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Abstract
In this paper, we consider and analyze two viscosity iteration algorithms (one implicit
and one explicit) for finding a common element of the solution set MEP(F1, F2) of a
mixed equilibrium problem and the set � of a split feasibility problem in a real Hilbert
space. Furthermore, we derive the strong convergence of a viscosity iteration
algorithm to an element of MEP(F1, F2)∩ � under mild assumptions.
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1 Introduction
The split feasibility problem (SFP) in finite-dimensional Hilbert spaces was first intro-
duced by Censor and Elfving [] for modeling inverse problems which arise from phase
retrievals and in medical image reconstruction []. In this paper we work in the frame-
work of infinite-dimensional Hilbert spaces. In this setting, the split feasibility (SFP) is
formulated as finding a point x* with the property

x* ∈ C and Ax* ∈Q, (.)

where C and D are the nonempty closed convex subsets of the infinite-dimensional real
Hilbert spacesH andH, andA :H →H is a bounded linear operator. For relatedworks,
please refer to [–].
LetH be a realHilbert spacewhose inner product and norm are denoted by 〈·, ·〉 and ‖·‖,

respectively. Let C be a nonempty closed convex subset of H , and let F be a bifunction of
C×C intoRwhich is the set of real numbers. The equilibrium problem for F : C×C →R

is to find x ∈ C such that

F(x, y) ≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by EP(F). Equilibriumproblems theory has emerged
as an interesting and fascinating branch of applicable mathematics. The mixed equilib-
rium problem is as follows:

Find x ∈ C : F(x, y) + F(x, y) + 〈Ax,x – y〉 ≥ , ∀y ∈ C. (.)
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In the sequel, we indicate byMEP(F,F,A) the set of solutions of our mixed equilibrium
problem. If A = , we denoteMEP(F,F, ) byMEP(F,F). The mixed equilibrium prob-
lem (.) has become a rich source of inspiration and motivation for the study of a large
number of problems arising in economics, optimization problems, variational inequali-
ties, minimax problem, Nash equilibrium problem in noncooperative games and others
(e.g., [–]).
It is our purpose in this paper to consider and analyze two viscosity iteration algorithms

(one implicit and one explicit) for finding a common element of a solution set � of the split
feasibility problem (.) and a setMEP(F,F) of the mixed equilibrium problem (.) in a
real Hilbert space. Furthermore, we prove that the proposed viscosity iteration methods
converge strongly to a particular solution of the mixed equilibrium problem (.) and the
split feasibility problem (.).

2 Preliminaries
Assume H is a Hilbert space and C is a nonempty closed convex subset of H . The projec-
tion, denoted by PC , from H onto C assigns for each x ∈ H the unique point PCx ∈ C so
that

‖x – PCx‖ = inf
{‖x – y‖ : y ∈ C

}
.

Proposition . (Basic properties of projections [])
(i) 〈x – PCx, y – PCx〉 ≤  for all x ∈H and y ∈ C;
(ii) 〈x – y,PCx – PCy〉 ≥ ‖PCx – PCx‖ for all x, y ∈H ;
(iii) ‖x – PCx‖ ≤ ‖x – y‖ – ‖y – PCx‖ for all x ∈H and y ∈ C.

We also consider some nonlinear operators which are introduced in the following.

Definition . Let A : C →H be a nonlinear mapping. A is said to be
(i) Monotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

(ii) Strongly monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C.

For such a case, A is said to be α-strongly-monotone.
(iii) Inverse-strongly monotone (ism) if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is said to be α-inverse-strongly-monotone (α-ism).
(iv) k-Lipschitz continuous if there exists a constant k ≥  such that

‖Ax –Ay‖ ≤ k‖x – y‖, ∀x, y ∈ C.
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Remark . Let F = I – γ f , where f is a L-Lipschitz mapping on H with the coefficient
L > , γ = 

L . It is a simple matter to see that the operator F is ( – γL)-strongly monotone
over H , i.e.,

〈Fx – Fy,x – y〉 ≥ ( – γL)‖x – y‖, ∀(x, y) ∈H ×H .

Definition . A mapping T :H →H is said to be
(a) nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H ;
(b) firmly nonexpansive if T – I is nonexpansive. T = (I + S)/, where S :H →H is

nonexpansive, Alternatively, T is firmly nonexpansive if and only if

‖Tx – Ty‖ ≤ 〈Tx – Ty,x – y〉, x, y ∈ H ;

(c) average if T = ( – ε)I + εS, where ε ∈ (, ) and S :H →H is nonexpansive. In this
case, we also claimed that T is ε-averaged. A firmly nonexpansive mapping is

 -averaged.

Proposition . ([]) Let T :H →H be a given mapping.
(i) T is nonexpansive if and only if the complement I – T is 

 -ism.
(ii) If T is v-ism, then for γ > , γT is v

γ
-ism.

(iii) T is averaged if and only if the complement I – T is v-ism for v > /. Indeed, for
α ∈ (, ), T is α-averaged if and only if I – T is 

α -ism.

Proposition . ([]) Given operators S,T ,V :H →H .
(i) If T = ( – α)S + αV for some α ∈ (, ) and if S is averaged and V is nonexpansive,

then S is averaged.
(ii) T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.
(iii) If T = ( – α)S + αV for some α ∈ (, ), S is firmly nonexpansive and V is

nonexpansive, then T is averaged.
(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the

mappings {Ti}Ni= is averaged, then so is the composite T, . . . ,TN . In particular, if T

is α-averaged and T is α-averaged, where α,α ∈ (, ), then the composite TT

is α-averaged, where α = α + α – αα.
(v) If the mappings {Ti}Ni= are averaged and have a common fixed point, then

N⋂
i=

Fix(Ti) = Fix(T · · ·TN ).

(Here the notation Fix(T) denotes the set of fixed points of the mapping T , that is,
Fix(T) = {x ∈H : Tx = x}.)

