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1 Introduction
In 1967, Borsuk (see, [1]) introduced the notion of the domination of space in the class

of metric spaces, i.e., a metric space Y dominates a metric space X (we write Y ≥ X) if

there are continuous maps f :Y ® X, g : X ® Y such that for every x Î X f(g(x)) = x.

He has proven that the domination of space retains the fixed point property, i.e., if Y

dominates the space of X and if Y is a Lefschetz space, then X is also a Lefschetz

space. In 1983, Suszycki (see, [2]) introduced the notion of multi-retract and as a con-

sequence he defined absolute multi-retracts (m - AR) and absolute neighborhood

multi-retracts (m - ANR). On the basis of these notions (multi-retracts) we can con-

sider a certain domination of space, i.e., a space Y dominates an X space (in the sense

of Suszycki) if there exist a multi-valued u.s.c. map � : Y ⊸ X with compact images

(for every y Î Y �(y) has a trivial shape, (see, [2,3])) and a continuous map g : X ® Y

such that for every x Î X x Î �(g(x)) (see, [2]). An easy example (see, 3.7) shows that

the domination of space in the sense of Suszycki does not retain the fixed point prop-

erty. It is not difficult to notice that the domination in the sense of Suszycki is the gen-

eralization of the domination in the sense of Borsuk. In 2008 we introduced the

notions (see, [4]) of absolute multi-retracts (AMR) and the absolute neighborhood

multi-retracts (ANMR). On the basis of these notions we can also consider a certain

kind of domination of space, i.e., a space Y dominates a space X in a multi-valued

sense (see, [4]) if there exists a continuous mapping f :Y ® X and a multi-valued

admissible mapping � : X ⊸ Y such that for every x Î X f(�(x)) = {x}. We will show

that it is the generalization of Borsuk domination that retains the fixed point property.

2 Preliminaries
Throughout this article all topological spaces are assumed to be metric. Let H* be the

Čech homology functor with compact carriers and coefficients in the field of rational

numbers Q from the category of Hausdorff topological spaces and continuous maps to

the category of graded vector spaces and linear maps of degree zero. Thus H*(X) = {Hq
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(X)} is a graded vector space, Hq(X) being the q-dimensional Čech homology group

with compact carriers of X. For a continuous map f : X ® Y, H*(f) is the induced linear

map f* = {fq}, where fq : Hq(X) ® Hq(Y) [5]. A space X is acyclic if:

(i) X is non-empty,

(ii) Hq(X) = 0 for every q ≥ 1 and

(iii) H0(X) ≈ Q.

A continuous mapping f : X ® Y is called proper if for every compact set K ⊂ Y the

set f-1(K) is non-empty and compact. A proper map p : X ® Y is called Vietoris pro-

vided for every y Î Y the set p-1(y) is acyclic. Let X and Y be two spaces and assume

that for every x Î X a non-empty subset �(x) of Y is given. In such a case we say that

� : X ⊸ Y is a multi-valued mapping. For a multi-valued mapping � : X ⊸ Y and a sub-

set U ⊂ Y, we let:

ϕ−1(U) = {x ∈ X;ϕ(x) ⊂ U}.

If for every open U ⊂ Y the set �-1(U) is open, then � is called an upper semi-con-

tinuous mapping; we shall write that � is u.s.c.

Let � : X ⊸ Y be a multi-valued map. A pair (p, q) of single-valued, continuous maps

is called a selected pair of � (written (p, q) ⊂ �) if there exists a metric space Z such

that the following two conditions are satisfied:

(i) p : Z ® X is a Vietoris map,

(ii) q(p-1(x)) ⊂ �(x) for any x Î X, where q : Z ® Y is a continuous map.

Definition 2.1. A multi-valued mapping �: X ⊸ Y is called admissible provided there

exists a selected pair (p, q) of �.

Proposition 2.2. (see, [5]) If � : X ⊸ Y and ψ : Y ⊸ T are admissible, then the com-

position ψ ○ � : X ⊸ T is admissible and for every (p1, q1) ⊂ � and (p2, q2) ⊂ ψ there

exists a pair (p, q) ⊂ ψ ○ � such that q2∗p
−1
2∗ ◦ q1∗p

−1
1∗ = q∗p−1

∗ .

