
Asl et al. Fixed Point Theory and Applications 2012, 2012:212
http://www.fixedpointtheoryandapplications.com/content/2012/1/212

RESEARCH Open Access

On fixed points of α-ψ-contractive
multifunctions
J Hasanzade Asl1, S Rezapour1,2 and N Shahzad3*

*Correspondence:
nshahzad@kau.edu.sa
3Department of Mathematics, King
Abdulaziz University, P.O. Box 80203,
Jeddah, 21859, Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
Recently Samet, Vetro and Vetro introduced the notion of α-ψ -contractive type
mappings and established some fixed point theorems in complete metric spaces. In
this paper, we introduce the notion of α∗-ψ -contractive multifunctions and give a
fixed point result for these multifunctions. We also obtain a fixed point result for
self-maps in complete metric spaces satisfying a contractive condition.
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1 Introduction
Fixed point theory has many applications in different branches of science. During the
last few decades, there has been a lot of activity in this area and several well-known
fixed point theorems have been extended by a number of authors in different directions
(see, for example, [–]). Recently Samet, Vetro and Vetro introduced the notion of
α-ψ-contractive type mappings []. Denote with � the family of nondecreasing func-
tions ψ : [,∞) → [,∞) such that

∑∞
n= ψ

n(t) < ∞ for all t > , where ψn is the nth iter-
ate of ψ . It is known that ψ(t) < t for all t >  and ψ ∈ � []. Let (X,d) be a metric space,
T be a self-map on X, ψ ∈ � and α : X × X → [,∞) be a function. Then T is called an
α-ψ-contraction mapping whenever α(x, y)d(Tx,Ty) ≤ ψ(d(x, y)) for all x, y ∈ X. Also, we
say that T is α-admissible whenever α(x, y)≥  implies α(Tx,Ty)≥  []. Also, we say that
α has the property (B) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n ≥  and
xn → x, then α(xn,x) ≥  for all n ≥ . Let (X,d) be a complete metric space and T be an
α-admissible α-ψ-contractive mapping on X. Suppose that there exists x ∈ X such that
α(x,Tx) ≥ . If T is continuous or T has the property (B), then T has a fixed point (see
[]; Theorems . and .). Finally, we say that X has the property (H) whenever for each
x, y ∈ X there exists z ∈ X such that α(x, z)≥  and α(y, z) ≥ . If X has the property (H) in
Theorems . and ., then X has a unique fixed point ([]; Theorem .). It is consider-
able that the results of Samet et al. generalize similar ordered results in the literature (see
the results of the third section in []). The aim of this paper is to introduce the notion
of α∗-ψ-contractive multifunctions and give a fixed point result about the multifunctions.
Let (X,d) be a metric space, T : X → X be a closed-valued multifunction, ψ ∈ � and
α : X ×X → [,∞) be a function. In this case, we say that T is an α∗-ψ-contractive multi-
function whenever α∗(Tx,Ty)H(Tx,Ty) ≤ ψ(d(x, y)) for x, y ∈ X, where H is the Hausdorff
generalized metric, α∗(A,B) = inf{α(a,b) : a ∈ A,b ∈ B} and X denotes the family of all
nonempty subsets of X. Also, we say that T is α∗-admissible whenever α(x, y) ≥  implies
α∗(Tx,Ty) ≥ .
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Example . Let X = [,∞), d(x, y) = |x – y| and δ ∈ (, ) be a fixed number. Define T :
X → X by Tx = [, δx] for all x ∈ X and α : X × X → [,∞) by α(x, y) =  whenever x, y ∈
[, ] and α(x, y) =  whenever x /∈ [, ] or y /∈ [, ]. Now, we show thatT is α∗-admissible.
If α(x, y) ≥ , then x, y ∈ [, ] and so Tx and Ty are subsets of [, ]. Thus, a,b ∈ [, ] for
all a ∈ Tx and b ∈ Ty. Hence, α(a,b) =  for all a ∈ Tx and b ∈ Ty. This implies that

α∗(Tx,Ty) = inf
{
α(a,b) : a ∈ Tx,b ∈ Ty

}
= .

Therefore, T is α∗-admissible. Now, we show that T is an α∗-ψ-contractive multifunc-
tion, where ψ(t) = δt for all t ≥ . If x /∈ [, 

δ
] or y /∈ [, 

δ
], then an easy calculation

shows us that α∗(Tx,Ty) = . If  ≤ x, y ≤ 
δ
, then α∗(Tx,Ty) = . By using the definition

of the Hausdorff metric, it is easy to see that H(Tx,Ty) ≤ δd(x, y) for x, y ∈ [, 
δ
]. Thus,

α∗(Tx,Ty)H(Tx,Ty) ≤ ψ(d(x, y)) for x, y ∈ X. Therefore, T is an α∗-ψ-contractive multi-
function.

Let (X,�,d) be an ordered metric space and A,B ⊆ X. We say that A � B whenever for
each a ∈ A there exists b ∈ B such that a � b. Also, we say that A �r B whenever for each
a ∈ A and b ∈ B we have a� b.

2 Main results
Now, we are ready to state and prove our main results. In the following result, we use the
argument similar to that in the proof of Theorem . in [].

