �

4 Applications
Now, we apply Theorem . to prove a strong convergence theorem concerningmaximal
monotone operators in a Banach space E.
Let A be a multi-valued operator from E to E* with the domain D(A) = {z ∈ E : Az �= ∅}

and range R(A) = {z ∈ E : z ∈D(A)}. An operator A is said to be monotone if

〈x – x, y – y〉 ≥ 

for each x,x ∈D(A) and y ∈ Ax, y ∈ Ax. Amonotone operator A is said to bemaximal
if its graph G(A) = {(x, y) : y ∈ Ax} is not properly contained in the graph of any other
monotone operator. We know that if A is a maximal monotone operator, then A– is
closed and convex. The following result is also well known.

Theorem . (Rockafellar []) Let E be a reflexive, strictly convex and smooth Banach
space, and let A be a monotone operator from E to E*. Then A is maximal if and only if
R(J + rA) = E* for all r > .

Let E be a reflexive, strictly convex and smooth Banach space, and let A be a maximal
monotone operator from E to E*. Using Theorem . and strict convexity of E, we obtain
that for every r >  and x ∈ E, there exists a unique xr such that

Jx ∈ Jxr + rAxr .

Then we can define a single valued mapping Jr : E →D(A) by Jr = (J + rA)–J and such a Jr
is called the resolvent of A. We know that A– = F(Jr) for all r > , see [, ] for more de-
tails. Using Theorem ., we can consider the problem of strong convergence concerning
maximal monotone operators in a Banach space. Such a problem has been also studied in
[, , , , , , –].
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Theorem . Let E be a uniformly convex and uniformly smooth real Banach space, let
A be a maximal monotone operators from E to E* such that A– �= ∅, let Jr be the resol-
vent of A, where r > . For any given gauss x ∈ C = C, define a sequence {xn} in C by the
following algorithm:

⎧⎪⎪⎨⎪⎪⎩
C = C,

Cn+ = {z ∈ Cn : φ(z, Jrnxn) = φ(z,xn)}, n = , , , , . . . ,

xn+ = �Cn+x,

with the condition, rn > , lim infn→∞ rn > . Then {xn} converges strongly to q = �A–x.

Proof We only need to prove that {Jrn}∞n=, is a countable family of weak relatively nonex-
pansive mappings.
Firstly, we have

⋂∞
n= F(Jrn ) = A– �= ∅. Secondly, from the monotonicity of A, we have

φ(p, Jrnw) = ‖p‖ – 〈p, JJrnw〉 + ‖Jrnw‖

= ‖p‖ + 〈p, Jw – JJrnw – Jw〉 + ‖Jrnw‖

= ‖p‖ + 〈p, Jw – JJrnw〉 – 〈p, Jw〉 + ‖Jrnw‖

= ‖p‖ – 〈Jrnw – p – Jrnw, Jw – JJrnw – Jw〉
– 〈p, Jw〉 + ‖Jrnw‖

= ‖p‖ – 〈Jrnw – p, Jw – JJrnw – Jw〉
+ 〈Jrnw, Jw – JJrnw〉 – 〈p, Jw〉 + ‖Jrnw‖

≤ ‖p‖ + 〈Jrnw, Jw – JJrnw〉 – 〈p, Jw〉 + ‖Jrnw‖

= ‖p‖ – 〈p, Jw〉 + ‖w‖ – ‖Jrnw‖

+ 〈Jrnw, Jw〉 – ‖w‖

= φ(p,w) – φ(Jrnw,w)

≤ φ(p,w)

for all n ≥ . Thirdly, we prove the set of strong asymptotic fixed points F̃({Jrn}∞n=) =⋂∞
n= F(Jrn ) = A–.
We first show that F̃({Jrn}∞n=) ⊂ A–. Let p ∈ F̃({Jrn}∞n=), then there exists {zn} ⊂ E such

that zn → p and limn→∞ ‖zn – Jrnzn‖ = . Since J is uniformly norm-to-norm continuous
on bounded sets, we obtain


rn
(Jzn – JJrnzn) → .

It follows from


rn
(Jzn – JJrnzn) ∈ AJrnzn

http://www.fixedpointtheoryandapplications.com/content/2012/1/205
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and the monotonicity of A that〈
w – Jrnzn,w

* –

rn
(Jzn – JJrnzn)

〉
≥ 

for all w ∈D(A) and w* ∈ Aw. Letting n→ ∞, we have 〈w– p,w*〉 ≥  for all w ∈D(A) and
w* ∈ Aw. Therefore, from the maximality of A, we obtain p ∈ A–. On the other hand,
we know that F(Jrn ) = A–, F(Jrn ) ⊂ F̃(Jrn ) for all n ≥ ; therefore, A– =

⋂∞
n= F(Jrn ) =

F̃(
⋂∞

n= Jrn ). From above three conclusions, we have proved {Jrn}∞n= is a countable family
of weak relatively nonexpansive mappings. By using Theorem ., we can conclude that
{xn} converges strongly to �A–x. This completes the proof. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors contributed equally to the writing of the present article. All authors read and approved the final
manuscript.

Acknowledgements
This project is supported by the National Natural Science Foundation of China under Grant (11071279).

Received: 14 April 2012 Accepted: 29 October 2012 Published: 13 November 2012

References
1. Butnariu, D, Reich, S, Zaslavski, AJ: Weak convergence of orbits of nonlinear operators in reflexive Banach spaces.