Let � : X ⊸ X be an admissible map. Let (p,q) ⊂ �, where p : Z ® X is a Vietoris

mapping and q : Z ® X a continuous map. Assume that q∗ ◦ p−1
∗ : H∗(X) → H∗(X) is

a Leray endomorphism for all pairs (p, q) ⊂ �. For such a �, we define the Lefschetz

set Λ(�) of � by putting �(ϕ) = {�(q∗p−1
∗ ); (p, q) ⊂ ϕ}.

Definition 2.3. An admissible map � : X ⊸ X is called a Lefschetz map provided the

Lefschetz set Λ(�) of � is well defined and Λ(�) ≠ {0} implies that the set Fix(�) = {x Î
X : x Î �(x)} is non-empty.

Definition 2.4. A metric space X is called a Lefschetz space provided that for each

admissible and compact map � : X ⊸ X if Λ(�) is well defined and Λ(�) ≠ {0} then

Fix(ϕ) �=� 0.
Let Y be a metric space and let IdY : Y ® Y be a map given by formula IdY(y) = y for

each y Î Y.

Definition 2.5. (see, [4]) A map r: X ® Y of a space X onto a space Y is said to be

an mr-map if there is an admissible map �: Y ⊸ X such that r ○ � = IdY.
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Definition 2.6. (see, [4,6]) A metric space X is called an absolute multi-retract (nota-

tion: X Î AMR) provided there exists a locally convex space E and an mr-map r: E ®
X from E onto X.

Definition 2.7. (see, [4,6]) A metric space X is called an absolute neighborhood

multi-retract (notation: X Î ANMR) provided there exists an open subset U of some

locally convex space E and an mr-map r: U ® X from U onto X.

Proposition 2.8. (see, [4,6]) A space X is an ANMR if and only if there exists a

metric space Z and a Vietoris map p : Z ® X which factors through an open subset U

of some locally convex E, i.e., there are two continuous maps a and b such that the

following diagram is commutative.

Proposition 2.9. (see, [4]) Let X Î ANMR and let V ⊂ X be an open set. Then V Î
ANMR.

Proposition 2.10. (see, [4]) Assume that X is ANMR. Let U be an open subset in X

and �: U ⊸ U be an admissible and compact map, then � is a Lefschetz map.

Let �X : X ⊸ X be a map.

ϕn
X =

⎧⎨
⎩
IdX, for n = 0,
ϕX , for n = 1,
ϕX ◦ ϕX ◦ . . . ◦ ϕX(n − iterates), for n > 1.

Definition 2.11. Let X ⊂ Q be a closed subset, where Q is a Hilbert cube. We say

that X is movable in Q provided every neighborhood U of X admits a neighborhood U’

of X, U’ ⊂ U, such that for every neighborhood U” of X, U” ⊂ U, there exists a homotopy

H: U’ x [0,1] ® U with H(x, 0) = x and H(x, 1) Î U“, for any x Î U’.

Lemma 2.12. (see, [7]) Let X ⊂ Q be a compact absolute approximative neighborhood

retract in the sense of Clapp (in particular X Î ANR or X Î AR). Then X is movable

in Q.

The notion of shape is understood in the sense of Borsuk (see, [3]). It can be proven

that a compact set of trivial shape is acyclic.

Definition 2.13. (see, [2]) Let X be a continuum space and let A ⊂ X. Then an u.s.c

multi-valued map s : X ⊸ A with compact images is said to be a multi-retraction of X

to A if the following conditions are satisfied:

2.13.1 for each x Î X s(x) is a set of a trivial shape,

2.13.2 for each x Î A x Î s(x).
We say that a subset A of a space X is a neighborhood multi-retract in the space X if

there is a neighborhood U of A in X and a multi-retraction s : U ⊸ A. If U = X, then

we call A a multi-retract of the space X.

Definition 2.14. (see, [2]) A continuum X will be called an absolute neighborhood

multi-retract (X Î m - ANR) provided that, for every continuum Y ⊃ X, X is a
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neighborhood multi-retract of Y. If X is a multi-retract of every space Y ⊃ X, then we

call X an absolute multi-retract (Y Î m - AR).

3 Main result
First, the notion of the domination of space will be introduced, which is the generalization

in the sense of Borsuk as well as in the sense of Suszycki and in the multi-valued sense.

Definition 3.1. We shall say that a metric space Y multi-dominates a metric space X (we

write Y ○ ≥ ○ X) if there exists multi-valued admissible maps � : Y ⊸ X and ψ : X ⊸ Y such

that the following conditions are satisfied:

3.1.1 for each x Î X x Î �(ψ(x)),

3.1.2 there exist selected pairs (p1, q1) ⊂ � and (p2, q2) ⊂ ψ such that

IdH∗(X) = q1∗p
−1
1∗ ◦ q2∗p

−1
2∗ .

