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Abstract
In this paper, motivated by the recent work of Wardowski (Fixed Point Theory Appl.
2012:94, 2012), we introduce a new concept of set-valued contraction and prove a
fixed point theorem which generalizes some well-known results in the literature. As
an application, we derive a new coupled fixed point theorem. Some examples are
also given to support our main results.
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1 Introduction
In the literature, there are plenty of extensions of the famous Banach contraction princi-
ple [], which states that every self-mapping T defined on a complete metric space (X,d)
satisfying

d(Tx,Ty) ≤ kd(x, y) for each x, y ∈ X, ()

where k ∈ [; ), has a unique fixed point, and for every x ∈ X, the sequence {Tnx}n∈N
is convergent to the fixed point. Some of the extensions weaken the right side of the in-
equality in the condition () by replacing k with amapping; see, e.g., [–]. In other results,
the underlying space is more general; see, e.g., [–]. In , Nadler [] extended the Ba-
nach contraction principle to set-valued mappings. For other extensions of the Banach
contraction principle, see [–] and the references therein.
Recently, Wardowski [] introduced a new concept of contraction and proved a fixed

point theorem which generalizes the Banach contraction principle in a different way than
in the known results from the literature. In this paper, we present an improvement and
generalization of the main result of Wardowski []. To set up our results, in the next
section, we introduce some definitions and facts.
Let (X,d) be a metric space and let CB(X) denote the class of all nonempty bounded

closed subsets of X. Let H be the Hausdorff metric with respect to d, that is,

H(A,B) =max
{
sup
u∈A

d(u,B), sup
v∈B

d(v,A)
}

for every A,B ∈ CB(X), where d(u,B) = inf{d(u, y) : y ∈ B}.
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Theorem . (Nadler []) Let (X,d) be a complete metric space and let T : X → CB(X) be
a set-valued map. Assume that there exists k ∈ [, ) such that

H(Tx,Ty) ≤ kd(x, y) for each x, y ∈ X. ()

Then T has a fixed point.

In  Mizoguchi and Takahashi [] proved the following generalization of Theo-
rem ..

Theorem . (Mizoguchi and Takahashi []) Let (X,d) be a complete metric space and
let T : X → CB(X) be a set-valued map satisfying

H(Tx,Ty) ≤ α
(
d(x, y)

)
d(x, y) for each x, y ∈ X,

where α : [,∞) → [, ) satisfies lim supt→r+ α(t) <  for each r ∈ [,∞). Then T has a
fixed point.

2 Main results
Let F : (,∞) → R and θ : (,∞) → (,∞) be two mappings. Throughout the paper, let
� be the set of all pairs (F , θ ) satisfying the following:

(δ) θ (tn) �→  for each strictly decreasing sequence {tn};
(δ) F is strictly increasing;
(δ) For each sequence {αn}n∈N of positive numbers, limn→∞ αn =  if and only if

limn→∞ F(αn) = –∞;
(δ) If tn ↓  and θ (tn) ≤ F(tn) – F(tn+) for each n ∈N, then

∑∞
n= tn <∞.

Example . Let θ(t) = τ for each t ∈ (,∞), where τ >  is a constant, and let F :
(,∞) → R be a mapping satisfying limx→+ xkF(x) =  for some k ∈ (, ) where F :
(,∞) → R is strictly increasing. Then the proof of the main result in [] shows that
(F, θ) ∈ �. We give the details for completeness. Using (δ), the following holds for every
n ∈N:

F(tn) ≤ F(tn–) – τ ≤ F(tn–) – τ ≤ · · · ≤ F(t) – nτ . ()

By (), the following holds for every n ∈N:

tknF(tn) – tknF(t)≤ tkn
(
F(t) – nτ

)
– tknF(t) = –tknnτ ≤ . ()

Since limn→∞ tknF(tn) = , letting n → ∞ in (), we obtain limn→∞ ntkn = . Then there
exists n ∈ N such that ntkn ≤  for n ≥ n. Consequently, we have tn ≤ 

n

k
for all n ≥ n.

Thus,
∑∞

n= tn < ∞ (note that
∑∞

n=


n

k
< ∞).