Theorem . Let (X,d) be a complete metric space, α : X × X → [,∞) be a func-
tion, ψ ∈ � be a strictly increasing map and T be a closed-valued, α∗-admissible and
α∗-ψ-contractive multifunction on X. Suppose that there exist x ∈ X and x ∈ Tx such
that α(x,x) ≥ . Assume that if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n
and xn → x, then α(xn,x)≥  for all n. Then T has a fixed point.

Proof If x = x, then we have nothing to prove. Let x 
= x. If x ∈ Tx, then x is a fixed
point of T . Let x /∈ Tx and q >  be given. Then

 < d(x,Tx) ≤ α∗(Tx,Tx)H(Tx,Tx) < qα∗(Tx,Tx)H(Tx,Tx).

Hence, there exists x ∈ Tx such that

 < d(x,x) < qα∗(Tx,Tx)H(Tx,Tx) ≤ qψ
(
d(x,x)

)
.

It is clear that x 
= x and α(x,x) ≥ . Thus, α∗(Tx,Tx) ≥ . Now, put t = d(x,x).
Then, t >  and d(x,x) < qψ(t). Since ψ is strictly increasing, ψ(d(x,x)) < ψ(qψ(t)).
Put q = ψ(qψ(t))

ψ(d(x,x))
. Then q > . If x ∈ Tx, then x is a fixed point of T . Assume that

x /∈ Tx. Then

 < d(x,Tx) ≤ α∗(Tx,Tx)H(Tx,Tx) < qα∗(Tx,Tx)H(Tx,Tx).

Hence, there exists x ∈ Tx such that

 < d(x,x) < qα∗(Tx,Tx)H(Tx,Tx) ≤ qψ
(
d(x,x)

)
= ψ

(
qψ(t)

)
.
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It is clear that x 
= x, α(x,x) ≥  and ψ(d(x,x)) < ψ(qψ(t)). Now, put q = ψ(qψ(t))
ψ(d(x,x))

.
Then q > . If x ∈ Tx, then x is a fixed point of T . Assume that x /∈ Tx. Then

 < d(x,Tx) ≤ α∗(Tx,Tx)H(Tx,Tx) < qα∗(Tx,Tx)H(Tx,Tx).

Thus, there exists x ∈ Tx such that

 < d(x,x) < qα∗(Tx,Tx)H(Tx,Tx) ≤ qψ
(
d(x,x)

)
= ψ(qψ(t)

)
.

By continuing this process, we obtain a sequence {xn} in X such that xn ∈ Txn–, xn 
= xn–,
α(xn,xn+) ≥  and d(xn,xn+) ≤ ψn–(qψ(t)) for all n. Now, for eachm > n, we have

d(xn,xm)≤
m–∑
i=n

d(xi,xi+) ≤
m–∑
i=n

ψ i–(qψ(t)
)
.

Hence, {xn} is a Cauchy sequence in X. Choose x∗ ∈ X such that xn → x∗. Since α(xn,x∗) ≥
 for all n and T is α∗-admissible, α∗(Txn,Tx∗) ≥  for all n, thus

d
(
x∗,Tx∗) ≤ H

(
Tx∗,Txn

)
+ d

(
xn+,x∗) ≤ α∗

(
Txn,Tx∗)H(

Txn,Tx∗) + d
(
xn+,x∗)

≤ ψ
(
d
(
xn,x∗)) + d

(
xn+,x∗)

for all n. Therefore, d(x∗,Tx∗) =  and so x∗ ∈ Tx∗. �

Example . Let X = [,∞) and d(x, y) = |x – y|. Define T : X → X by Tx = [x – 
 ,∞)

for all x > , Tx = [, x ] for all  ≤ x ≤  and α : X × X → [,∞) by α(x, y) =  whenever
x, y ∈ [, ] and α(x, y) =  whenever x /∈ [, ] or y /∈ [, ]. Then it is easy to check that T
is an α∗-admissible and α∗-ψ-contractive multifunction, where ψ(t) = t

 for all t ≥ . Put
x =  and x = 

 . Then α(x,x) ≥ . Also, if {xn} is a sequence inX such that α(xn,xn+) ≥ 
for all n and xn → x, then α(xn,x)≥  for all n. Note thatT has infinitelymany fixed points.

Corollary . Let (X,�,d) be a complete ordered metric space, ψ ∈ � be a strictly in-
creasing map and T be a closed-valued multifunction on X such that

H(Tx,Ty) ≤ ψ
(
d(x, y)

)

for all x, y ∈ X with x � y. Suppose that there exists x ∈ X and x ∈ Tx such that x � x.
Assume that if {xn} is a sequence in X such that xn � xn+ for all n and xn → x, then xn � x
for all n. If x � y implies Tx �r Ty, then T has a fixed point.