Let us assume that if (Y ○ ≥ ○ X) and if it is not true that (X ○ ≥ ○ Y) then we write

(Y ○ > ○ X). The defined domination can be treated as a relation in the class of metric

spaces. We will prove it is a transitive relation.

Theorem 3.2. Let X, Y, Z be metric spaces.

If (Y◦ ≥ ◦Z) and (Z◦ ≥ ◦X) then (Y◦ ≥ ◦X).

Proof. We have the following diagram:

X
ψ2−→ Z

ψ1−→ Y
ϕ1−→ Z

ϕ2−→ X, where

for each z ∈ Z and x ∈ X z ∈ ϕ1(ψ1(z)) and x ∈ ϕ2(ψ2(x)), (1)

there exist (p1, q1) ⊂ �1, (p2, q2) ⊂ �2, (r1, s1) ⊂ ψ1, (r2, s2) ⊂ ψ2 such that

IdH∗(Z) = q1∗p
−1
1∗ ◦ s1∗r

−1
1∗ , (2)

IdH∗(X) = q2∗p
−1
2∗ ◦ s2∗r

−1
2∗ . (3)

We define multi-valued admissible maps � :Y ⊸ X, ψ : X ⊸ Y given by formula:

ϕ(y) = ϕ2(ϕ1(y)) for any y ∈ Y, ψ(x) = ψ1(ψ2(x)) for any x ∈ X.

We show that for each x Î X x Î �(ψ(x)). Let x Î X and let z Î ψ2(x). From (1) we

get that z Î �1(ψ1(z)). Hence we have

ψ2(x) ⊂ ϕ1(ψ1(ψ2(x))).

It is clear that

x ∈ ϕ2(ψ2(x)) ⊂ ϕ2(ϕ1(ψ1(ψ2(x)))) = ϕ(ψ(x)).

From Proposition 2.2 we get that there exist (p, q) ⊂ �, (r, s) ⊂ ψ such that:

q∗p−1
∗ = q2∗p

−1
2∗ ◦ q1∗p

−1
1∗ , s∗r

−1
∗ = s1∗r

−1
1∗ ◦ s2∗r

−1
2∗ .

We have

q∗p−1
∗ ◦ s∗r−1

∗ = (q2∗p
−1
2∗ ◦ q1∗p

−1
1∗ ) ◦ (s1∗r

−1
1∗ ◦ s2∗r

−1
2∗ ) =

= q2∗p
−1
2∗ ◦ (q1∗p

−1
1∗ ◦ s1∗r

−1
1∗ ) ◦ s2∗r

−1
2∗ = q2∗p

−1
2∗ ◦ s2∗r

−1
2∗ = IdH∗(X).
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Let us remind that if a multi-valued mapping u.s.c. � : X ⊸ Y has compact and acyc-

lic images then:

the set {q∗p−1
∗ : (p, q) ⊂ ϕ} consists of one element (see, [5, p. 163]). (4)

Another fact that shall be proven is the following:

Proposition 3.3. Let X be a continuum and acyclic space and let Y be a metric

space.

Then Y ○ ≥ ○ X.

Proof. Let y0 Î Y be a stationary point. We define maps � : Y ⊸ X given by �(y) = X for

each y Î Y and ψ : X ® Y given by ψ(x) = y0 for each x Î X. Obviously for any x Î X

x ∈ X = ϕ(ψ(x)).

The images of a map � ○ ψ are compact and acyclic. Hence and from Proposition

2.2 and (4) we get the condition 3.1.2.

Let us notice that from 3.1.2 it follows that

q2∗p
−1
2∗ : H∗(X) → H∗(Y) is a monomorphism. (5)

Hence and from 3.3 we have:

Proposition 3.4. Let X be a continuum and acyclic space and let Y be a metric and

non-acyclic space. Then Y ○ > ○ X.

Particularly from the last fact it follows that

Sn−1◦ > ◦Kn,

where Sn−1 is a (n - 1)-dimensional sphere and Kn is an n-dimensional ball in a Eucli-

dean space ℝn, for every n Î N.

Example 3.5. Let Y ⊂ Q be an acyclic continuum and such that Y is not movable

(see, [8]), where Q is a Hilbert cube. From Proposition 3.3 we get Q ○ ≥ ○ Y. We show

that it is not true that Q ≥ Y. If the space Q dominated the space Y in the sense of

Borsuk, then Y Î AR, however, every absolute retract is movable (see, Lemma 2.12) and

it would contradict the fact that Y is not movable.

