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Abstract
In this work, we consider a general algorithm for a countable family of nonexpansive
mappings in Banach spaces. We proved that the proposed algorithm converges
strongly to a common fixed point of a countable family of nonexpansive mappings
which solves uniquely the corresponding variational inequality. It is worth pointing
out that our proofs contain some new techniques. Our results improve and extend
the corresponding ones announced by many others.
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1 Introduction
Let X be a real Banach space and let C be a nonempty closed convex subset of X. Recall
that a mapping T : C → C is said to be nonexpansive if ‖Tx–Ty‖ ≤ ‖x– y‖, ∀x, y ∈ C. We
denote by Fix(T) the set of fixed points of T .
In , Yao et al. [] considered the following algorithm in a Hilbert space. For an

arbitrary point x ∈ C,

⎧⎨
⎩yn = PC[( – αn)xn],

xn+ = ( – βn)xn + βnTyn, n≥ .
(.)

They proved if {αn} and {βn} satisfy appropriate conditions, the {xn} defined by (.) con-
verges strongly to a fixed point of T .
Recently, motivated and inspired by the above results, Wang and Hu [] introduced the

following algorithm in a Hilbert space. For an arbitrary point x ∈ C,

⎧⎨
⎩yn = PC[(I – αnF)xn],

xn+ = ( – βn)xn + βnTnyn, n≥ ,
(.)

where PC : X → C is a metric projection, F : C → X is a β-Lipschitzian and η-strongly
monotone operators. They proved that the proposed algorithm converges strongly to x* ∈⋂∞

n= Fix(Tn), which solves the variational inequality 〈Fx*,x* – u〉 ≤ , u ∈ ⋂∞
n= Fix(Tn).
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On the other hand, Aoyama et al. [] considered the following algorithm in a uniformly
convex and -uniformly smooth Banach space. For x = x ∈ C,

xn+ = αnxn + ( – αn)QC(xn – λnAxn), (.)

where QC : X → C is a sunny nonexpansive retraction, and A is a β-Lipschitzian and
η-inverse strongly accretive operator. They proved that {xn} generated by (.) converges
weakly to a unique element z of S(C,A), where S(C,A) = {u ∈ C : 〈Au, j(v–u)〉 ≥ ,∀v ∈ C}.
The results of Yao et al. [] andWang and Hu [] both are obtained when the underlying

space is a Hilbert space. Meanwhile, Aoyama et al. [] just obtained a weak convergence
theorem for strongly accretive and Lipschitzian operators. So, the above results bring us
the following natural question.

Question . How to extend the results of Yao et al. [] andWang and Hu [] to the more
general uniformly convex and -uniformly smooth Banach space?

In this work, motivated and inspired by the above results, we introduce a general al-
gorithm (.) (defined below) for a countable family of nonexpansive mappings in a uni-
formly convex and -uniformly smooth Banach space. We prove that the sequence {xn}
defined by (.) converges strongly to x* ∈ ⋂∞

n= Fix(Tn), which solves uniquely the varia-
tional inequality 〈Fx*, j(x* – u)〉 ≤ , u ∈ ⋂∞

n= Fix(Tn). Furthermore, we provide an affir-
mative answer to Question .. It is worth pointing out that our proofs contain some new
techniques.

2 Preliminaries
Let X be a real Banach space with the norm ‖ · ‖ and let X* be its dual space. The value of
f ∈ X* and x ∈ X will be denoted by 〈x, f 〉. For the sequence {xn} in X, we write xn ⇀ x to
indicate that the sequence {xn} converges weakly to x. xn → x means that {xn} converges
strongly to x.
Let η > . A mapping F from C into X is said to be η-strongly accretive if there exists

j(x – y) ∈ J(x – y) such that

〈
Fx – Fy, j(x – y)

〉 ≥ η‖x – y‖

for all x, y ∈ C. A mapping F from C into X is said to be β-Lipschitzian if, for β > ,

‖Fx – Fy‖ ≤ β‖x – y‖

for all x, y ∈ C. It is well known that the η-strongly accretive operators are the extension
of the η-strongly monotone operators from Hilbert spaces to Banach spaces.
Let U = {x ∈ X : ‖x‖ = }. A Banach space X is said to be uniformly convex if, for each

ε ∈ (, ], there exists δ >  such that, for any x, y ∈U ,

‖x – y‖ ≥ ε implies
∥∥∥∥x + y



∥∥∥∥ ≤  – δ.
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It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach
space X is said to be smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for all x, y ∈ U . It is said to be uniformly smooth if the limit (.) is attained uni-
formly for x, y ∈ U . Also, we define a function ρ : [,∞) → [,∞) called the modulus of
smoothness of X as follows:

ρ(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ X,‖x‖ = ,‖y‖ = τ

}
.