Proof Define α : X × X → [,∞) by α(x, y) =  whenever x � y and α(x, y) =  whenever
x � y. Since x � y implies Tx �r Ty, α(x, y) =  implies α∗(Tx,Ty) = . Thus, it is easy to
check that T is an α∗-admissible and α∗-ψ-contractive multifunction on X. Now, by using
Theorem ., T has a fixed point. �

Now, we prove the following result for self-maps.

http://www.fixedpointtheoryandapplications.com/content/2012/1/212


Asl et al. Fixed Point Theory and Applications 2012, 2012:212 Page 4 of 6
http://www.fixedpointtheoryandapplications.com/content/2012/1/212

Theorem . Let (X,d) be a complete metric space, α : X × X → [,∞) be a func-
tion, ψ ∈ � and T be a self-map on X such that α(x, y)d(Tx,Ty) ≤ ψ(m(x, y)) for all
x, y ∈ X, where m(x, y) = max{d(x, y),d(x,Tx),d(y,Ty),  [d(x,Ty) + d(y,Tx)]}. Suppose that
T is α-admissible and there exists x ∈ X such that α(x,Tx) ≥ . Assume that if {xn} is
a sequence in X such that α(xn,xn+) ≥  for all n and xn → x, then α(xn,x) ≥  for all n.
Then T has a fixed point.

Proof Take x ∈ X such that α(x,Tx) ≥  and define the sequence {xn} in X by xn+ = Txn
for all n≥ . If xn = xn+ for some n, then x∗ = xn is a fixed point ofT . Assume that xn 
= xn+
for all n. Since T is α-admissible, it is easy to check that α(xn,xn+) ≥  for all natural
numbers n. Thus, for each natural number n, we have

d(xn,xn+) = d(Txn–,Txn)≤ α(xn–,xn)d(Txn–,Txn)

≤ ψ

(
max

{
d(xn,xn–),d(xn,xn+),d(xn–,xn),



[
d(xn,xn) + d(xn–,xn+)

]})

≤ ψ

(
max

{
d(xn,xn–),d(xn,xn+),



[
d(xn,xn–) + d(xn,xn+)

]})

= ψ
(
max

{
d(xn,xn–),d(xn,xn+)

})
.

If max{d(xn,xn–),d(xn,xn+)} = d(xn,xn+), then

d(xn+,xn) ≤ ψ
(
d(xn,xn+)

)
< d(xn+,xn)

which is contradiction. Thus, max{d(xn,xn–),d(xn,xn–)} = d(xn,xn+) for all n. Hence,
d(xn+,xn) ≤ ψ(d(xn,xn–)) and so d(xn+,xn) ≤ ψn(d(x,x)) for all n. It is easy to check
that {xn} is a Cauchy sequence. Thus, there exists x∗ ∈ X such that xn → x∗. By using the
assumption, we have α(xn,x∗) ≥  for all n. Thus,

d
(
Tx∗,x∗) ≤ d

(
Tx∗,Txn

)
+ d

(
xn+,x∗) ≤ α

(
xn,x∗)d(

Tx∗,Txn
)
+ d

(
xn+,x∗)

≤ ψ

(
max

{
d
(
xn,x∗),d(xn,xn+),d(

x∗,Tx∗),


[
d
(
xn,Tx∗) + d

(
x∗,xn+

)]})
+ d

(
xn+,x∗)

≤ ψ
(
d
(
x∗,Tx∗)) + d

(
xn+,x∗)

for sufficiently large n. Hence, d(Tx∗,x∗) =  and so Tx∗ = x∗. �

Example . Let X = [,∞) and d(x, y) = |x – y|. Define the self-map T on X by Tx =
x – 

 for x > , Tx = x
 for  ≤ x ≤  and α : X × X → [,∞) by α(x, y) =  whenever

x, y ∈ [, ] and α(x, y) =  whenever x /∈ [, ] or y /∈ [, ]. Then it is easy to check that
T is α-admissible and α(x, y)d(Tx,Ty) ≤ ψ(m(x, y)) for all x, y ∈ X, where ψ(t) = t

 for all
t ≥ . Also, α(,T) =  and if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and
xn → x, then α(xn,x)≥  for all n. Note that, T has two fixed points.

Corollary . Let (X,�,d) be a complete ordered metric space, ψ ∈ � and T be a self-
map on X such that d(Tx,Ty) ≤ ψ(m(x, y)) for all x, y ∈ X with x � y. Suppose that there
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exists x ∈ X such that x � Tx. If {xn} is a sequence in X such that xn � xn+ for all n and
xn → x, then xn � x for all n. If x � y implies Tx� Ty, then T has a fixed point.

If we substitute a partial metric ρ for the metric d in Theorem ., it is easy to check
that a similar result holds for the partial metric case as follows.

Theorem . Let (X,ρ) be a complete partial metric space, α : X × X → [,∞) be a
function, ψ ∈ � and T be a self-map on X such that α(x, y)ρ(Tx,Ty) ≤ ψ(m(x, y)) for all
x, y ∈ X, where m(x, y) =max{ρ(x, y),ρ(x,Tx),ρ(y,Ty),  [ρ(x,Ty) + ρ(y,Tx)]}. Suppose that
T is α-admissible and there exists x ∈ X such that α(x,Tx) ≥ . Assume that if {xn} is
a sequence in X such that α(xn,xn+) ≥  for all n and xn → x, then α(xn,x) ≥  for all n.
Then T has a fixed point.
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