Let us introduce some notation. Y ○ ≥ X will mean that the mapping ψ = g : X ® Y

can be chosen single-valued (see, Definition 3.1), whereas Y ≥ ○ X will mean that the

mapping � = r : Y ® X is single-valued. Then Y ≥ ○s X will denote that � = r : Y ® X is

single-valued and the conditions 3.1.1 and 3.1.2 will be replaced by a stronger condition:

for each x ∈ X r(ψ(x)) = {x}. (6)

It can be easily proven that each of these relations, i.e., ○ ≥, ≥ ○, ≥ ○s is transitive.
Obviously we have:

if(Y◦ ≥ X or Y ≥ ◦X) then Y◦ ≥ ◦X, (7)

if Y ≥ ◦sX then Y ≥ ◦X. (8)

Remark 3.6. The relation Y ○s ≥ X, i.e., ψ = g : X ® Y (see, Definition 3.1) is a single-

valued and continuous map and the conditions 3.1.1 and 3.1.2 are replaced by a stron-

ger condition:

for each x ∈ X ϕ(g(x)) = {x}, (9)
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is not considered separately since we treat the relation Y ○ ≥ X as an integral whole

according to the earlier articles on the subject (see, [2]) and the Theorem 3.14 (see,

3.14.5 and 3.14.6).

The next two examples show that neither Y ○ ≥ X nor Y ≥ ○ X retains Lefschetz

property.

Example 3.7. Let Q be a Hilbert cube and let X ⊂ Q be an acyclic continuum and

such that it is not a Lefschetz space (see, [9]). We observe, that Q ○ ≥ X (see, Proposi-

tion 3.3). Q is a Lefschetz space and X is not a Lefschetz space.

Example 3.8. Let S = {x Î ℝ2| ||x|| = 1} be the unit circle. Let a: [0, ∞) ® ℝ2 be a

function defined as follows:

α(t) = ((1 + e−t) cos(t), (1 + e−1) sin(t))

for any t ≥ 0. Let X := a([2, ∞)). Let Y := S ∪ X and Z = ((S ∪ ([2, ∞) × {0})) × I).

We can regard Y as a subset of ℝ2 × {0} ⊂ ℝ3. Let CY := Y × I/~ be the cone over Y

and vertex v = (0, 0,1). It is not hard to show that CY is contractible to the point v.

Moreover, Knill showed (see, [9]) that CY is not a fixed point space! Define a function

p : Z → CY

by p(z, s) = [b(z), s], where b: Z ® Y is given by the following formula

β(z) =
{

z if z ∈ S
α(t) if z = (t, 0) ∈ [2,∞) × {0}.

It is clear that p(Z) = CY. We define a map ψ : CY ⊸ Z given by formula ψ(y) = Z for

all y Î CY. The mapping ψ is admissible because the pair (Id, f) ⊂ �, where the map-

ping Id : CY ® CY is given by the formula Id(y) = y for every y Î CY and the mapping

f : CY ® Z is constant. We show that

Z ≥ ◦ CY.

We observe that for each y Î CY y Î p(ψ(y)) = CY. The images of a map p ○ ψ are

compact and acyclic. Hence, and from Proposition 2.2 and (4), we get the condition

3.1.2. The space Z Î ANR, so Z is a Lefschetz space and CY is not a Lefschetz space.

From the above two examples, it follows that the dominations of ○ ≥ and ≥ ○ type

do not preserve a fixed point property. However, the following fact is true:

Theorem 3.9. Let Y be a Lefschetz space and let Y ≥ ○s X, where X is a metric space.

Then X is a Lefschetz space.

Proof. Let ψ : X ⊸ Y be an admissible map, r : Y ® X be a continuous map and such that

for each x ∈ X r(ψ(x)) = {x}. (10)

Let � : X ⊸ X be an admissible and compact map. It is clear that the following diagram:
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is commutative, where (p, q) ⊂ ψ and (s, t) ⊂ �. From (10) we get that if y Î (qp-1 ○
ts-1 ○ r)(y), then r(y) Î ((r ○ qp-1) ○ ts-1)(r(y)) = (ts-1)(r(y)) ⊂ �(r(y)). Hence Fix(ϕ) �= ∅.
The next example shows that the domination of ≥ ○s type is more general than ≥

type (in the sense of Borsuk).