It is known that X is uniformly smooth if and only if limτ→ ρ(τ )/τ = . Let q be a fixed
real number with  < q ≤ . Then a Banach space X is said to be q-uniformly smooth if
there exists a constant c >  such that ρ(τ ) ≤ cτ q for all τ > . One should note that no
Banach space is q-uniformly smooth for q > ; see [] for more details. So, in this paper,
we focus on a -uniformly smooth Banach space. It is well known that Hilbert spaces and
Lebesgue Lp (p≥ ) spaces are uniformly convex and -uniformly smooth.
In order to prove our main results, we need the following lemmas.

Lemma . ([]) Let q be a given real number with  < q ≤  and let X be a q-uniformly
smooth Banach space. Then

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ ‖Ky‖q

for all x, y ∈ X, where K is the q-uniformly smooth constant of X and Jq is the generalized
duality mapping from X into X* defined by

Jq(x) =
{
f ∈ X* : 〈x, f 〉 = ‖x‖q,‖f ‖ = ‖x‖q–}

for all x ∈ X.

Let D be a subset of C and let Q be a mapping of C into D. Then Q is said to be sunny if

Q
[
Q(x) + t

(
x –Q(x)

)]
=Q(x)

whenever Q(x) + t(x–Q(x)) ∈ C for x ∈ C and t ≥ . A mapping Q of C into itself is called
a retraction ifQ =Q. If a mappingQ of C into itself is a retraction, thenQ(z) = z for every
z ∈ R(Q), where R(Q) is the range of Q. A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D. The following
lemma concerns the sunny nonexpansive retraction.

Lemma . ([]) Let C be a closed convex subset of a smooth Banach space X, let D be a
nonempty subset of C and Q be a retraction from C onto D. Then Q is sunny and nonex-
pansive if and only if

〈
u –Q(u), j

(
y –Q(u)

)〉 ≤ 

for all u ∈ C and y ∈D.
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Remark . It is well known that if X is a Hilbert space, then a sunny nonexpansive re-
traction QC : X → C is coincident with the metric projection PC from X onto C.

Lemma . ([]) Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space X and let T be a nonexpansive mapping of C into itself. If {xn} is a sequence
of C such that xn ⇀ x and xn – Txn → , then x is a fixed point of T .

Lemma . ([, ]) Let {sn} be a sequence of non-negative real numbers satisfying

sn+ ≤ ( – λn)sn + λnδn + γn, n≥ ,

where {λn}, {δn} and {γn} satisfy the following conditions: (i) {λn} ⊂ [, ] and
∑∞

n= λn =
∞, (ii) lim supn→∞ δn ≤  or

∑∞
n= λnδn < ∞, (iii) γn ≥  (n ≥ ),

∑∞
n= γn < ∞. Then

limn→∞ sn = .

Lemma . ([, Lemma .]) Let C be a nonempty closed convex subset of a Banach
space E. Suppose that

∞∑
n=

sup
{‖Tn+z – Tnz‖ : z ∈ C

}
< ∞.

Then, for each y ∈ C, {Tny} converges strongly to some point of C. Moreover, let T be a
mapping of C into itself defined by Ty = limn→∞ Tny for all y ∈ C. Then limn→∞ sup{‖Tz –
Tnz‖ : z ∈ C} = .

Furthermore, we need the following extension of Lemma . in Wang and Hu [] in a
-uniformly smooth Banach space.

Lemma. Let C be a nonempty closed convex subset of a real -uniformly smoothBanach
space X. Let F : C → X be a β-Lipschitzian and η-strongly accretive operator with  < η ≤√
βK and  < t < η/βK. Then S = (I – tF) : C → X is a contraction with a contraction

coefficient τt =
√
 – t(η – tβK).

Proof Using Lemma ., we have

‖Sx – Sy‖ =
∥∥(x – y) – t(Fx – Fy)

∥∥

≤ ‖x – y‖ – t
〈
Fx – Fy, j(x – y)

〉
+ tK‖Fx – Fy‖

≤ ‖x – y‖ – tη‖x – y‖ + tβK‖x – y‖

=
[
 – t

(
η – tβK)]‖x – y‖

for all x, y ∈ C. From  < η ≤ √
βK and  < t < η/βK, we have

‖Sx – Sy‖ ≤ τt‖x – y‖,

where τt =
√
 – t(η – tβK) ∈ (, ). Hence, S is a contraction with a contraction coeffi-

cient τt . �
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3 Main results
We now state and prove the main results of this paper.