Definition . A bifunction g : C × C → R is monotone if g(x, y) + g(y,x) ≤ , ∀x, y ∈ C.
A function G : C →R is upper hemicontinuous if

lim sup
t→∞

G
(
tx + ( – t)y

) ≤ G(y).
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For solving themixed equilibriumproblem for a bifunction F : C×C →R, let us assume
that F satisfies the following conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, that is, F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim
t→

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Lemma . ([]) Let C be a convex closed subset of a Hilbert space H . Let F : C×C →R

be a bifunction such that
(f) F(x,x) = , ∀x ∈ C;
(f) F(x, ·) is monotone and supper hemicontinuous;
(f) F(·,x) is lower semicontinuous and convex.
Let F : C ×C →R be a bifunction such that
(h) F(x,x) = , ∀x ∈ C;
(h) F(x, ·) is monotone and upper semicontinuous;
(h) F(·,x) is convex.
Moreover, let us suppose that
(H) for fixed r >  and x ∈ C, there exists a bounded set k ⊂ C and a ∈ K such that for

all z ∈ C \K , –F(a, z) + F(z,a) + 
r 〈a – z, z – x〉 < , for r >  and x ∈H . Let

Tr :H → C be a mapping defined by

Trx =
{
z ∈ C : F(z, y) + F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
, (.)

called a resolvent of F and F.
Then

(i) Trx �= ∅;
(ii) Tr is a single value;
(iii) Tr is firmly nonexpansive;
(iv) MEP(F,F) = Fix(Tr) and it is closed and convex.

Definition . Let H be a real Hilbert space and f :H →H be a function.
(i) Minimization problem:

min
x∈C f (x) =



‖Ax – PQAx‖.

(ii) Tikhonov’s regularization problem:

min
x∈C fα(x) =



‖Ax – PQAx‖ + 


α‖x‖, (.)

where α >  is the regularization parameter.

Proposition . ([]) If the SFP is consistent, then the strong limα→ xα exists and is the
minimum-norm solution of the SFP.
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Proposition . ([]) A necessary and sufficient condition for xα to converge in norm as
α →  is that the minimization

lim
u∈A(C)

dist(u,Q) = min
u∈A(C)

‖u – PQu‖ (.)

is attained at a point in the set A(C).

Remark . ([]) Assume that the SFP is consistent, and let xmin be its minimum-norm
solution, namely xmin ∈ � has the property

‖xmin‖ =min
{∥∥x*∥∥ : x* ∈ �

}
.

From (.), observing that the gradient

∇fα(x) = ∇f (x) + αI = A*(I – PQ)A + αI

is an (α + ‖A‖)-Lipschitzian and α-strongly monotone mapping, the mapping PC(I –
λ∇fα) is a contraction with the coefficient

√
 – λ

(
α – λ

(‖A‖ + α
)) ≤  –



αλ,

where

 < λ <
α

(‖A‖ + α)
. (.)

Remark . The mapping T = PC(I – λ∇fα) is nonexpansive.
In fact, we have seen that ∇f = A*(I – PQ)A is 

‖A‖ -inverse strongly monotone and
λ∇f = A*(I – PQ)A is 

λ‖A‖ -inverse strongly monotone, by Proposition .(iii) the com-

plement I – λ∇f is λ‖A‖
 -averaged. Therefore, noting that PC is 

 -averaged and applying
Proposition .(iv), we know that for each λ ∈ (, 

λ‖A‖ ), T = PC(I – λ∇fα) is α-averaged,
with

α =


+

λ‖A‖


–



λ‖A‖


=
 + λ‖A‖


∈ (, ).

Hence, it is clear that T is nonexpansive.

Lemma . ([]) Assume that the SFP (.) is consistent. Define a sequence {xn} by the
iterative algorithm

xn+ = PC(I – γn∇fαn )xn = PC
(
( – γnαn)xn – γnA*(I – PQ)Axn

)
, (.)

where {αn} and {γn} satisfy the following conditions:
(i)  < γn ≤ αn

‖A‖+αn
for all n;

(ii) limn→∞ αn =  and limn→∞ γn = ;
(iii)

∑∞
n= αnγn = ∞;

(iv) limn→∞ |γn+–γn|–γn|αn+–αn|
(αn+γn+)

= .
Then {xn} converges in norm to the minimum-norm solution of the SFP (.).
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Deng et al. Fixed Point Theory and Applications 2012, 2012:226 Page 6 of 21
http://www.fixedpointtheoryandapplications.com/content/2012/1/226

Lemma . ([]) Let {xn} and {zn} be bounded sequences in a Banach space X and let
{βn} be a sequence in [, ]  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ = ( –
βn)zn+βnxn for all n ≥  and lim supn→∞(‖zn+ –zn‖–‖xn+ –xn‖) ≤ .Then, limn→∞ ‖zn–
xn‖ = .

Lemma . ([]) Let K be a nonempty closed convex subset of a real Hilbert space H and
T : K → K be a nonexpansive mapping with Fix(T) �= ∅. If {xn} is a sequence in K weakly
converging to x and if {(I – T)xn} converges strongly to y, then (I – T)x = y; in particular, if
y = , then x ∈ Fix(T).

Lemma . ([, ]) Assume {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – σn)αn + δnσn,

where {σn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= σn = ∞,

() lim supn→∞ δn ≤  or
∑∞

n= |δnσn| < ∞.
Then limn→∞ αn = .

3 Main results
In this section, we introduce two algorithms for solving the mixed equilibrium prob-
lem (.). Namely, we want to find a solution x* of the mixed equilibrium problem (.)
and x* also solves the following variational inequality:

x* ∈ �,
〈
(γ g –μB)x*,x – x*

〉 ≤ , x ∈ �, (.)

where B is a k-Lipschitz and η-strongly monotone operator on H with k > , η >  and
 < μ < η/k, and g : C →H is a β-contractionmapping, β ∈ (, ). Let F,F : C×C → R
be two bifunctions. In order to find a particular solution of the variational inequality (.),
we construct the following implicit algorithm.

Algorithm . For an arbitrary initial point x, we define a sequence {xn}n≥ iteratively

xn = (I – tμB)TrPC(I – λn∇fαn )xn, ∀t ∈ (, ), (.)

for all n ≥ , where {αn} is a real sequence in [, ], Tr is defined by Lemma . and ∇fαn
is introduced in Remark ..

We show that the sequence xn defined by (.) converges to a particular solution of the
variational inequality (.). As a matter of fact, in this paper, we study a general algorithm
for solving the variational inequality (.).
Let g : C →H be a β-contractionmapping. For each t ∈ (, ), we consider the following

mapping St given by:

Stx =
[
tγ g + (I – tμB)TrPC(I – λn∇fαn )

]
x, x ∈ C. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/226
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Lemma . St is a contraction. Indeed,

‖Stx – Sty‖ ≤ [
 – (τ – γβ)t

]‖x – y‖, ∀x, y ∈H ,

where t ∈ (, 
τ–γβ

), and the sequence of {αn} and {γn} satisfy the conditions (i)-(iv) in
Lemma ..

