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Abstract
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1 Introduction and preliminaries
Primal and dual interior-point methods (IPMs) have been well known as the most effec-
tive methods for solving wide classes of optimization problems, for example, the linear
optimization (LO) problem, the quadratic optimization problem (QOP), the semidefinite
optimization (SDO) problem, the second-order cone optimization (SOCO) problem, and
the convex optimization problem (CP).
The so-called barrier update parameter θ in algorithms for IPMs plays an important

role in both theory and practice of IPMs. Usually, if θ is a constant independent of the di-
mension of the problem, then the algorithm is called a large-updatemethod. If it depends
on the dimension, then the algorithm is said to be a small-updatemethod. Large-update
methods are much more efficient than small-update methods in practice [], but have a
worst-case iteration bound. Such a gap between theory and practice has been referred to
as irony of IPMs []. Recently, many authors have tried to reduce the gap of the worst-case
iteration bound between the large-update IPM and the small-update IPM.
Using self-regular proximity functions instead of a classical logarithmic barrier func-

tion, Peng et al. [–] improved the complexity of large-update IPMs for the LO problem,
the SDO problem, and the SOCO problem. Bai et al. [] introduced a new class of eligible
kernel functions. The class was defined by some simple conditions on the kernel func-
tion and its derivatives. The best iteration bound for the LO problem, which was given by
Bai et al. [], isO(

√
n logn log n

ε
). Recently, Wang et al. [] obtained the complexity result

O(n logn/ε) for the SDO problem based on a simple kernel function. Bai and Wang []
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obtained the best known complexity result for the SOCO problem based on a parametric
kernel function including the classical logarithmic function, the prototype regular kernel
function, and the non-self-regular kernel function. Very recently, using the kernel func-
tion φ(t) = (t – )/ + (et–q– – )/q, Choi and Lee [, ] have obtained the complexity
results of large-update primal-dual IPMs for SDO and SOCO, O(

√
n(logn)(q+)/q logn/ε)

and O(
√
N(logN)(q+)/q logN/ε), respectively.

In this paper, we consider a linear optimization problem over a symmetric cone which
is defined in a Euclidean Jordan algebra. Nesterov and Todd [] proposed first this kind
of an optimization problem under the name of convex programming for self-scaled cones
and established the polynomial complexity of the primal-dual interior pointmethod using
the so-called NT (Nesterov-Todd) direction []. We call the linear optimization problem
over the symmetric cone the self-scaled optimization problem (SOP).
Faybusovich first studied the SOP in view of a Euclidean Jordan algebra and gave a the-

oretical background for nondegeneracy assumptions and the uniqueness of solutions for
Newton systems in IPMs for the SOP [], presented a short-step path-following algo-
rithm for a quadratic programming problem defined on the intersection of a symmet-
ric cone with an affine subspace [] and obtained complexity estimates for a long-step
primal-dual interior-point algorithm for the optimization problem of the minimization of
a linear function on a feasible set obtained as the intersection of an affine subspace and a
symmetric cone []. SOPs include linear optimization problems, semidefinite optimiza-
tion problems, second-order optimization problems, and various combinations of these
types of problems as special cases. Schmieta and Alizadeh [] extended primal-dual in-
terior point algorithms for LOs, SDOs, and SOCOs to SOPs by using logarithmic barrier
functions.
Baes raised an open question in hismonograph [] as follows: The theory of self-regular

functions has been created for linear programming by Jiming Peng, Cornelius Roos, and
Tamás Terlaky []. They subsequently extended it to second-order programming and
semidefinite programming separately using implicitly the aforementioned construction.
However, the unified treatment of this theory using the Jordan algebraic framework is not
accomplished yet.
Choi and Lee [] gave primal-dual interior point algorithms by using a very simple self-

regular function ψ(t) = 
 (t –


t )

, t >  for the SOP and gave partial answers for the ques-
tion of Baes. Very recently, Vieira [, ] gave complete answers for the open question
of Baes by proving the e-convexity property of eligible kernel functions and, in particular,
he presented the iteration complexity results for ten eligible kernel functions. Among ten
kernel functions in [], the best iteration complexity for a large-update method was ob-
tained forψ(t) = t–

 + t–q–
q– with q = log r, and its iteration complexity isO(

√
r log r log r

ε
),

which is the best known one.
In this paper, we define a new eligible kernel function ψ(t) = t–

 + ep(t
–q–)–
pq , p�  and

q �  for t > , which was modified from the one in [, ], and obtain the best known
iteration complexity result for the large-update IPM of the SOP by using the analysis em-
phasized on the kernel function and the Euclidean Jordan algebra techniques. In our algo-
rithm,we use thewell-known lemma for the upper bound of theμ-update (see Lemma.)
instead of using Theorem . in []. The lemma makes our analysis in the outer while
loop easy. We refer to Theorem . and Proposition . in [] for complexity analysis.
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But we use Proposition . in [] obtained from the technique of Sun and Sun [] instead
of using Proposition . in [].
This paper is organized as follows. In Section , we introduce our kernel functions, for-

mulate the Newton system for the SOP, and present a useful inequality for our proximity
function. In Section , we give an algorithm for the SOP and calculate an upper bound
for the proximity function after μ-update. We calculate an upper bound for difference
between proximity functions after one step in inner iterations and then determine our
default step size for search directions. We present a worst-case iteration bound for our
large-update primal-dual interior point method for the SOP.
Now, we give definitions and preliminary properties for a Euclidean Jordan algebra

which are found in [] and will be used in the next sections.