Theorem . Let C be a nonempty closed convex subset and sunny nonexpansive re-
tract of a uniformly convex and -uniformly smooth Banach space X. Let F : C → X be a
β-Lipschitzian and η-strongly accretive operator with  < η ≤ √

βK . Let {Tn} be a se-
quence of nonexpansive mappings from C into itself such that

∑∞
n= sup{‖Tn+z–Tnz‖ : z ∈

B} < ∞ for each bounded subset B of C. Suppose, in addition, that Fix(T) =
⋂∞

n= Fix(Tn) =
∅, where T : C → C is the nonexpansive mapping defined by Tz = limn→∞ Tnz. Let QC be a
sunny nonexpansive retraction from X onto C. Let {αn} and {βn} be two real sequences in
(, ) and satisfy the following conditions:
(A) limn→∞ αn =  and

∑∞
n= αn = ∞;

(A)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
For given x ∈ C arbitrarily, let the sequence {xn} be generated by

⎧⎨
⎩yn =QC(I – αnF)xn,

xn+ = ( – βn)xn + βnTnyn, n≥ .
(.)

Then the sequence {xn} strongly converges to a point x* ∈ ⋂∞
n= Fix(Tn)which solves uniquely

the variational inequality

〈
Fx*, j

(
x* – u

)〉 ≤ , u ∈
∞⋂
n=

Fix(Tn).

Proof We proceed with the following steps.
Step .We claim that {xn} is bounded. From limn→∞ αn = , wemay assume, without loss

of generality, that  < αn ≤ η/βK – ε for all n, where ε is an arbitrarily small positive
number. In fact, let u ∈ ⋂∞

n= Fix(Tn), from (.) and using Lemma ., we have

‖yn – u‖ =
∥∥QC(I – αnF)xn –QCu

∥∥
≤ ∥∥(I – αnF)xn – (I – αnF)u – αnFu

∥∥
≤ ταn‖xn – u‖ + αn‖Fu‖, (.)

where ταn =
√
 – αn(η – αnβK) ∈ (, ). Then from (.) and (.), we obtain

‖xn+ – u‖ =
∥∥( – βn)(xn – u) + βn(Tnyn – u)

∥∥
≤ ( – βn)‖xn – u‖ + βn‖yn – u‖
≤ ( – βn)‖xn – u‖ + βn

(
ταn‖xn – u‖ + αn‖Fu‖)

≤ [
 – βn( – ταn )

]‖xn – u‖ + βnαn‖Fu‖

≤ max

{
‖xn – u‖, αn‖Fu‖

 – ταn

}
.

Observe that

lim
n→∞

αn

 – ταn
= lim

t→+
t

 – τt
=

η
.
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Wang Fixed Point Theory and Applications 2012, 2012:207 Page 6 of 9
http://www.fixedpointtheoryandapplications.com/content/2012/1/207

Thus, we have αn/( – ταn ) is continuous, ∀αn ∈ [,η/βK – ε]. Therefore, we obtain
M = sup{ αn

–ταn
:  < αn ≤ η

βK – ε} < +∞. By induction, we have

‖xn – u‖ ≤ max
{‖x – u‖,M‖Fu‖}.

Therefore, {xn} is bounded.We also obtain that {yn}, {Tnyn} and {Fxn} are bounded.With-
out loss of generality, we may assume that {xn}, {yn}, {Tnyn} and {Fxn} ⊂ B, where B is a
bounded set of C.
Step . We claim that limn→∞ ‖yn – Tnyn‖ = . Using the same method as in Step  of

the proof in [, Theorem .], we have limn→∞ ‖xn+ – xn‖ = . Observe that

‖yn – Tnyn‖ ≤ ‖yn – xn‖ + ‖xn – xn+‖ + ‖xn+ – Tnyn‖
≤ αn‖Fxn‖ + ‖xn – xn+‖ + ( – βn)‖xn – Tnyn‖
≤ αn‖Fxn‖ + ‖xn – xn+‖ + ( – βn)

(‖xn – yn‖ + ‖yn – Tnyn‖
)

≤ αn‖Fxn‖ + ‖xn – xn+‖ + ( – βn)‖yn – Tnyn‖,

that is,

‖yn – Tnyn‖ ≤ 
βn

(
αn‖Fxn‖ + ‖xn+ – xn‖

) →  (n→ ∞).