Proof It is clear that St is a self-mapping. Observe that

∥∥(I – λn∇fαn )x – (I – λn∇fαn )y
∥∥

= ‖x – y‖ – λn
〈∇fαn (x) –∇fαn (y),x – y

〉
+ λ

n
∥∥∇fαn (x) –∇fαn (y)

∥∥

≤ (
 – λnαn + λ

n
(
αn + ‖A‖))‖x – y‖

=
(
 – λn(αn – λn)

(
αn + ‖A‖))‖x – y‖

≤ ( – λnαn)‖x – y‖. (.)

Let μ(η – μk
 ) = τ and t ∈ (, ), we obtain

∥∥(I – tμB)x – (I – tμB)y
∥∥ ≤

[
 – tμ

(
η –

μk



)]
‖x – y‖

= [ – tτ ]‖x – y‖.

Note that PC and Tr are nonexpansive, I – λn∇fαn is a contraction mapping with the coef-
ficient  – λαn and ‖I – tμB‖ ≤  – tτ . Hence, ∀x, y ∈ C, we obtain

‖Stx – Sty‖ =
∥∥[
tγ g + (I – tμB)TrPC(I – λn∇fαn )

]
x

–
[
tγ g + (I – tμB)TrPC(I – λn∇fαn )

]
y
∥∥

≤ ‖I – tμB‖∥∥(I – λn∇fαn )x – (I – λn∇fαn )y
∥∥

+ tγ
∥∥g(x) – g(y)

∥∥
≤ ( – tτ )( – λnαn)‖x – y‖ + tγβ‖x – y‖

≤ (
 – (τ – γβ)t

)‖x – y‖.

Therefore, St is a contraction mapping when t ∈ (, 
τ–γβ

). �

From Lemma . and using the Banach contraction principle, there exists a unique fixed
point xt of St in C, i.e., we obtain the following algorithm.

Algorithm . For an arbitrary initial point x, we define a sequence {xn}n≥ iteratively

xn =
[
εnγ g + (I – εnμB)TrPC(I – λn∇fαn )

]
xn, x ∈ C, (.)

for all n ≥ , where {αn} and {εn} are two real sequences in [, ], Tr is defined by
Lemma . and ∇fαn is introduced in Remark ..

At this point, we would like to point out that Algorithm . includes Algorithm . as a
special case due to the fact that the contraction g is a possible nonself-mapping.

http://www.fixedpointtheoryandapplications.com/content/2012/1/226
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Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let B be
a k-Lipschitz and η-strongly monotone operator on H with k > , η >  and  < μ < η/k,
and the sequence of {αn} and {γn} satisfy the conditions (i)-(iv) in Lemma .. Let F,F :
C × C → R be two bifunctions which satisfy the conditions (f)-(f), (h)-(h) and (H) in
Lemma .. Let g : C → H be a β-contraction. Assume  := � ∩ MEP(F,F) �= ∅. Then
the sequence {xn} generated by implicit Algorithm . converges in norm, as εn → , to the
unique solution x* of the variational inequality (.). In particular, if we take g = , then the
sequence {xn} defined by Algorithm . converges in norm, as εn → , to the unique solution
x* of the following variational inequality:

〈
μBx*,x – x*

〉 ≥ , ∀x ∈ .

Proof Next, we divide the remainder of the proof into several steps.
Step . We prove that the sequence {xn} is bounded.
Set un = PC(I – λn∇fαn )xn for all n ≥ . Take q ∈ . It is clear that q = PC(I – λn∇fαn )q.

From Remark ., we know that PC(I – λn∇fαn ) is nonexpansive, then we have

‖un – q‖ = ∥∥PC(I – λn∇fαn )xn – PC(I – λn∇fαn )q
∥∥ ≤ ‖xn – q‖. (.)

From (.), (.) and the fact that Tr is nonexpansive, it follows that

‖xn – q‖ =
∥∥[

εnγ g(xn) + (I – εnμB)Trun
]
– PCq

∥∥
=

∥∥εnγ
(
g(xn) – g(q)

)
+ (I – εnμB)(Trun – q) + εn

(
γ g(q) –μBq

)∥∥
≤ εnγβ‖xn – q‖ + ( – εnτ )‖Trun – q‖ + εn

∥∥μBq – γ g(q)
∥∥

≤ (
 – εn(τ – γβ)

)‖xn – q‖ + εn
∥∥μBq – γ g(q)

∥∥.
It follows by induction that

‖xn – q‖ ≤ max
{‖xn – q‖,∥∥μBq – γ g(q)

∥∥/(τ – γβ)
}

≤ max
{‖x – q‖,∥∥μBq – γ g(q)

∥∥/(τ – γβ)
}
.

This indicates that {xn} is bounded. It is easy to deduce that {g(xn)} and {un} are also
bounded.
Now, we can choose a constantM >  such that

sup
n

{‖xn – un‖,
∥∥γ g(xn) –μBq

∥∥‖Trun – q‖ + ∥∥γ g(xn) –μBq
∥∥,

∥∥γ g(xn) –μBTrun
∥∥} ≤ M.

Step . We prove that limn→∞ ‖xn – un‖ = .
From (.), (.) and the fact that Tr is nonexpansive, we have

‖xn – q‖ =
∥∥(I – εnμB)(Trun – q) + εn

(
γ g(xn) –μBq

)∥∥

≤ ( – εnτ )‖Trun – q‖ + εn( – εnτ )
〈(
γ g(xn) –μBq

)
,Trun – q

〉

http://www.fixedpointtheoryandapplications.com/content/2012/1/226
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+ εn
∥∥γ g(xn) –μBq

∥∥

≤ ( – εnτ )‖Trun – q‖ + εn
∥∥γ g(xn) –μBq

∥∥‖Trun – q‖
+ εn

∥∥γ g(xn) –μBq
∥∥

≤ ( – εnτ )‖un – q‖ + εnM. (.)