Numer. Funct. Anal. Optim. 24, 489-508 (2003)
2. Ishikawa, S: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147-150 (1974)
3. Reich, S: Review of geometry of Banach spaces duality mappings and nonlinear problems by Ioana Cioranescu,

Kluwer Academic, Dordrecht, 1990. Bull. Am. Math. Soc. 26, 367-370 (1992)
4. Takahashi, W: Nonlinear Functional Analysis. Yokohama-Publishers, Yokohama (2000)
5. Reich, S: A weak convergence theorem for the alternating method with Bregman distance. In: Kartsatos, AG (ed.)

Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 313-318. Dekker, New York
(1996)

6. Butnariu, D, Reich, S, Zaslavski, AJ: Asymptotic behavior of relatively nonexpansive operators in Banach spaces.
J. Appl. Anal. 7, 151-174 (2001)

7. Censor, Y, Reich, S: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility
and optimization. Optimization 37, 323-339 (1996)

8. Martinez-Yanes, C, Xu, HK: Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal.
64, 2400-2411 (2006)

9. Matsushita, S, Takahashi, W: A strong convergence theorem for relatively nonexpansive mappings in a Banach space.
J. Approx. Theory 134, 257-266 (2005)

10. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)
11. Halpern, B: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957-961 (1967)
12. Lions, P: Approximation de points fixes de contractions. C. R. Acad. Sci. Paris Sér. A-B 284, 1357-1359 (1977)
13. Wittmann, R: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486-491 (1992)
14. Reich, S: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75,

287-292 (1980)
15. Takahashi, W: Convex Analysis and Approximation Fixed Points. Yokohama-Publishers, Yokohama (2000) (in Japanese)

16. Xu, HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240-256 (2002)
17. Genel, A, Lindenstrass, J: An example concerning fixed points. Isr. J. Math. 22, 81-86 (1975)
18. Chidume, CE, Mutangadura, SA: An example on the Mann iteration method for Lipschitz pseudocontractions. Proc.

Am. Math. Soc. 129, 2359-2363 (2001)
19. Reich, S: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274-276

(1979)
20. Nakajo, K, Takahashi, W: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups.

J. Math. Anal. Appl. 279, 372-379 (2003)
21. Plubtieng, S, Ungchittrakool, K: Strong convergence theorems for a common fixed point of two relatively

nonexpansive mappings in a Banach space. J. Approx. Theory 149, 103-115 (2007)
22. Su, Y, Xu, H, Zhang, X: Strong convergence theorems for two countable families of weak relatively nonexpansive

mappings and applications. Nonlinear Anal. 73, 3890-3906 (2010)
23. Alber, YI: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, AG

(ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15-50. Dekker, New York
(1996)

http://www.fixedpointtheoryandapplications.com/content/2012/1/205


Zhang et al. Fixed Point Theory and Applications 2012, 2012:205 Page 17 of 17
http://www.fixedpointtheoryandapplications.com/content/2012/1/205

24. Kamimura, S, Takahashi, W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13,
938-945 (2002)

25. Cioranescu, I: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic, Dordrecht
(1990)

26. Alber, YI, Reich, S: An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panam.
Math. J. 4, 39-54 (1994)

27. Cho, YJ, Zhou, HY, Guo, G: Weak and strong convergence theorems for three-step iterations with errors for
asymptotically nonexpansive mappings. Comput. Math. Appl. 47, 707-717 (2004)

28. Rockafellar, R: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970)
29. Kohsaka, F, Takahashi, W: Strong convergence of an iterative sequence for maximal monotone operators in a Banach

space. Abstr. Appl. Anal. 2004, 239-249 (2004)
30. Ohsawa, S, Takahashi, W: Strong convergence theorems for resolvents of maximal monotone operators in Banach

spaces. Arch. Math. 81, 439-445 (2003)
31. Reich, S: Constructive techniques for accretive and monotone operators. In: Applied Nonlinear Analysis. Proceedings

of the Third International Conference University of Texas, Arlington, TX, 1978, pp. 335-345. Academic Press, New York
(1979)

32. Solodov, M, Svaiter, B: Forcing strong convergence of proximal point iterations in Hilbert space. Math. Program. 87,
189-202 (2000)

33. Ye, J, Huang, J: Strong convergence theorems for fixed point problems and generalized equilibrium problems of
three relatively quasi-nonexpansive mappings in Banach spaces. J. Math. Comput. Sci. 1, 1-18 (2011)

34. Chang, SS, Chan, CK, Lee, HWJ: Modified block iterative algorithm for Quasi-φ-asymptotically nonexpansive
mappings and equilibrium problem in Banach spaces. Appl. Math. Comput. 217, 7520-7530 (2011)

35. Shioji, N, Takahashi, W: Strong convergence of approximated sequences for nonexpansive mappings in Banach
spaces. Proc. Am. Math. Soc. 125, 3641-3645 (1997)

36. Su, Y, Wang, Z, Xu, H: Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive
mappings. Nonlinear Anal. 71, 5616-5628 (2009)

doi:10.1186/1687-1812-2012-205
Cite this article as: Zhang et al.: Simple projection algorithm for a countable family of weak relatively nonexpansive
mappings and applications. Fixed Point Theory and Applications 2012 2012:205.

http://www.fixedpointtheoryandapplications.com/content/2012/1/205

	Simple projection algorithm for a countable family of weak relatively nonexpansive mappings and applications
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Applications
	Competing interests
	Authors' contributions
	Acknowledgements
	References