Definition . ([]) A finite-dimensional real vector space V is called an algebra if a
bilinear mapping (x, y) → x ◦ y from V ×V to V is defined.
An algebra V is called a Jordan algebra if the following hold:
(i) commutativity: for all x, y ∈ V , x ◦ y = y ◦ x;
(ii) Jordan’s axiom: for all x, y ∈ V , x ◦ (x ◦ y) = x ◦ (x ◦ y), where x = x ◦ x.
A Jordan algebra V is said to be Euclidean if
(iii) x + y =  ⇒ x = y = , equivalently, there exists an inner product (·|·) on V such

that (x ◦ y|z) = (y|x ◦ z).

A Jordan algebra V is simple if it does not contain any non-trivial ideal. The Jordan
algebra may not be associative, but it is power-associative, i.e., xp ◦ xq = xp+q. We assume
a Jordan algebra V has an identity element, i.e., there exists e such that x ◦ e = e ◦ x = x.
Since V is finite-dimensional, given x ∈ V , there exists a minimal positive integer k such
that the vectors e,x, . . . ,xk are linearly dependent. Denote this integerm(x). We define the
rank of V as

rank(V ) = r =max
{
m(x) | x ∈ V

}
.

An element x ∈ V is said to be invertible if there exists an element y ∈ R[x] such that
x ◦ y = e, where R[x] is the algebra over R of polynomials in one variable with coefficients
in R. It is defined by x–. An element v ∈ V is called idempotent if v = v. For an element
x ∈ V , let L(x) be a linear map of V defined as L(x)y = x ◦ y. The cone of squares

� :=
{
x | x ∈ V

}

is a symmetric cone; the following conditions hold:
(i) for every pair of x, y ∈ int�, there is an invertible linear transformation L : V → V

such that L(�) = � and L(x) = y;
(ii) �

* = �, where �
* := {y ∈ V | (x, y)� , for any x ∈ �}.

Let � = int�. Then � = {x | x ∈ V is invertible} = {x ∈ V | L(x) is positive definite}.

Definition . ([]) Let c, . . . , ck ∈ V . Then {c, . . . , ck} is said to be a Jordan frame if ci,
i = , . . . ,k are non-zero and cannot be written as a sum of other two idempotents, and the
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following properties hold:

⎧⎪⎪⎨
⎪⎪⎩
ci = ci,

ci ◦ cj =  if i �= j,∑k
i= ci = e.

Theorem . (Theorem III.. in []) For every x ∈ V , there exist a Jordan frame
{c(x), . . . , cr(x)} and real numbers λ(x), . . . ,λr(x) such that

x = λ(x)c(x) + · · · + λr(x)cr(x). ()

The numbers λi(x), for all i = , . . . , r, are said to be the eigenvalues of x, and () is called
the eigenvalue (or spectral) decomposition of x. Now, it is possible to extend the defini-
tion of any real-valued function ψ(·) to elements of the Euclidean Jordan algebra via their
eigenvalues:

ψ(x) :=ψ
(
λ(x)

)
c(x) + · · · +ψ

(
λr(x)

)
cr(x). ()

Particularly, we have some examples as follows:
(i) Square root: x/ = λ/

 (x)c(x) + · · · + λ/
r (x)cr(x) if all λi(x)� .

(ii) Inverse: x– = λ–
 (x)c(x) + · · · + λ–

r (x)cr(x) if all λi(x) �= .
(iii) Square: x = λ

 (x)c(x) + · · · + λ
r (x)cr(x).

From the above examples, we know that for x ∈ �, λi(x/) = λ/
i (x) and for x ∈ �, λi(x–) =

λ–
i (x). Let us denote by ψ ′(x) the derivative of ψ(x) with respect to λi(x):

ψ ′(x) :=ψ ′(λ(x)
)
c(x) + · · · +ψ ′(λr(x)

)
cr(x). ()

In the Jordan algebra, we define the determinant of x and the trace of x as follows:

det(x) =
r∏
i=

λi(x), tr(x) =
r∑
i=

λi(x).

Since V is a Euclidean Jordan algebra, 〈x, y〉 := tr(x◦ y) is a scalar product on V (see Propo-
sition III.. in []). The following lemma is called the second Pierce decomposition the-
orem which will be used in Section .

Lemma . (Theorem IV.. in [], Theorem .. (Second Pierce decomposition theo-
rem) in []) Let {c, . . . , cr} be a Jordan frame of V . If

Vij :=

⎧⎨
⎩{vij | ci ◦ vij = vij} if i = j,

{vij | ci ◦ vij = 
vij} ∩ {vij | cj ◦ vij = 

vij} if i �= j,

we have
(i) V =

⊕
�i�j�r Vij ;

(ii) Vij ◦Vkl = {}, if {i, j} ∩ {k, l} = ∅;
(iii) Vij ◦Vjk ⊂ Vik , if i �= k;
(iv) tr(vik) = , for vik ∈ Vik if i �= k.
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Consider the following self-scaled optimization problem (SOP):

(P) Minimize 〈c,x〉
subject to 〈ai,x〉 = bi, i = , . . . ,m,

x ∈ �,

and its dual problem:

(D) Maximize
m∑
i=

biyi

subject to
m∑
i=

yiai + s = c,

s ∈ �, y ∈R
m,

where c,a, . . . ,am ∈ V and b ∈ R
m are given. We call x ∈ � primal feasible if 〈ai,x〉 = bi

for i = , . . . ,m. Similarly, (y, s) ∈ R
m × � is called dual feasible if

∑m
i= yiai + s = c. Let

Ax = (〈a,x〉, . . . , 〈am,x〉)T for any x ∈ V . Then A : V → R
m is a linear transformation.

Throughout this paper, we assume that A is surjective. Then its adjoint AT is injective
and ATy =

∑m
i= yiai, where y = (y, . . . , ym)T ∈ R

m. So, we can reformulate (P) and (D) as
follows:

(P) Minimize 〈c,x〉
subject to Ax = b,

x ∈ �,

and its dual problem:

(D) Maximize bTy
subject to ATy + s = c,

s ∈ �, y ∈R
m.