Note that ∇fαn (x) is an (α + ‖A‖)-Lipschitzian and α-strongly monotone mapping. From
Lemma ., (.) and (.), we have

‖un – q‖ =
∥∥PC(I – λn∇fαn )xn – PC(I – λn∇fαn )q

∥∥

≤ 〈
(I – λn∇fαn )xn – (I – λn∇fαn )q,un – q

〉
=



(∥∥(I – λn∇fαn )xn – (I – λn∇fαn )q

∥∥

+ ‖un – q‖ – ∥∥xn – un – λn
(∇fαn (xn) –∇fαn (q)

)∥∥)
≤ 


(
( – λnαn)‖xn – q‖ + ‖un – q‖

–
∥∥xn – un – λn

(∇fαn (xn) –∇fαn (q)
)∥∥)

≤ 

(‖xn – q‖ + ‖un – q‖ – ‖xn – un‖

+ λn
〈
xn – un,∇fαn (xn) –∇fαn (q)

〉
– λ

n
∥∥∇fαn (xn) –∇fαn (q)

∥∥),
which implies that

‖un – q‖ ≤ ‖xn – q‖ – ‖xn – un‖

+ λn
〈
xn – un,∇fαn (xn) –∇fαn (q)

〉
– λ

n
∥∥∇fαn (xn) –∇fαn (q)

∥∥

≤ ‖xn – q‖ – ‖xn – un‖ + λn‖xn – un‖
∥∥∇fαn (xn) –∇fαn (q)

∥∥. (.)

By (.) and (.), we obtain

‖un –q‖ ≤ (– εnτ )‖un –q‖ + εnM–‖xn –un‖ +λn‖xn –un‖
∥∥∇fαn (xn) –∇fαn (q)

∥∥.
It follows that

‖xn – un‖ ≤ εnM + λn‖xn – un‖
∥∥∇fαn (xn) –∇fαn (q)

∥∥.
This together with limn→∞ εn =  and limn→∞ λn =  implies that

lim
n→∞‖xn – un‖ = . (.)

Setting yn = Trun, we have

‖xn – yn‖ =
∥∥εnγ g(xn) + (I – εnμB)yn – yn

∥∥
≤ ∥∥εnγ g(xn) – εnμBTrun

∥∥

http://www.fixedpointtheoryandapplications.com/content/2012/1/226
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≤ εn
∥∥γ g(xn) – γ g(un)

∥∥ + εn
∥∥γ g(un) –μBTrun

∥∥
≤ εnγβ‖xn – un‖ + εn

∥∥γ g(un) –μBTrun
∥∥.

From limn→∞ εn = , {un} is bounded and (.), we obtain

lim
n→∞‖xn – yn‖ = . (.)

By (.) and (.), we also have

lim
n→∞‖un – yn‖ = lim

n→∞
(‖un – xn‖ – ‖xn – yn‖

)
= . (.)

Step . We prove un ⇀ x* ∈  := � ∩MEP(F,F).
By (.) and (.), we deduce

∥∥xn – x*
∥∥ =

∥∥[
εnγ g(xn) + (I – εnμB)yn

]
– x*

∥∥

≤ ∥∥yn – x* + εnγ g(xn) – εnμByn
∥∥

=
∥∥Trun – x*

∥∥ + εnγ
〈
g(xn), yn – x*

〉
– εn

〈
μByn, yn – x*

〉
+ εn

∥∥γ g(xn) –μByn
∥∥

=
∥∥un – x*

∥∥ + εn
〈
γ g(xn) – γ g

(
x*

)
, yn – x*

〉
+ εn

〈
γ g

(
x*

)
–μBx*, yn – x*

〉
– εn

〈
μBTrun –μBx*, yn – x*

〉
+ εn

∥∥γ g(xn) –μByn
∥∥

≤ ∥∥un – x*
∥∥ + εnγβ

∥∥xn – x*
∥∥∥∥un – x*

∥∥ + εn
〈
γ g

(
x*

)
–μBx*, yn – x*

〉
– εnτ

∥∥un – x*
∥∥ + εn

∥∥γ g(xn) –μByn
∥∥

≤ ( – εnτ )( – λnαn)
∥∥xn – x*

∥∥ + εnγβ( – λnαn)
∥∥xn – x*

∥∥

+ εn
〈
γ g

(
x*

)
–μBx*, yn – x*

〉
+ εn

∥∥γ g(xn) –μByn
∥∥

≤ (
 – εn(τ – γβ)

)
( – λnαn)

∥∥xn – x*
∥∥ + εn

〈
γ g

(
x*

)
–μBx*, yn – x*

〉
+ εn

∥∥γ g(xn) –μByn
∥∥

≤ (
 – εn(τ – γβ)

)∥∥xn – x*
∥∥ + εn

〈
γ g

(
x*

)
–μBx*, yn – x*

〉
+ εn

∥∥γ g(xn) –μByn
∥∥.

It follows that

∥∥xn – x*
∥∥ ≤ 

τ – γβ

〈
γ g

(
x*

)
–μBx*, yn – x*

〉
+

εn

(τ – γβ)
∥∥γ g(xn) –μByn

∥∥

≤ 
τ – γβ

〈
γ g

(
x*

)
–μBx*, yn – x*

〉
+

εn

(τ – γβ)
M. (.)

Since {xn} is bounded, without loss of generality, we may assume that {xn} converges
weakly to a point x* ∈ C. Hence, un ⇀ x* and yn ⇀ x*.
Step . We show x* ∈ ωw(xn) ⊂  := � ∩MEP(F,F).
Since yn = Trun, for any y ∈ C, we obtain

F(yn – y) + F(yn – y) +

r
〈y – yn, yn – un〉 ≥ .
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From the monotonicity of F and F, we get


r
〈y – yn, yn – un〉 ≥ F(y – yn) + F(y – yn), ∀y ∈ C.

Hence,

〈
y – yni ,

yni – xni
r

〉
≥ F(y – yni ) + F(y – yni ), ∀y ∈ C. (.)

Since yni–xni
r →  and yn ⇀ x*, from (A), it follows F(y– x*) + F(y– x*)≤  for all y ∈H .