Example . Let F(t) = ln t and let θ(t) = – ln(α(t)) for each t ∈ (,∞), where α :
(,∞)→ [, ) satisfying

lim sup
t→r+

α(t) <  for each r ∈ [,∞).
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Now, we show that (F, θ) ∈ �. It is easy to see that F and θ satisfy (δ)-(δ). To show
(δ), assume that tn ↓  and

– ln
(
α(tn)

) ≤ ln tn – ln tn+ ∀n ∈N.

Then tn+ ≤ α(tn)tn for each n ∈ N. Since lim supt→+ α(t) < , then there exist n ∈ N and
 < r <  such that α(tn) < r for n≥ n. Thus, tn+ ≤ rtn for each n≥ n, and so

∑∞
n= tn < ∞.

Example . Let F(t) = ln t + t and let θ(t) = τ for each t ∈ (,∞), where τ >  is a
constant. Now, we show that (F, θ) ∈ �. We only show (δ). Suppose that tn →  and

τ ≤ (ln tn + tn) – (ln tn+ + tn+) ∀n ∈N.

Then

sn+ ≤ e–τ sn ∀n ∈N,

where sn = tnetn . Since e–τ < , then from the abovewe get
∑∞

n= sn < ∞, and so
∑∞

n= tn < ∞
(note that tn ≤ sn for each n ∈N).

Now, we state the main result of the paper.

Theorem . Let (X,d) be a complete metric spaces, let T : X → CB(X) be a set-valued
mapping and let (F , θ

 ) ∈ �. Assume that either T is compact valued or F is continuous
from the right. Furthermore, assume that

θ
(
d(x, y)

)
+ F

(
H(Tx,Ty)

) ≤ F
(
d(x, y)

) ∀x, y ∈ X with Tx �= Ty. ()

Then T has a fixed point.

Proof Let x ∈ X and x ∈ Tx. If Tx = Tx, then x ∈ Tx = Tx and x is a fixed point of T .
So, we may assume that Tx �= Tx. Since either T is compact valued or F is continuous
from the right, x ∈ Tx and F(d(x,Tx)) < F(H(Tx,Tx))+ θ (d(x,x))

 then there exists x ∈
Tx such that (note that F is increasing)

F
(
d(x,x)

) ≤ F
(
H(Tx,Tx)

)
+

θ (d(x,x))


. ()

From () and (), we have

θ
(
d(x,x)

)
+ F

(
d(x,x)

)

≤ θ
(
d(x,x)

)
+ F

(
H(Tx,Tx)

)
+

θ (d(x,x))


≤ F
(
d(x,x)

)
+

θ (d(x,x))


,

and so

θ (d(x,x))


+ F
(
d(x,x)

) ≤ F
(
d(x,x)

)
. ()
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We may also assume that Tx �= Tx (otherwise, x ∈ Tx = Tx). Proceeding this manner,
we can define a sequence {xn} in X satisfying

xn+ ∈ Txn,
θ (tn)


≤ F(tn) – F(tn+), for each n ∈ N, ()

where tn = d(xn,xn+). Since θ (tn) >  then from (), we have F(tn) > F(tn+) for each n ∈N.
Since F is strictly increasing, then we deduce that {tn} is a nonnegative strictly decreasing
sequence and so is convergent to some r ≥ , limn→∞ tn = r. Now we show that r = . On
the contrary, assume that r > . From (), we get




n∑
i=

θ (ti) ≤ F(t) – F(tn+) for each n ∈ N. ()

Since {tn} is strictly decreasing, then from (δ) we get θ (tn) �→ . Thus,
∑∞

i= θ (ti) = ∞, and
then from (), we have limn→∞ F(tn) = –∞. Then by (δ), tn → , a contradiction. Hence,

lim
n→∞ tn = . ()

From (), () and (δ), we have

∞∑
i=

ti =
∞∑
i=

d(xi,xi+) <∞.

Then, by the triangle inequality, {xn} is a Cauchy sequence. From the completeness of X,
there exists x ∈ X such that limn→∞ xn = x. Now, we prove that x is a fixed point of T . To
prove the claim, wemay assume that Txn �= Tx for sufficiently large n ∈N. On the contrary,
assume that Txni = Tx for each i ∈ N. Since Tx is closed, xni+ ∈ Txni = Tx and xni+ → x,
then x ∈ Tx, and we are finished.
From (), we have (note that xn+ ∈ Txn and Txn �= Tx for n ≥ N )

F
(
d(xn+,Tx)

) ≤ θ
(
d(xn,x)

)
+ F

(
d(xn+,Tx)

)

≤ θ
(
d(xn,x)

)
+ F

(
H(Txn,Tx)

) ≤ F
(
d(xn,x)

)
. ()

Since d(xn,x) → , then () together with (δ) imply that

d(x,Tx) = lim
n→∞d(xn+,Tx) = ,

and so d(x,Tx) = . Hence, x ∈ Tx (note that Tx is closed). �

Remark . By Example ., Theorem . is an extension and improvement of Theo-
rem . of Wardowski []. From Example ., we infer that Theorem . is a generaliza-
tion of the above mentioned Theorem . of Mizoguchi and Takahashi.