We can check that weak duality between (P) and (D) holds, that is, inf(P)� sup(D). From
now on, we assume that both (P) and (D) satisfy the interior-point condition (IPC), that
is, there exists (x, y, s) such that Ax = b, x ∈ �, ATy + s = c, s ∈ �. Then there exists
a pair of optimal solutions (x, y, s) of (P) and (D), and inf(P) = sup(D) [, ].
The following lemma is well known [, , , ].

Lemma . For x, s ∈ V , the following statements are equivalent:
(i) x, s ∈ � and 〈x, s〉 = ;
(ii) x, s ∈ � and x ◦ s = .

Using Lemma ., we can check (see Proposition . in []) that finding a pair of optimal
solutions (x, y, s) of (P) and (D) is equivalent to solving the following Newton system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ax = b,

ATy + s = c,

x ◦ s = ,

x, s ∈ �, y ∈R
m.

()

http://www.fixedpointtheoryandapplications.com/content/2012/1/213
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The basic idea of primal-dual IPMs is to replace the third equation in (), the so-called
complementarity condition for the SOP, by the parameterized system with a positive pa-
rameter μ:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ax = b,

ATy + s = c,

x ◦ s = μe,

x, s ∈ �, y ∈R
m.

()

For each x ∈ V , we define the quadratic representation as follows:

Qx := L(x) – L
(
x
)
.

Lemma. ([]) Let x, s ∈ � and p be invertible.Then x◦s = μe if and only if Qpx◦Qp–s =
μe.

Proposition . (Proposition  in []) If x, s ∈ �, then Qxs ∈ �.

Let x, s ∈ �. Then there uniquely exists p ∈ � such that Qpx = s [, ]. So, we can
choose p ∈ � such that Qpx = Qp–s. Such a choice exists and is unique, and leads to the
Nesterov-Todd (NT) method.
From Lemma ., the system () becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ax = b,

ATy + s = c,

Qpx ◦Qp–s = μe,

x, s ∈ �, y ∈R
m.

()

Then, for each μ > , the parameterized system () has a unique solution (x(μ), y(μ), s(μ))
[, ], which is called a μ-center of (P) and (D). The set of μ-centers, that is, C =
{(x(μ), y(μ), s(μ)) | μ > }, is said to be the central path of (P) and (D). Therefore, asμ tends
to zero, (x(μ), y(μ), s(μ)) converges to a pair of optimal solutions of (P) and (D) [, ].
In general, IPMs for the SOP consist of two strategies. The first one, which is called the

inner iteration scheme, is to keep the iterative sequence in a certain neighborhood of the
central path or to keep the iterative sequence in a certain neighborhood of the μ-center.
And the second one, called the outer iteration scheme, is to decrease the parameter μ to
μ+ := ( – θ )μ for some θ ∈ (, ).

2 Proximity functions and search directions
Newton’s method is a well-known procedure to solve a system of nonlinear equations.
Most IPMs for solving the SOP employ different search directions together with suitable
strategies for following the central path appropriately.
Assume that a starting point (x, s) in a certain neighborhood of the central path corre-

sponding toμ =  is available.We then decreaseμ toμ+ := (–θ )μ for some fixed θ ∈ (, )

http://www.fixedpointtheoryandapplications.com/content/2012/1/213
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and linearize the Newton system for () by replacing x, y, s with x+ := x+�x, y+ := y+�y,
s+ := s +�s, respectively. Then we get the following system in []:

⎧⎪⎪⎨
⎪⎪⎩
A�x = ,

AT�y +�s = ,

Qpx ◦Qp–�s +Qp�x ◦Qp–s = μ+e –Qpx ◦Qp–s.

()

To describe our new search direction, we need more notations:

Ā :=
√
μ
AQp– , v :=

√
μ
Qpx =

√
μ
Qp–s,

dx :=
√
μ
Qp�x, ds :=

√
μ
Qp–�s.

()

In this case,

p =
[
Qx/ (Qx/s)–/

]–/ = [Qs–/ (Qs/x)/
]–/. ()

From Proposition ., v ∈ �. Hence, L(v) is positive definite. Thus, the system () is equiv-
alent to the following system:

⎧⎪⎪⎨
⎪⎪⎩
Ā dx = ,

ĀT�y + ds = ,

dx + ds = v– – v.

()

We say that the above (dx,�y,ds) is called the NT search direction for the SOP. Further-
more, 〈dx,ds〉 = , which is coming from the first and second equations of () or from the
orthogonality of �x and �s.
For our IPM, we use the following new eligible kernel function:

ψ(t) =
t – 


+
ep(t–q–) – 

pq
, p�  and q�  for t > . ()

Please see the definition of an eligible function in []. The new kernel function () sat-
isfies

ψ ′′(t) > , ψ ′′′(t) <  and lim
t→+

ψ(t) = lim
t→∞ψ(t) = ∞.

Note that ψ() =ψ ′() = . Then ψ(t) is determined:

ψ(t) =
∫ t



∫ ξ


ψ ′′(ζ )dζ dξ . ()

The proximity function (measure) for (P) and (D) is

�(x, s;μ) :=�(v) := tr
(
ψ(v)

)
=

r∑
i=

ψ
(
λi(v)

)
, ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/213
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where ψ(v) is defined by (). Note that �(v) = , if v = e (i.e., x ◦ s = μe) and �(v) > ,
otherwise. Replacing the right-hand side of the last equation in () by –ψ ′(v), we have
the following system from ():

⎧⎪⎪⎨
⎪⎪⎩
Ā dx = ,

ĀT�y + ds = ,

dx + ds = –ψ ′(v).