Put zt = ty + ( – t)x* for all t ∈ (, ] and y ∈ H , then we have F(zt – x*) + F(zt – x*) ≤ ,
So, from (A) and (A), we have

 = F(yt , yt) + F(yt , yt)

≤ tF(yt , y) + ( – t)F
(
yt ,x*

)
+ tF(yt , y) + ( – t)F

(
yt ,x*

)
≤ F(yt , y) + F(yt , y)

and hence  ≤ F(yt , y) + F(yt , y). From (A), we have  ≤ F(x*, y) + F(x*, y) for all y ∈ H .
Therefore, x* ∈MEP(F,F).
Next, we prove x* ∈ �.
From Remark ., we know that T = PC(I – λn∇f ) is nonexpansive, then we have

‖xn – Txn‖ ≤ ‖xn – un‖ + ‖un – Txn‖
= ‖xn – un‖ +

∥∥PC(I – λn∇fαn )xn – PC(I – λn∇f )xn
∥∥

= ‖xn – un‖ +
∥∥(I – λn∇fαn )xn – (I – λn∇f )xn

∥∥
= ‖xn – un‖ + λnαn‖xn‖.

So, from limn→∞ ‖xn – un‖ = , limn→∞ αn = , limn→∞ λn = ,
∑∞

n= αnλn = ∞ and the
bounded sequence of {xn} it follows that

lim
n→∞‖xn – Txn‖ = . (.)

Thus, taking into account xnj → x* and unj → x*, and from Lemma ., we get x* ∈ �.
Therefore, we have x* ∈  := � ∩MEP(F,F). This shows that it holds that

ωw(xn) ⊂  := � ∩MEP(F,F).

Step . limn→∞ xn = x*.
We substitute x* for z in (.) to get

∥∥xn – x*
∥∥ ≤ 

τ – γβ

〈
γ g

(
x*

)
–μBx*, yn – x*

〉
+

εn

(τ – γβ)
M.

Hence, the weak convergence of yn ⇀ x* implies that xn → x* strongly.
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Now, we return to (.) and take the limit as n→ ∞ to obtain

∥∥x* – z
∥∥ ≤ 

τ – γβ

〈
μBz – γ g(z), z – x*

〉
, z ∈ . (.)

In particular, x* solves the following variational inequality:

z ∈ ,
〈
μBz – γ g(z), z – x*

〉 ≥ , x* ∈ ,

or the equivalent dual variational inequality

z ∈ ,
〈
μBx* – γ g

(
x*

)
, z – x*

〉 ≥ , x* ∈ .

Therefore, x* = (Pg)x*. That is, x* is the unique fixed point in  of the contraction Pg .
�

Remark . If we take g = , then (.) is reduced to

∥∥x* – z
∥∥ ≤ 〈

μBz, z – x*
〉
, z ∈ .

Equivalently,

∥∥x*∥∥ ≤ 〈
z,x*

〉
, z ∈ .

This clearly implies that

∥∥x*∥∥ ≤ ‖z‖, z ∈ .

Therefore, x* is a particular solution of the variational inequality (.).

Next, we introduce an explicit algorithm for finding a solution of the variational inequal-
ity (.). This scheme is obtained by discretizing the implicit scheme (.). We show the
strong convergence of this algorithm.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let B be
a k-Lipschitz and η-strongly monotone operator on H with k > , η >  and  < μ < η/k,
and the sequence of {αn} and {γn} satisfy the conditions (i)-(iv) in Lemma .. Let F,F :
C × C → R be two bifunctions which satisfy the conditions (f)-(f), (h)-(h) and (H) in
Lemma .. Let g : C → H be a β-contraction. Assume  := � ∩MEP(F,F) �= ∅. For given
∀x ∈ C, let the sequence {xn} generated by

xn+ = θnxn + ( – θn)
[
εnγ g + (I – εnμB)TrPC(I – λn∇fαn )

]
xn, n≥ , (.)

where {εn} and {θn} are two sequences in [, ], satisfy the following conditions:
(i) limn→∞ εn =  and

∑∞
n= εn = ∞;

(ii)  < lim infn→∞ θn ≤ lim supn→∞ θn < ;
(iii) limn→∞ λn = .
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Then the sequence {xn} converges strongly to x* which is the unique solution of the varia-
tional inequality (.). In particular, if g = , then the sequence {xn} generated by

xn+ = θnxn + ( – θn)
[
(I – εnμB)TrPC(I – λn∇fαn )

]
xn, n≥ ,

converges strongly to a solution of the following variational inequality:

〈
μBx*,x – x*

〉 ≥ , ∀x ∈ .

Proof First, we prove that the sequence {xn} is bounded. Indeed, pick z ∈ .
Let z = PC(I – λn∇fαn )z. Set un = PC(I – λn∇fαn )xn for all n≥ . From (.), we have

‖un – z‖ = ∥∥PC(I – λn∇fαn )xn – PC
(
(I – λn∇fαn )

)
z
∥∥ ≤ ‖xn – z‖,

and

‖xn+ – z‖ =
∥∥θnxn + ( – θn)

[
εnγ g(xn) + (I – εnμB)Trun

]
– z

∥∥
≤ θn‖xn – z‖ + ( – θn)

∥∥(I – εnμB)(Trun – z) + εn
(
γ g(xn) –μBz

)∥∥
≤ θn‖xn – z‖ + ( – θn)

[
( – εnτ )‖un – z‖ + εnγβ‖xn – z‖

+ εn
∥∥γ g(z) –μBz

∥∥]
≤ θn‖xn – z‖ + ( – θn)

[
( – εnτ )‖xn – z‖ + εnγβ‖xn – z‖

+ εn
∥∥γ g(z) –μBz

∥∥]
=

[
 – (τ – γβ)( – θn)εn

]‖xn – z‖ + εn( – θn)
∥∥γ g(z) –μBz

∥∥
≤ max

{
‖xn – z‖, ‖γ g(z) –μBz‖

τ – γβ

}
.

By induction, we have, ∀n > ,

‖xn – z‖ ≤ max

{
‖x – z‖, ‖γ g(z) –μBz‖

τ – γβ

}
.

Hence, {xn} is bounded. Consequently, we deduce that {un}, {g(xn)} and {∇f (xn)} are all
bounded. LetM >  be a constant such that

sup
n

{‖xn – un‖,‖μBTrun‖ +
∥∥γ g(xn)

∥∥,∥∥μBTrun – γ g(xn)
∥∥} ≤ M.