Step . We claim that limn→∞ ‖yn – Tyn‖ = . Observe that

‖yn – Tyn‖ ≤ ‖yn – Tnyn‖ + ‖Tnyn – Tyn‖
≤ ‖yn – Tnyn‖ + sup

{‖Tnz – Tz‖ : z ∈ B
}
.

Hence, from Step  and using Lemma ., we have

lim
n→∞‖yn – Tyn‖ = .

Step . We claim that lim supn→∞〈Fx*, j(x* – yn)〉 ≤ , where x* = limt→+ xt and xt is
defined by xt =QC(I – tF)Txt .
From t → +, wemay assume, without loss of generality, that t ∈ (,η/βK – ε]. Using

Lemma ., it is easy to see thatQC(I – tF)T is a contraction. Thus, xt is well defined. Next,
we show that x* is well defined. Let u ∈ Fix(T), using Lemma ., we have

‖xt – u‖ =
∥∥QC(I – tF)Txt –QCTu

∥∥
≤ ∥∥(I – tF)Txt – (I – tF)Tu – tFTu

∥∥
≤ ∥∥(I – tF)Txt – (I – tF)Tu

∥∥ + t‖Fu‖
≤ τt‖xt – u‖ + t‖Fu‖,

that is,

‖xt – u‖ ≤ t
 – τt

‖Fu‖ ≤ M‖Fu‖.

http://www.fixedpointtheoryandapplications.com/content/2012/1/207
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Thus, we have {xt} is bounded and so is {FTxt}. On the other hand, we have

‖xt – Txt‖ =
∥∥QC(I – tF)Txt –QCTxt

∥∥
≤ ∥∥(I – tF)Txt – Txt

∥∥ = t‖FTxt‖ → 
(
t → +

)
. (.)

Assume that {tn} ∈ (,η/βK – ε] such that tn → + as n→ ∞. Put x̃n := xtn . It follows
from (.) that ‖x̃n –Tx̃n‖ →  (n→ ∞). Since {xt} is bounded, without loss of generality,
we may assume that x̃n ⇀ x*. We can use Lemma . to get x* ∈ Fix(T). Therefore, using
Lemma . and Lemma ., we have

∥∥xt – x*
∥∥ =

〈
xt – x*, j

(
xt – x*

)〉
=

〈
xt – (I – tF)Txt , j

(
xt – x*

)〉
+

〈
(I – tF)Txt – x*, j

(
xt – x*

)〉
≤ 〈

(I – tF)Txt – x*, j
(
xt – x*

)〉
≤ 〈

(I – tF)Txt – (I – tF)Tx*, j
(
xt – x*

)〉
+ t

〈
Fx*, j

(
x* – xt

)〉
≤ τt

∥∥xt – x*
∥∥ + t

〈
Fx*, j

(
x* – xt

)〉
,

that is,

∥∥xt – x*
∥∥ ≤ t

 – τt

〈
Fx*, j

(
x* – xt

)〉 ≤ M
〈
Fx*, j

(
x* – xt

)〉
.

In particular,

∥∥x̃n – x*
∥∥ ≤ M

〈
Fx*, j

(
x* – x̃n

)〉
.

Consequently, the weak convergence of {x̃n} to x* actually implies that xn → x*. Therefore,
x* = limt→+ xt is well defined.
Since yn is bounded, there exists a subsequence {ynk } of {yn} which converges weakly

to ω. From Step  and using Lemma ., we have ω ∈ Fix(T). Observe that

lim sup
n→∞

〈
Fx*, j

(
x* – yn

)〉
= lim

k→∞
〈
Fx*, j

(
x* – ynk

)〉
=

〈
Fx*, j

(
x* –ω

)〉
. (.)

On the other hand, we have

xt =QC(I – tF)Txt – (I – tF)Txt – (I – tF)xt + (I – tF)Txt + xt – tFxt

⇒ Fxt =

t
[
QC(I – tF)Txt – (I – tF)Txt – (I – tF)xt + (I – tF)Txt

]
.