()

Let X = {x ∈ V | Āx = }. Then X⊥ = {ĀTy | y ∈ R
m}. Hence, the system () has a unique

solution.We introduce the norm-based proximity measure as follows:

σ := ‖dx + ds‖ = ‖ψ ′(v)‖ =
√

‖dx‖ + ‖ds‖. ()

The following lemma gives a lower bound of σ in terms of �(v).

Lemma . For any v ∈ �,

σ �
√
�(v).

Proof Since () satisfies ψ(t)� (ψ ′(t)) and σ  =
∑r

i=(ψ ′(λi(v))),

�(v)� σ .

This completes the proof. �

Also, our new kernel function () satisfies the following exponential convexity property.

Lemma . Let t >  and t > . Then

ψ(
√
tt)�



(
ψ(t) +ψ(t)

)
.

The following proposition can be found in [], but for the completeness, we give its
proof.

Proposition . (Theorem . in []) Let � be the proximity function defined in (),
then for any x, s ∈ �,

�
(
(Qx/s)/

)
� 


(
�(x) +�(s)

)
.

Proof Since Qx/s ∈ �,

λi
(
(Qx/s)/

)
= λ/

i (Qx/s) and �
(
(Qx/s)/

)
=

r∑
i=

ψ
(
λ/
i (Qx/s)

)
.

By Theorem . in [],

k∏
i=

λi(Qx/s)�
k∏
i=

λi(x)λi(s), for k = , . . . , r – ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/213
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and

r∏
i=

λi(Qx/s) =
r∏
i=

λi(x)λi(s).

Thus,

k∏
i=

λ/
i (Qx/s)�

k∏
i=

λ/
i (x)λ/

i (s), for k = , . . . , r – ,

and

r∏
i=

λ/
i (Qx/s) =

r∏
i=

λ/
i (x)λ/

i (s).

Let αi = λ/
i (Qx/s) and βi = λ/

i (x)λ/
i (s). Then αi >  and βi > . Moreover, since these

conditions satisfy the assumptions of Corollary .. in [] and (iii) in Corollary ..
in [] with our kernel function (),

r∑
i=

ψ
(
λ/
i (Qx/s)

)
�

r∑
i=

ψ
(
λ/
i (x)λ/

i (s)
)
.

By Lemma ., we obtain the following result:

r∑
i=

ψ
(
λ/
i (x)λ/

i (s)
)
� 



( r∑
i=

ψ
(
λi(x)

)
+

r∑
i=

ψ
(
λi(s)

))
=


(
�(x) +�(s)

)
. �

3 Algorithm and its complexity analysis
Now, we explain our algorithm for the large-update primal-dual IPM for the SOP. Assum-
ing that a starting point in a certain neighborhood of the central path is available, we can
set out from this point. Then, we will go to the outer ‘while loop’. If μ satisfies rμ� ε, then
it is reduced by the factor  – θ , where θ ∈ (, ). Then, we make use of the inner ‘while
loop’, and we repeat the procedure until we find iterates that are ‘close’ to (x(μ), y(μ), s(μ)),
that is, the proximity �(x, s;μ) < τ . Here, we apply Newton’s method targeting at the new
μ-centers to decide a search direction (�x,�y,�s). We return to the outer ‘while loop’.
The whole process is repeated until μ is small enough, say until rμ < ε.
The choice of the step size α is another crucial issue in the analysis of the algorithm. It

has to be taken so that the closeness of the iterates to the current μ-center can improve
by a sufficient amount. In the algorithm, the inner ‘while loop’ is called the inner iteration
and the outer ‘while loop’ is called the outer iteration. Each outer iteration consists of an
update of the parameter μ and a sequence of (one or more) inner iterations. The total
number of inner iterations is the worst-case iteration bound for our algorithm.
The algorithm for our large-update primal-dual IPM for the SOP is given as follows:
Primal-dual algorithm for the SOP
Inputs
A proximity parameter τ > ;
an accuracy parameter ε > ;

http://www.fixedpointtheoryandapplications.com/content/2012/1/213
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a variable damping factor α;
a fixed barrier update parameter θ ∈ (, );
(x, s) and μ =  such that �(x, s;μ)� τ .

begin
x := x; s := s; μ := μ;
while rμ� ε do
begin

μ := ( – θ )μ;
while �(x, s;μ)� τ do
begin
Solve the system () for �x, �y, �s;
Determine a step size α;
x := x + α�x;
y := y + α�y;
s := s + α�s;

end
end

end

3.1 Bound of the proximity function after μ-update
We have �(v) � τ before the update of μ with the factor  – θ at the start of each outer
iteration. After updatingμ in an outer iteration, the vector v is divided by the factor

√
 – θ ,

which in general leads to an increase in the value of �(v). Then during the inner iteration,
the value of �(v) decreases until it passes the threshold τ .
As we mentioned, our kernel function () is eligible. To obtain an upper bound for a

μ-updated proximity function in each outer iteration in the algorithm, we use the well-
known Lemma ., which can be induced from the decreasing part of the kernel function,
instead of using theorems which can be obtained from some properties for eligible func-
tions (for example, Theorem . in [] and Theorem . in []). Both of the following
lemmas make our analysis in the outer while loop easy. And we will show a theorem that
an upper bound for �( √

–θ
v) is expressed with �(v) by using the following two lemmas.

Lemma . Let β � . Then

ψ(βt)� ψ(t) +
(β – )


t.

Proof Define ψb(t) := ep(t
–q–)–
pq . Then ψb(t) is monotonically decreasing in t. So, we can

easily obtain

ψ(βt) =
βt – 


+ψb(βt) =

t – 


+ψb(t) +
βt – t


+ψb(βt) –ψb(t)

� ψ(t) +
(β – )


t. �

Lemma . For any v ∈ �, then

‖v‖ � 
(
�(v) + r

)
.
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Proof Since ep(t
–q–)

pq is positive and pq � , the kernel function () has a lower bound as
follows:

ψ(t)� t – 


–

pq

� t


–  – .