Next, we show limn→∞ ‖xn – un‖ = .
Define xn+ = θnxn + ( – θn)vn for all n > . It follows from (.) that

‖vn+ – vn‖
=

∥∥[
εn+γ g(xn+) + (I – εn+μB)Trun+

]
–

[
εnγ g(xn) + (I – εnμB)Trun

]∥∥
≤ ‖un+ – un‖ + εn+

(‖μBTrun+‖ +
∥∥γ g(xn+)

∥∥)
+ εn

(‖μBTrun‖ +
∥∥γ g(xn)

∥∥)
≤ ∥∥PC(I – λn∇fαn )xn+ – PC(I – λn∇fαn )xn

∥∥ +M(εn+ + εn)

≤ ‖xn+ – xn‖ +M(εn+ + εn).
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This together with (i) implies that

lim sup
n→∞

(‖vn+ – vn‖ – ‖xn+ – xn‖
) ≤ .

Hence, by Lemma ., we get limn→∞ ‖vn – xn‖ = . Consequently,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – θn)‖vn – xn‖ = .

By the convexity of the norm ‖ · ‖, we obtain

‖xn+ – z‖ =
∥∥θnxn + ( – θn)vn – z

∥∥

≤ θn‖xn – z‖ + ( – θn)‖vn – z‖

≤ θn‖xn – z‖ + ( – θn)
∥∥Trun – z – εn

(
μBTrun – γ g(xn)

)∥∥

= θn‖xn – z‖ + ( – θn)
[‖un – z‖

– εn
〈
μBTrun – γ g(xn),Trun – z

〉
+ εn

∥∥μBTrun – γ g(xn)
∥∥]

≤ θn‖xn – z‖ + ( – θn)‖un – z‖ + εnM. (.)

Let yn = Trun and by un = PC(I – λn∇fαn )xn, we obtain

‖yn – z‖ = ‖Trun – Trz‖

≤ ‖un – z‖

=
∥∥PC(I – λn∇fαn )xn – PC(I – λn∇fαn )z

∥∥

≤ 〈
(I – λn∇fαn )xn – (I – λn∇fαn )z,un – z

〉
=



(∥∥(I – λn∇fαn )xn – (I – λn∇fαn )z

∥∥ + ‖un – z‖

–
∥∥(xn – z) – λn

(∇fαn (xn) –∇fαn (z)
)
– (un – z)

∥∥)
≤ 


(‖xn – z‖ + ‖un – z‖ – ∥∥(xn – un) – λn

(∇fαn (xn) –∇fαn (z)
)∥∥)

≤ 

(‖xn – z‖ + ‖un – z‖ – ‖xn – un‖ + λn

〈
xn – un,∇fαn (xn) –∇fαn (z)

〉
– λ

n
∥∥∇fαn (xn) –∇fαn (z)

∥∥). (.)

Thus, we deduce

‖un – z‖ ≤ ‖xn – z‖ – ‖xn – un‖ + λn‖xn – un‖
∥∥∇fαn (xn) –∇fαn (z)

∥∥
≤ ‖xn – z‖ – ‖xn – un‖ + λnM

∥∥∇fαn (xn) –∇fαn (z)
∥∥. (.)

By (.) and (.), we obtain

‖xn+ – z‖ ≤ θn‖xn – z‖ + ( – θn)‖un – z‖ + εnM

≤ θn‖xn – z‖ + ( – θn)
[‖xn – z‖ – ‖xn – un‖
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+ λnM
∥∥∇fαn (xn) –∇fαn (z)

∥∥]
+ εnM

= ‖xn – z‖ – ( – θn)‖xn – un‖ +
(
λn

∥∥∇fαn (xn) –∇fαn (z)
∥∥ + εn

)
M.

It follows that

( – θn)‖xn – un‖ ≤ ‖xn+ – xn‖ +
(
λn

∥∥∇fαn (xn) –∇fαn (z)
∥∥ + εn

)
M.

Since lim infn→∞( – θn) > , limn→∞ εn = , limn→∞ ‖xn+ – xn‖ = , {∇f (xn)} is bounded
and limn→∞ λn = , we derive that

lim
n→∞‖xn – un‖ = . (.)

Setting yn = Ttun, from (.), we have

‖xn – yn‖ ≤ ‖xn+ – xn‖ + ‖xn+ – yn‖
≤ ‖xn+ – xn‖ +

∥∥θnxn + ( – θn)
[
εnγ g(xn) + (I – εnμB)yn

]
– yn

∥∥
≤ ‖xn+ – xn‖ + θn‖xn – yn‖ + ( – θn)

∥∥εnγ g(xn) – εnμBTtun
∥∥

≤ ‖xn+ – xn‖ + θn‖xn – yn‖ + ( – θn)
(
εnγβ‖xn – un‖

+ εn
∥∥γ g(un) –μBTrun

∥∥)
.

Thus,

‖xn – yn‖ ≤ 
( – θn)

‖xn+ – xn‖ + εnγβ‖xn – un‖ + εn
∥∥γ g(un) –μBTrun

∥∥.
From limn→∞ εn =  and {un} is bounded, we obtain

lim
n→∞‖xn – yn‖ = . (.)

By (.) and (.), we also have

lim
n→∞‖yn – un‖ = lim

n→∞
(‖yn – xn‖ + ‖xn – un‖

)
= .

Next, we prove

lim sup
n→∞

〈
(γ g –μB)x*, yn – x*

〉 ≤ , x* ∈ Pg
(
x*

)
.

Indeed, we can choose a subsequence {uni} of {yn} such that

lim sup
n→∞

〈
(γ g –μB)x*, yn – x*

〉 ≤ lim sup
n→∞

〈
(γ g –μB)x*, yni – x*

〉 ≤ .