Now, we illustrate our main result by the following example.
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Example . Consider the complete metric space (X = {, , , , . . .},d), where d is de-
fined as

d(x, y) =

⎧⎨
⎩
, x = y,

x + y, x �= y.

Let T : X → CB(X) be defined as

Tx =

⎧⎨
⎩

{, , , , . . .}, x = ,

{x – ,x,x + , . . .}, x > .

Let f : X → X be given by

fx =

⎧⎨
⎩
, x = ,

x – , x > .

Now, we show that T satisfies (), where θ (t) =  for each t ∈ (,∞) and F(x) = lnx + x
for each x ∈ (,∞). To show the claim, notice first that H(Tx,Tx) = d(fx, fx) for each
x,x ∈ X. Now let x,x ∈ X with fx �= fx. Since d(fx, fx) – d(x,x) ≤ –, then we have

d(fx, fx)
d(x,x)

ed(fx,fx)–d(x,x) ≤ e–, for each x,x ∈ X with fx �= fx.

Thus, from the above, we have

 ≤ [
lnd(x,x) + d(x,x)

]
–

[
lnd(fx, fx) + d(fx, fx)

]

= F
(
d(x,x)

)
– F

(
d(fx, fx)

)
.

Therefore, (note that H(Tx,Tx) = d(fx, fx))

 ≤ F
(
d(x,x)

)
– F

(
H(Tx,Tx)

)
.

Then, by Theorem ., T has a fixed point.
Now,we show thatT does not satisfy the condition ofNadler’s theorem.On the contrary,

assume that there exists a function k ∈ [, ) such that

H(Tx,Tx) ≤ kd(x,x)

for all x,x ∈ X. Then

d(fx, fx) ≤ kd(x,x).

Then, for each x >  and x = x + , we have

x –  ≤ k(x + ), for each x > .
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Amini-Harandi Fixed Point Theory and Applications 2012, 2012:215 Page 6 of 7
http://www.fixedpointtheoryandapplications.com/content/2012/1/215

Hence,

 = lim
x→∞

x – 
x + 

≤ k,

a contradiction.

Example . For each t ∈ (,∞), let F(t) = –
t and let

θ(t) =

⎧⎨
⎩
– ln t

t ,  < t < ,

,  ≤ t.

Then it is easy to see that (F, θ) ∈ �, but F does not satisfy the condition (F) of the
definition of F-contraction in [].

Now, by using the technique in [], we present a new coupled fixed point result. For
more details on coupled fixed point theory, see [–] and the references therein.

Corollary . Let (M,ρ) be a completemetric space and let (F , θ
 ) ∈ �. Let f :M×M →M

be a mapping satisfying

θ
(
ρ(x,u) + ρ(y, v)

)
+ F

(
ρ
(
f (x, y), f (u, v)

)
+ ρ

(
f (y,x), f (v,u)

))

≤ F
(
ρ(x,u) + ρ(y, v)

)
()

for each x, y,u, v ∈ M. Then f has a coupled fixed point (x, y), that is, f (x, y) = x and
f (y,x) = y.

Proof Let X =M ×M and let d be the metric onM which is defined by

d
(
(x, y), (u, v)

)
= ρ(x,u) + ρ(y, v).

Then it is straightforward to show that (X,d) is a complete metric space. Let T : X → X
be defined by T(x, y) = (f (x, y), f (y,x)). From (), we get

θ
(
d
(
(x, y), (u, v)

))
+ F

(
d
(
T(x, y),T(u, v)

)) ≤ F
(
d
(
(x, y), (u, v)

))

for each (x, y), (u, v) ∈ X. Then from Theorem . we deduce that T has a fixed point u =
(x, y). Then (x, y) is a coupled fixed point of f . �
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