This implies 

∑r

i= λ

i (v)��(v) + r. �

Theorem . Let θ be such that  < θ < . Then, for any v ∈ �,

�

(
√
 – θ

v
)
� 

 – θ

(
�(v) + r

)
.

Proof From Lemma . with β = √
–θ

and Lemma .,

�

(
√
 – θ

v
)

=
r∑
i=

ψ

(
√
 – θ

λi(v)
)
� �(v) +




(


 – θ
– 

)
‖v‖

� �(v) +
θ

 – θ

(
�(v) + r

)
� 

 – θ

(
�(v) + r

)
,

the last inequality comes from θ ∈ (, ). �

By the assumption �(v)� τ just before the update of μ,

�

(
√
 – θ

v
)
� 

 – θ
(τ + r).

We define

L(r, θ , τ ) =


 – θ
(τ + r).

Since τ =O(r) and θ = �(),

L =O(r).

3.2 Determining a default step size
In this section, we compute the feasible step size α such that the proximity function is
decreasing and is bound for the decrease during inner iterations; then we give our default
step size ᾱ; ᾱ = (( + σ ( + pq + q)( + p– logσ )(q+)/q))–. We will show that the step
size not only keeps the iterates feasible but also gives rise to a sufficiently large decrease
in the barrier function �(v) in each inner iteration. Let us denote the difference between
the proximity before and after one step by a function of the step size, that is,

f (α) :=�(v+) –�(v). ()

The main task in the rest of this section is to study the decreasing behavior of f (α).
Now, in equation (), v+ and p+ are determined by x, s in () and () replaced by x+ :=

x + α�x, s+ := s + α�s, respectively, which is as follows:

v+ :=
√
μ
Qp+ (x + α�x) =

√
μ
Qp–+ (s + α�s).

http://www.fixedpointtheoryandapplications.com/content/2012/1/213
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Lemma . (Proposition II.. in []) Let x and s be elements in V . Then
(i) (Qxs)– =Qx–s– if x and s are invertible.
(ii) QQsx =QsQxQs.

Lemma . ([]) Let x, s,p ∈ �. Then
(i) Qx/s and Qs/x have the same eigenvalues.
(ii) Qx/s and Q(Qpx)/ (Qp–s) have the same eigenvalues.

The following proposition was given by Vieira in [] (see Proposition . in []), but
we provide its proof using Lemma . and Lemma ..

Proposition . Let � be the proximity function defined in (). Then we have

�(v+) = �
((
Q(v+α dx)/ (v + α ds)

)/).
Proof From Qp–s = Qpx and (i) in Lemma ., we know that Qpx and Qx/p have the
same eigenvalues. By the definition of p and (ii) in Lemma .,

Qx/p =Qx/
(
Q/

x (Qx/s)–/
)– =Qx/Qx–/ (Qx/s)/ = (Qx/s)/.

Then we can find Qp–+ s+ and (Qx/+
s+)/ have the same eigenvalues. Here, √

μv+ =
Qp–+ s+.We know that x+ =

√
μQp– (v+α dx) and s+ =

√
μQp(v+α ds), by the definition ()

and by (ii) in Lemma ., then (Qx/+
s+)/ =

√
μ(Q(Qp– (v + α dx))/(Qp(v + α ds)))/ and√

μ(Q(v+α dx)/ (v + α ds))/ have the same eigenvalues. Therefore, the proximity function
satisfies the equality. �

Then Proposition . and Proposition . imply the following inequality:

�(v+)�


�(v + α dx) +



�(v + α ds).

So, we can define f(α):

f (α)� f(α) :=


(
�(v + α dx) +�(v + α ds)

)
–�(v).

To facilitate the forthcoming analysis, we also define, for any x ∈ V ,

λmin(x) :=min
{
λi(x) | i = , . . . , r

}
.

The following lemma is obtained from Lemma  in [] so that we can get the common
lower bound of eigenvalues of v + α dx and v + α ds, where α satisfies v + α dx ∈ � and
v + α ds ∈ �.

Lemma . For any α ∈ (, λmin(v)
σ

),

λmin(v + α dx)� λmin(v) – ασ and λmin(v + α ds)� λmin(v) – ασ ,

where σ is a number defined in ().

http://www.fixedpointtheoryandapplications.com/content/2012/1/213
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Proof Let α be a fixed number in (, λmin(v)
σ

). From Lemma  in [],

λmin(v + α dx)� λmin(v) – α‖dx‖.

Since σ � ‖dx‖, we have

λmin(v + α dx)� λmin(v) – ασ .

Similarly, we obtain

λmin(v + α ds)� λmin(v) – ασ . �

The proof of the following proposition can be found in [], but for the completeness,
we give its detailed proof.

Proposition . ([]) Suppose that the functions ψ(x) and �(x) are defined by () and
(), respectively. Then, for any α ∈ (, λmin(v)

σ
),

d
dα

f(α) =


tr
(
ψ ′(v + α dx) ◦ dx

)
+


tr
(
ψ ′(v + α ds) ◦ ds),

d

dα f(α)�


max

{
�ψ ′(λi(v + α dx),λj(v + α dx)

) | i, j = , . . . , r
}‖dx‖

+


max

{
�ψ ′(λi(v + α ds),λj(v + α ds)

) | i, j = , . . . , r
}‖ds‖,

where

�ψ ′(λi(·),λj(·)
)
=

⎧⎨
⎩ψ ′′(λi(·)) if λi(·) = λj(·),

ψ ′(λi(·))–ψ ′(λj(·))
λi(·)–λj(·) if λi(·) �= λj(·).