Without loss of generality, we may further assume that yni ⇀ x̃. By the same argument as
that of Step  from Theorem ., we can deduce that x̃ ∈ . Therefore,

lim sup
n→∞

〈
(γ g –μB)x*, yn – x*

〉 ≤ 〈
(γ g –μB)x*, x̃ – x*

〉 ≤ .
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From (.), we have

∥∥xn+ – x*
∥∥

≤ θn
∥∥xn – x*

∥∥ + ( – θn)
∥∥yn – x* + εnγ g(xn) – εnμByn

∥∥

= θn
∥∥xn – x*

∥∥ + ( – θn)
(∥∥yn – x*

∥∥ + εnγ
〈
g(xn), yn – x*

〉
– εn

〈
μByn, yn – x*

〉
+ εn

∥∥γ g(xn) –μByn
∥∥)

= θn
∥∥xn – x*

∥∥ + ( – θn)
(∥∥Trun – x*

∥∥ + εnγ
〈
g(xn) – g

(
x*

)
, yn – x*

〉
– εn

〈
μByn –μBx*, yn – x*

〉
+ εn

〈
γ g

(
x*

)
–μBx*, yn – x*

〉
+ εn

∥∥γ g(xn) –μByn
∥∥)

≤ θn
∥∥xn – x*

∥∥ + ( – θn)
(∥∥un – x*

∥∥ + εnγ
∥∥g(xn) – g

(
x*

)∥∥∥∥Trun – x*
∥∥

– εn
∥∥μByn –μBx*

∥∥∥∥Trun – x*
∥∥ + εn

〈
γ g

(
x*

)
–μBx*, yn – x*

〉
+ εn

∥∥γ g(xn) –μBTrun
∥∥)

≤ θn
∥∥xn – x*

∥∥ + ( – θn)
(∥∥xn – x*

∥∥ + εnγβ
∥∥xn – x*

∥∥∥∥un – x*
∥∥

– εnτ
∥∥xn – x*

∥∥ + εn
〈
γ g

(
x*

)
–μBx*, yn – x*

〉
+ εn

∥∥γ g(xn) –μBTrun
∥∥)

≤ θn
∥∥xn – x*

∥∥ + ( – θn)
(∥∥xn – x*

∥∥ + εnγβ
∥∥xn – x*

∥∥ – εnτ
∥∥xn – x*

∥∥

+ εn
〈
γ g

(
x*

)
–μBx*, yn – x*

〉
+ εnM

)
=

(
 – εn(γβ – τ )

)∥∥xn – x*
∥∥ + ( – θn)εn

〈
γ g

(
x*

)
–μBx*, yn – x*

〉
+ εn( – θn)M

= ( – σn)
∥∥xn – x*

∥∥ + δnσn,

where σn = εn(γβ – τ ) and δn = (–θn)
(γβ–τ ) 〈γ g(x*) – μBx*, yn – x*〉 + εn(–θn)

γβ–τ
M. It is clear that∑∞

n= σn = ∞ and supn→∞ δn ≤ . Hence, all the conditions of Lemma . are satisfied.
Therefore, we immediately deduce that limn→∞ xn = x*.

Remark . If we take g = , by the similar argument as that in Theorem ., we deduce
immediately that x* is a particular solution of the variational inequality (.). This com-
pletes the proof. �

4 Application in themultiple-set split feasibility problem
Recall that the multiple-set split feasibility problem (MSSFP) [] is to find a point x* such
that

x* ∈ C =
N⋂
i=

Ci and Ax* ∈Q =
M⋂
j=

Qj, (.)

whereN ,M ≥  are integers, Ci andQj are closed convex subsets of Hilbert spacesH and
H, andA :H →H is a bounded linear operator. The special casewhereN =M = , called
the split feasibility problem (.), was introduced by Censor and Elfving [] for modeling
phase retrieval and other image restoration problems.
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Let � be the solution set of SFP, and let γ > . Assume that x* ∈ �. Thus, Ax* ∈Q which
implies the equation (I –PQ )Ax* =  which in turn implies the equation γA*(I –PQ )Ax* =
, and hence the fixed point equation (I –γA*(I –PQ )A)x* = x*. Requiring that x* ∈ C, we
consider the fixed point equation

PC

(
I – γA*(I – PQ )A

)
x* = x*. (.)

It is claimed that the solutions of the fixed point equation (.) are exactly the solution
of the SFP. According the Byrne [] and Xu [], we obtain the following proposition.

Proposition . Given x* ∈H, x* solves the SFP if and only if x* solves the fixed point (.).

From this proposition, we can easily obtain that MSSFP (.) is equivalent to a common
fixed point problem of finitely many nonexpansive mappings, as we show in the following.
Decompose MSSFP into N subproblems ( ≤ i≤ N ):

x*i ∈ Ci, Ax*i ∈Q =
M⋂
j=

Qj.

Next, we define a mapping Ti as follows:

Tix = PCi (I – γi∇g)x = PCi

(
I – γi

M∑
j=

βjA*(I – PQj )A

)
x,

where the proximity function g is defined by

g(x) =



M∑
j=

βj‖Ax – PQjAx‖,

where {β}Mj= are such that βj > . Consider the minimization of g over C:

min
x∈C g(x) =min

x∈C



M∑
j=

βj‖Ax – PQjAx‖.

Observe that the gradient ∇g is

∇g(x) =
M∑
j=

βjA*(I – PQj )Ax, (.)

which is L-Lipschitz continuous with the constant L =
∑M

j= βj‖A‖ and thus ∇g(x) is

L -ism. It is claimed that if  < γi ≤ /L, Ti is nonexpansive. Therefore, fixed point algo-
rithms for nonexpansive mappings can be applied to MSSFP (.).
From Algorithm ., Algorithm . and Proposition ., we consider our results on the

optimization method for solving MSSFP (.), and obtain the following two algorithms.
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Algorithm . For an arbitrary initial point x, we define a sequence {xn}n≥ iteratively

xn = (I – tμB)Tr
[
PCN (I – γ∇g)

] · · · [PC (I – γ∇g)
]
xn, ∀t ∈ (, ), (.)

for all n ≥ , Tr is defined by Lemma . and ∇g is introduced in (.).

Algorithm . For an arbitrary initial point x, we define a sequence {xn}n≥ iteratively

xn =
{
εnγ f + (I – εnμB)Tr

[
PCN (I – γ∇g)

] · · · [PC (I – γ∇g)
]}
xn, (.)

for all n ≥ , where {εn} are two real sequences in [, ], Tr is defined by Lemma . and
∇g is introduced in (.).

In addition, we would like to point out that Algorithm . includes Algorithm . as a
special case due to the fact that the contraction f is a possible nonself-mapping. According
to Theorem ., we obtain the following theorem.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let B be
a k-Lipschitz and η-strongly monotone operator on H with k > , η >  and  < μ < η/k,
and the sequence of {αn} and {γn} satisfy the conditions (i)-(iv) in Lemma .. Let F,F :
C × C → R be two bifunctions which satisfy the conditions (f)-(f), (h)-(h) and (H) in
Lemma .. Let f : C → H be a β-contraction. Assume  := � ∩ MEP(F,F) �= ∅, � is the
solution set of MSSFP (.). Then the sequence {xn} generated by implicit Algorithm .
converges in norm, as εn → , to the unique solution x* of the variational inequality (.).
In particular, if we take g = , then the sequence {xn} defined by Algorithm . converges in
norm, as εn → , to the unique solution x* of the variational inequality (.).