Therefore, for ω ∈ Fix(T), we can use Lemma . to get

〈
Fxt , j(xt –ω)

〉
=


t
〈
QC(I – tF)Txt – (I – tF)Txt , j(xt –ω)

〉
–

t
〈
(I – tF)xt – (I – tF)Txt , j(xt –ω)

〉
≤ –


t
〈
xt – Txt , j(xt –ω)

〉
+

〈
Fxt – FTxt , j(xt –ω)

〉

http://www.fixedpointtheoryandapplications.com/content/2012/1/207


Wang Fixed Point Theory and Applications 2012, 2012:207 Page 8 of 9
http://www.fixedpointtheoryandapplications.com/content/2012/1/207

≤ –

t
〈
(I – T)xt – (I – T)ω, j(xt –ω)

〉
+ β‖xt – Txt‖‖xt –ω‖

≤ βM‖xt – Txt‖, (.)

whereM = sup{‖xt –ω‖, t ∈ (,η/βK – ε]}. Now replacing t in (.) with tn and letting
n→ ∞, we have

〈
Fx*, j

(
x* –ω

)〉 ≤ . (.)

From (.) and (.), we obtain lim supn→∞〈Fx*, j(x* – yn)〉 ≤ .
Step . We claim that {xn} converges strongly to x* ∈ ⋂∞

n= F(Tn). From (.) and using
Lemma ., we have

〈
QC(I – αnF)xn – (I – αnF)xn, j

(
yn – x*

)〉 ≤ .

Observe that

∥∥yn – x*
∥∥ =

〈
QC(I – αnF)xn – x*, j

(
yn – x*

)〉
=

〈
QC(I – αnF)xn – (I – αnF)xn, j

(
yn – x*

)〉
+

〈
(I – αnF)xn – x*, j

(
yn – x*

)〉
≤ 〈

(I – αnF)xn – x*, j
(
yn – x*

)〉
≤ 〈

(I – αnF)xn – (I – αnF)x*, j
(
yn – x*

)〉
+ αn

〈
Fx*, j

(
x* – yn

)〉
≤ ∥∥(I – αnF)xn – (I – αnF)x*

∥∥∥∥yn – x*
∥∥ + αn

〈
Fx*, j

(
x* – yn

)〉
≤ ταn

∥∥xn – x*
∥∥∥∥yn – x*

∥∥ + αn
〈
Fx*, j

(
x* – yn

)〉
≤ τ 

αn


∥∥xn – x*

∥∥ +


∥∥yn – x*

∥∥ + αn
〈
Fx*, j

(
x* – yn

)〉
,

that is,

∥∥yn – x*
∥∥ ≤ ταn

∥∥xn – x*
∥∥ + αn

〈
Fx*, j

(
x* – yn

)〉
. (.)

By (.) and (.), we have

∥∥xn+ – x*
∥∥ ≤ ( – βn)

∥∥xn – x*
∥∥ + βn

∥∥Tnyn – x*
∥∥

≤ ( – βn)
∥∥xn – x*

∥∥ + βn
∥∥yn – x*

∥∥

≤ ( – βn)
∥∥xn – x*

∥∥ + βn
[
ταn

∥∥xn – x*
∥∥ + αn

〈
Fx*, j

(
x* – yn

)〉]
≤ [

 – βn( – ταn )
]∥∥xn – x*

∥∥ + Mβn( – ταn )
〈
Fx*, j

(
x* – yn

)〉
= ( – λn)

∥∥xn – x*
∥∥ + λnδn,

where λn = βn( – ταn ), δn = M〈Fx*, j(x* – yn)〉. It is easy to see that
∑∞

n= λn = ∞ and
lim supn→∞ δn ≤ . Hence, by Lemma ., the sequence {xn} converges strongly to x* ∈⋂∞

n= F(Tn).
Step . We claim that x* is a unique solution of the variational inequality 〈Fx*, j(x* –u)〉 ≤

, u ∈ ⋂∞
n= F(Tn).

http://www.fixedpointtheoryandapplications.com/content/2012/1/207
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From Step , we have shown that x* is a solution of the variational inequality 〈Fx*, j(x* –
u)〉 ≤ , u ∈ ⋂∞

n= F(Tn). Without loss of generality, we assume that x̃ ∈ Fix(T) is also a
solution of the variational inequality. Therefore, we have

〈
Fx*, j

(
x* – x̃

)〉 ≤ , (.)

and

〈
Fx̃, j

(
x̃ – x*

)〉 ≤ . (.)

Adding up (.) and (.), we get

〈
Fx* – Fx̃, j

(
x* – x̃

)〉 ≤ .

The strong accretivity of F implies that x* = x̃ and the uniqueness is proved. �

Remark . Obviously, Theorem . extends the results of Yao et al. [] and Wang and
Hu [] to the more general uniformly convex and -uniformly smooth Banach space.
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