Proof Using Lemma . in [], we have

d
dα

ψ(v + α dx)

=
r∑
i=

�ψ
(
λi(v + α dx),λi(v + α dx)

)〈
ci(v + α dx),dx

〉
ci(v + α dx)

+
∑

�j<l�r

�ψ
(
λj(v + α dx),λl(v + α dx)

)

× cj(v + α dx) ◦ (cl(v + α dx) ◦ dx). ()

Then we have

d
dα

tr
(
ψ(v + α dx)

)
=

d
dα

〈
ψ(v + α dx), e

〉
=
〈
d
dα

ψ(v + α dx), e
〉
= tr

(
d
dα

ψ(v + α dx)
)

http://www.fixedpointtheoryandapplications.com/content/2012/1/213
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= tr

( r∑
i=

ψ ′(λi(v + α dx)
)〈
ci(v + α dx),dx

〉
ci(v + α dx)

)

(by associativity of trace)

=
r∑
i=

ψ ′(λi(v + α dx)
)〈
ci(v + α dx),dx

〉
tr
(
ci(v + α dx)

)

=

〈 r∑
i=

ψ ′(λi(v + α dx)
)
ci(v + α dx),dx

〉
tr
(
ci(v + α dx)

)
.

Then from Baes [, ] we know that tr(ci(v + α dx)) = , and hence, from the definition
(), we get

d
dα

tr
(
ψ(v + α dx)

)
= tr

(
ψ ′(v + α dx) ◦ dx).

Thus, we have

d
dα

f(α) =


tr
(
ψ ′(v + α dx) ◦ dx) + 


tr
(
ψ ′(v + α ds) ◦ ds).

So, the first equality holds.
For the second inequality, we will use () by replacing ψ by ψ ′.

d

dα tr
(
ψ(v + α dx)

)
=

d
dα

tr
(
ψ ′(v + α dx) ◦ dx)

= tr

((
d
dα

ψ ′(v + α dx)
)

◦ dx
)

= tr

(( r∑
i=

�ψ ′(λi(v + α dx),λi(v + α dx)
)〈
ci(v + α dx),dx

〉
ci(v + α dx)

+
∑

�j<l�r

�ψ ′(λj(v + α dx),λl(v + α dx)
)

× cj(v + α dx) ◦ (cl(v + α dx) ◦ dx)
)

◦ dx
)
.

Here, let dx =
∑r

j= λj(dx)cj(dx). Then we have

r∑
i=

(
tr
(
ci(v + α dx) ◦ dx))

=
r∑
i=

(
tr

( r∑
j=

λj(dx)ci(v + α dx) ◦ cj(dx)
))

=
r∑
i=

( r∑
j=

λj(dx) tr
(
ci(v + α dx) ◦ cj(dx)

))

.
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Since ci(v + α dx) and cj(dx) are in � which is a self-dual cone, then

tr
(
ci(v + α dx) ◦ cj(dx)

)
� , for i, j = , . . . , r.

Furthermore,
∑r

j= tr(ci(v + α dx) ◦ cj(dx)) = tr(ci(v + α dx)) = . Then we have

r∑
i=

(
tr
(
ci(v + α dx) ◦ dx)) =

r∑
i=

( r∑
j=

tr
(
ci(v + α dx) ◦ cj(dx)

)
λj(dx)

)

�
r∑
i=

( r∑
j=

λ
j (dx) tr

(
ci(v + α dx) ◦ cj(dx)

))

=
r∑
j=

(
λ
j (dx)

r∑
i=

tr
(
ci(v + α dx) ◦ cj(dx)

))
.

Since
∑r

i= tr(ci(v + α dx) ◦ cj(dx)) = tr(cj(dx)) = , we have

r∑
i=

(
tr
(
ci(v + α dx) ◦ dx)) � ‖dx‖. ()

Now, we decompose dx along Lemma . such as dx =
∑

�i�k�r dxik for the system of
idempotent {c(v + α dx), . . . , cr(v + α dx)}. Then, for j < l,

tr
((
cj(v + α dx) ◦ dx) ◦ (cl(v + α dx) ◦ dx))
= tr

((
cj(v + α dx) ◦

∑
�i�k�r

dxik
)

◦
(
cl(v + α dx) ◦

∑
�i�k�r

dxik
))

= tr

((
cj(v + α dx) ◦

r∑
i=

dxji

)
◦
(
cl(v + α dx) ◦

r∑
i=

dxli

))

(
by (ii) in Lemma .

)
= tr

(


dxjl ◦ dxlj

) (
by (iii) and (iv) in Lemma .

)

=


tr
(
dxjl

)
.

This means, for each j < l,

tr
((
cj(v + α dx) ◦ dx) ◦ (cl(v + α dx) ◦ dx))� .

Moreover, we have,

∑
�j<l�r

tr
((
cj(v + α dx) ◦ dx) ◦ (cl(v + α dx) ◦ dx))

�
∑

�j<l�r

tr
((
cj(v + α dx) ◦ dx) ◦ (cl(v + α dx) ◦ dx)) + 



r∑
i=

tr
((
ci(v + α dx) ◦ dx))
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=


tr

(( r∑
i=

(
ci(v + α dx) ◦ dx)

))

=


tr
(
dx

)
=


‖dx‖. ()

Since for each i, (tr(ci(v + α dx) ◦ dx)) are nonnegative and for each j, l with j < l, tr((cj(v +
α dx) ◦ dx) ◦ (cl(v + α dx) ◦ dx)) are nonnegative, we get from () and ()

d

dα tr
(
ψ(v + α dx)

)
� max

{
�ψ ′(λi(v + α dx),λj(v + α dx)

) | i, j = , . . . , r
}‖dx‖.