Proof Let

U = TN · · ·T =
[
PCN (I – γ∇g)

] · · · [PC (I – γ∇g)
]
. (.)

Then, as the composition of finitely many nonexpansive mappings, U is nonexpansive.
Also Algorithm . can be written as

xn =
[
εnγ g + (I – εnμB)TrU

]
xn, x ∈ C. (.)

Since Tr and U are nonexpansive, and following the proof of Theorem ., we obtain the
sequence {xn} converges strongly to a fixed point ofU which is also a common fixed point
of T, . . . ,TN or a solution of MSSFP (.). �

FromTheorem ., we introduce an explicit algorithm for finding a common fixed point
and for solving the variational inequality (.) and multiple set feasibility problem (.).
This scheme is obtained by discretizing the implicit scheme (.).

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let B be
a k-Lipschitz and η-strongly monotone operator on H with k > , η >  and  < μ < η/k,
and the sequence of {αn} and {γn} satisfy the conditions (i)-(iv) in Lemma .. Let F,F :
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C × C → R be two bifunctions which satisfy the conditions (f)-(f), (h)-(h) and (H) in
Lemma .. Let f : C → H be a β-contraction. Assume  := � ∩ MEP(F,F) �= ∅, � is the
solution set of MSSFP (.). For given ∀x ∈ C, let the sequence {xn} generated by

xn+ = θnxn + ( – θn)
{
εnγ f + (I – εnμB)

× Tr
[
PCN (I – γ∇g)

] · · · [PC (I – γ∇g)
]}
xn, n≥ , (.)

where {εn} and {θn} are two sequences in [, ], satisfy the following conditions:
(i) limn→∞ εn =  and

∑∞
n= εn = ∞;

(ii)  < lim infn→∞ θn ≤ lim supn→∞ θn < ;
(iii) limn→∞ λn = .

Then the sequence {xn} converges strongly to x* which is the unique solution of the varia-
tional inequality (.). In particular, if f = , then the sequence {xn} generated by

xn+ = θnxn + ( – θn)
{
(I – εnμB)Tr

[
PCN (I – γ∇g)

] · · · [PC (I – γ∇g)
]}
xn, n≥ ,

converges strongly to a solution of the following variational inequality:

〈
μBx*,x – x*

〉 ≥ , ∀x ∈ �.

Proof Following the assumption of (.), (.) can be written as

xn+ = θnxn + ( – θn)
{
εnγ f + (I – εnμB)TrU

}
xn, n ≥ .

Since Tr andU are nonexpansive, following the proof of Theorem ., we can easily claim
that the sequence {xn} converges strongly to the common fixed point of Tr which solves
the mixed equilibrium problem (MEP(F,F)), and U is a solution of MSSFP (.). �

According to [], we can obtain the following proposition.

Proposition . x* is a solution of MSSFP (.) if and only if f (x*) = .

Observe that if MSSFP(.) is consistent, then any solution x is a minimizer of f with
minimum value zero. Note that a proximity functionf is as follows:

f (x) =



N∑
i=

αi‖x – PCix‖ +



M∑
j=

βj‖Ax – PQjAx‖,

where αi >  for all  < i≤ N and βi >  for all  < i≤ M. Then the gradient of f is

∇f (x) =
N∑
i=

αi(I – PCi )x +
M∑
j=

βjA*(I – PQj )Ax. (.)

It is claimed that the gradient ∇f is Lipschitz with the constant

L
′
=

N∑
i=

αi +
M∑
j=

βj‖A‖.
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To see this, we notice that projections and their complements are nonexpansive. Thus,
both I – PCi and I – PQj are nonexpansive for each i and j. In addition, we can easily ob-
tain that 

L′ ∇f is a nonexpansive mapping. Therefore, we can use the gradient projection
method to solve the minimization problem:

min
x∈

f (x),

where is a closed convex subset ofH, whose intersectionwith the solution set ofMSSFP
is nonempty, and obtain a solution of the so-called constrained multiple set feasibility
problem (CMSSFP):

x ∈  such that x* solves (.).

From Proposition . and Algorithm ., we obtain the corresponding algorithm and
the convergence theorems for MSSFP (.).

Algorithm . For an arbitrary initial point x, we define a sequence {xn}n≥ iteratively

xn+ = θnxn + ( – θn)
{
εnγ g +


L′ (I – εnμB)Tr∇f

}
xn (.)

for all n≥ ,where {εn} and {θn} are two real sequences in [, ],Tr is defined by Lemma.
and ∇f is introduced in (.).

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let B be
a k-Lipschitz and η-strongly monotone operator on H with k > , η >  and  < μ < η/k,
and the sequence of {αn} and {γn} satisfy the conditions (i)-(iv) in Lemma .. Let F,F :
C × C → R be two bifunctions which satisfy the conditions (f)-(f), (h)-(h) and (H) in
Lemma .. Let g : C → H be a β-contraction. Assume  := � ∩ MEP(F,F) �= ∅, � is the
solution set of MSSFP (.). For given ∀x ∈ C, let the sequence {xn} generated by Algo-
rithm ., where {εn} and {θn} are two sequences in [, ], satisfy the following conditions:

(i) limn→∞ εn =  and
∑∞

n= εn = ∞;
(ii)  < lim infn→∞ θn ≤ lim supn→∞ θn < ;
(iii) limn→∞ λn = .

Then the sequence {xn} converges strongly to x* which is the unique solution of the varia-
tional inequality (.). In particular, if g = , then the sequence {xn} generated by

xn+ = θnxn + ( – θn)
{

L′ (I – εnμB)Tr∇f

}
xn, n≥ ,

converges strongly to a solution of the following variational inequality:

〈
μBx*,x – x*

〉 ≥ , ∀x ∈ �.

Proof From Proposition ., we know that 
L′ ∇f is a nonexpansive mapping. Thus, using

the proof of Theorem ., we obtain that the sequence {xn} converges strongly to a fixed
point of 

L′ ∇f or a solution of MSSFP (.), and this fixed point is a solution of the set
MEP(F,F) of mixed equilibrium problem (.). �
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