Similarly,

d

dα tr
(
ψ(v + α ds)

)
� max

{
�ψ ′(λi(v + α ds),λj(v + α ds)

) | i, j = , . . . , r
}‖ds‖.

From the definition of f(α),

d

dα f(α) =
d

dα

(


tr
(
ψ(v + α dx)

)
+


tr
(
ψ(v + α ds)

))
.

Thus, we have the conclusion. �

Thenext result presents an upper bound for the secondderivative of f(α) which is usable
for establishing the polynomial complexity of the algorithm.

Proposition . For any α ∈ (, λmin(v)
σ

),

f ′′
 (α)�



ψ ′′(λmin(v) – ασ

)
σ .

Proof Since ψ ′′(t) is a decreasing function on t ∈ (,∞), using Lemma . and the mean
value theorem, we have

ψ ′′(λmin(v) – ασ
)
�max

{
�ψ ′(λi(v + α dx),λj(v + α dx)

) | i, j = , . . . , r
}

and

ψ ′′(λmin(v) – ασ
)
�max

{
�ψ ′(λi(v + α ds),λj(v + α ds)

) | i, j = , . . . , r
}
.

Thus, by Proposition .,

d

dα f(α) �


ψ ′′(λmin(v) – ασ

)‖dx‖ + 

ψ ′′(λmin(v) – ασ

)‖ds‖
=



ψ ′′(λmin(v) – ασ

)
σ . �
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We can easily check that f() =  and f ′
 () = – σ

 . By Proposition ., we obtain an
upper bound f(α) for f(α) as follows:

f(α) = f() + f′()α +
∫ α



∫ ξ


f ′′
 (ζ )dζ dξ

� f(α) := f() + f′()α +


σ 

∫ α



∫ ξ


ψ ′′(λmin(v) – ασ

)
dζ dξ .

Note that f() = . Furthermore, since f ′
(α) = – σ

 + σ
 (ψ ′(λmin(v))–ψ ′(λmin(v)–ασ )), we

have f ′
() = – σ

 which is the same value of f ′
 (), and f ′′

 (α) =
σ

 ψ ′′(λmin(v) – ασ ) which
is increasing on α ∈ [, λmin(v)

σ
). Using f ′

 () = f ′
() and f ′′

 (α)� f ′′
 (α), we can easily check

that

f ′
 (α) = f ′

 () +
∫ α


f ′′
 (ξ )dξ � f ′

(α).

This relation gives that

f ′
 (α)� , if f ′

(α)� .

To compute the feasible step size α such that the proximity measure is decreasing when
we take a new iterate for fixed μ, we want to calculate the step size α which satisfies that
f ′
(α)�  holds with α as large as possible. Since f ′′

 (α) > , that is, f ′
(α) is monotonically

increasing at α, the largest possible value at α satisfying f ′
(α)�  occurs when f ′

(α) = ,
that is,

–ψ ′(λmin(v) – ασ
)
+ψ ′(λmin(v)

)
=

σ


. ()

Since ψ ′′(t) is monotonically decreasing, the derivative of the left-hand side in () with
respect to λmin(v) is

–ψ ′′(λmin(v) – ασ
)
+ψ ′′(λmin(v)

)
< .

So, the left-hand side in () is decreasing at λmin(v). This implies that if λmin(v) becomes
smaller, then α gets smaller with fixed σ . Note that

σ =

√√√√ n∑
i=

(
ψ ′(λi(v)

)) � ∣∣ψ ′(λmin(v)
)∣∣� –ψ ′(λmin(v)

)

and the equality is true if and only if λmin(v) is the only coordinate in (λ(v), . . . ,λr(v)) which
is different from  and λmin(v) < , that is, ψ ′(λmin(v)) < . Hence, the worse situation for
the largest step size occurs when λmin(v) satisfies

–ψ ′(λmin(v)
)
= σ . ()

In that case, the largest α satisfying () is minimal. For our purpose, we need to deal with
the worse case, and so we assume that () holds.
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From now on, we denote that ρ : [,∞)→ (, ] is the inverse function of the restriction
of –ψ ′(t) in the interval (, ]. Then () implies

λmin(v) = ρ(σ ). ()

By using () and (), we immediately obtain

–ψ ′(λmin(v) – ασ
)
=


σ .

By the definition of ρ and (), the largest step size α of the worse case is given as follows:

α* =
ρ(σ ) – ρ( σ )

σ
. ()

For the purpose of finding an upper bound of f (α), we need a default step size ᾱ that is the
lower bound of the α* and consists of σ .

Lemma . Let σ � . Then, for  < t � ρ( σ ),

ψ ′′(t)�  + σ ( + pq + q)
(
 +


p
logσ

) q+
q
.

Proof From ψ ′(t) = t – t–q– · ep(t–q–), let –ψ ′
b(t) = t–q– · ep(t–q–) and let ρ : [,∞) → (, ]

denote the inverse function of the restriction of –ψ ′
b(t) to the interval (, ]. Let ρ( σ ) = t̃.

Then  < t̃ �  and 
σ = –ψ ′(t̃) = –t̃ –ψ ′

b(t̃). So, –ψ ′
b(t̃) = t̃ + 

σ �  + σ � σ . Since ρ is
a decreasing function, (ρ( σ ) = t̃ =)ρ(–ψ ′

b(t̃))� ρ(σ ). Let ρ(σ ) = t̂. Then

σ = –ψ ′
b(t̂) =

(
ρ(σ )

)–q– · ep((ρ(σ ))–q–) ()

implies

ep((ρ(σ ))
–q–) = σ

(
ρ(σ )

)q+ � σ ⇒ p
((

ρ(σ )
)–q – 

)
� logσ

⇒ ρ(σ )�
(
 +


p
logσ

)– 
q
, ()

ψ ′′(t̂) =  +
(
(q + )t̂q + pq

)
t̂–q– · ep(t̂–q–) · t̂–q– =  +

(
(q + )t̂q + pq

)(
–ψ ′

b(t̂)
) · t̂–q–

=  +
(
(q + )t̂q + pq

) · σ · (ρ(σ ))–q– �  + σ ( + pq + q)
(
 +


p
logσ

) q+
q
,

the last inequality comes from t̂ ∈ (, ] and (). �

Now, we present a lower bound of the value of α*.

Theorem . Let α* be as defined in (). Then

α* � 

( + σ ( + pq + q)( + 
p logσ )

q+
q )

.
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Proof Since –ψ ′(ρ(σ )) = σ , taking the derivative of σ at both sides, we get

ρ ′(σ ) = –


ψ ′′(ρ(σ ))
.

Moreover, we have

α* =

σ

∫ σ


 σ

ρ ′(ξ )dξ =

σ

∫ 
 σ

σ


ψ ′′(ρ(ξ ))

dξ � 
σ

[
ξ

ψ ′′(ρ( σ ))

] 
 σ

σ

=


ψ ′′(ρ( σ ))
,

where the inequality follows fromσ � ξ � 
σ and ρ andψ ′′ aremonotonically decreasing.

Also, by Lemma ., we can complete the proof. �

For using ᾱ as the default step size in the algorithm for the SOP, define the ᾱ as follows:

ᾱ =


( + σ ( + pq + q)( + 
p logσ )

q+
q )

. ()

We will use ᾱ as the default step size in our algorithm.

3.3 Decrease of the proximity function during an inner iteration
Now, we show that our proximity function � with our default step size ᾱ is decreasing. It
can be easily established by using the following result.

Lemma . ([]) Let h(t) be a twice differentiable convex function with h() = , h′() < 
and let h(t) attain its (global)minimum at t* > . If h′′(t) is increasing for t ∈ [, t*], then

h(t)� th′()


, � t � t*.

Since f(α) satisfies assumptions of the above lemma,

f (α)� f(α)� f(α)�
f ′
()


α for all � α � α*.

Since f ′
() = – σ

 , we can obtain the upper bound for the decreasing value of the proximity
in the inner iteration by Lemma ..

Theorem . Let ᾱ be the default step size as defined in (). Then we have

f (ᾱ)� –



·
√

�

 + 
√
( + pq + q)( + 

p log
√
�)

q+
q
.

Proof Since f ′
() = – σ

 and ᾱ ∈ [,α*], we have

f (ᾱ) � 

ᾱf ′

() =



· 

( + σ ( + pq + q)( + 
p logσ )

q+
q )

·
(
–

σ 



)

= –



· σ 

 + σ ( + pq + q)( + 
p logσ )

q+
q
.
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This expresses the decrease in one inner iteration in terms of σ . Since the decrease de-
pendsmonotonically on σ , we can express the decrease in terms of� = �(v) by Lemma.
as follows:

f (ᾱ) � –



· �

 + 
√
�( + pq + q)( + 

p log
√
�)

q+
q

� –



·
√

� · √�
√

� + 
√
�( + pq + q)( + 

p log
√
�)

q+
q

= –



·
√

�

 + 
√
( + pq + q)( + 

p log
√
�)

q+
q
,

where the inequality follows from � � � � τ � . The theorem is satisfied. �

3.4 Iteration bound
We need to count howmany inner iterations are required to return to the situation where
�(v)� τ after a μ-update. We denote the value of �(v) after μ-update as �; the subse-
quent values in the same outer iteration are denoted as�k , k = , . . . . If K denotes the total
number of inner iterations in the outer iteration, then we have

� � L(r, θ , τ ) =O(r), �K– > τ , � �K � τ

and according to Theorem .,

�k+ � �k –


 + 
√
( + pq + q)( + 

p log
√
�)

q+
q

�


k .

At this stage, we invoke Lemma  in [].

Lemma . ([]) Let t, t, . . . , tK be a sequence of positive numbers such that

tk+ � tk – βt–γ

k , k = , , . . . ,K – ,

where β >  and  < γ � . Then

K � tγ
βγ

.

Letting tk = �k , β = 

+
√
(+pq+q)(+ 

p log
√
�)

q+
q

and γ = 
 , we can get the following

lemma from Lemma ..

Lemma . Let K be the total number of inner iterations in the outer iteration. Then we
have

K � 
(
 + 

√
( + pq + q)

(
 +


p
log

√

√

�

) q+
q
)

�/
 ,

where � is the value of �(v) after the μ-update in the outer iteration.
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Now, we estimate the total number of iterations of our algorithm.

Theorem . If τ �  and  < θ < , the total number of iterations is not more than

⌈

(
 + 

√
( + pq + q)

(
 +


p
log

√

√

�

) q+
q
)

�/


⌉⌈

θ
log

r
ε

⌉
.

Proof In the algorithm, rμ � ε, μk := ( – θ )kμ and μ = . By simple computation, we
have

k � 
θ
log

r
ε
.

Therefore, the number of outer iterations is bounded above by


θ
log

r
ε
.

Multiplication of this result by the number in the above lemma satisfies the theorem. �

Since �/
 =O(

√
r), if we take p =O(log r) and q = , then we can get the best known

upper bound for the total number of inner iterations in the outer iteration is

O(
√
r log r).

Also, we take for θ a constant (not depending on r), namely 
θ
= �(). With τ = O(r),

the best complexity of the primal-dual interior-point method for a linear optimization
problem based on our new proximity function with p = log r and q =  is given by

O
(√

r log r log
r
ε

)
.
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