Example 3.10. Let Y ⊂ Q be an acyclic continuum and such that Y is not movable.

Let p : Q ® Y be a Vietoris map (see, [8]). Then Q ≥ ○s Y, where r = p : Q ® Y and ψ

: Y ⊸ Q given by formula ψ(y) = p-1(y) for each y Î Y. Obviously the space Q does not

dominate the space Y in the sense of Borsuk because otherwise Y would have to be an

absolute retract, and thus, in particular, a movable space, and that would contradict

the fact that Y is not movable.

Let us notice that from Proposition 3.3 and Example 3.8, the relation ○ ≥ ○ (and

even ≥ ○) is more general than the relation ≥ ○s. Now a theorem will be given that

will be the summary of the above considerations. First a more general version of Sus-

zycki retract (see, [2]) shall be given using admissible mappings for its definition.

Definition 3.11. We shall say that a set A ⊂ X is an admissible multi-retract of X if

there exists an admissible map � : X ⊸ A such that the following conditions are

satisfied:

3.11.1 for each x Î A x Î �(x),

3.11.2 there exist (p, q) ⊂ � such that IdH∗(A) = q∗p−1
∗ ◦ i∗, where i : A ® X is an

inclusion.

The mapping � will be called an admissible multi-retraction.

It is not difficult to notice that if A ⊂ X is an admissible multi-retract of X then X ○
≥ A. Moreover, if A ⊂ X is a multi-retract X in the sense of Suszycki (see, Definition

2.14), then it is its admissible multi-retract.

Definition 3.12. A space X is an admissible absolute multi-retract (am - AR) if for

each metric space Y and homeomorphism h : X ® Y, where h(X) is a closed subset in

Y, h(X) is an admissible multi-retract of Y.

Definition 3.13. A space X is an admissible absolute neighborhood multi-retract (am

- ANR) if for each metric space Y and homeomorphism h : X ® Y, where h(X) is a

closed subset in Y, h(X) is an admissible multi-retract of some U, where U ⊂ Y is an

open set and h(X) ⊂ U.

Obviously, AR ⊂ m - AR ⊂ am - AR and ANR ⊂ m - ANR ⊂ am - ANR (see, Defini-

tion 2.14).

Theorem 3.14. Let X be a metric space. There exists a locally convex space E and an

open set U ⊂ E such that:

3.14.1 (E ≥ X) ⇔ (X Î AR),

3.14.2 (U ≥ X) ⇔ (X Î ANR),

3.14.3 (E ≥ ○s X) ⇔ (X Î AMR),

3.14.4 (U ≥ ○s X) ⇔ (X Î ANMR),

3.14.5 (E ○ ≥ X) ⇔ (X Î am - AR),

3.14.6 (U ○ ≥ X) ⇔ (X Î am - ANR).

Proof. The proofs 3.14.1 and 3.14.2 are known from the mathematic literature in the

case of E being a normalized space. The situations where E is a locally convex space,

but not necessarily normalized, is considered in (see, [6, Theorem 3.6]). Then the

proofs 3.14.3 and 3.14.4 follow directly from the AMR and ANMR definitions (see,

Definitions 2.6 and 2.7). We will prove the condition 3.14.6, since the condition 3.14.5
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can be proven in a similar way. We assume that there exists a locally convex space and

an open set U ⊂ E such that U ○ ≥ X. Then there exists a continuous map g : X ® U

and an admissible map � : U ® X such that

for each x ∈ X x ∈ ϕ(g(x)), (11)

there exists (p, q) ⊂ ϕ IdH∗(X) = q∗p−1
∗ ◦ q∗, (12)

Let h : X ® Y be a homeomorphism such that h(X) ⊂ Y is a closed set. Choose the

continuous extension r : Y ® E of a map g ○ h-1 : h(X) ® U ⊂ E. Let V = r-1(U).

Then h(X) ⊂ V. We define ψ : V ⊸ h(X) given by the formula ψ = h ○ � ○ rV, where

rV : V ® U given by rV(x) = r(x) for each x Î V. We show that for each y Î h(X) y Î
ψ(y). Let y Î h(X). Then rV(y) = g(h-1(y)) and from (11) h-1(y) Î �(g(h-1(y))). Hence

y ∈ h(ϕ(g(h−1(y)))) = h(ϕ(rV(y))) = ψ(y).

From (12) we have

h∗ ◦ q∗p−1
∗ ◦ (rV)∗ ◦ i∗ = h∗ ◦ q∗p−1

∗ ◦ (g ◦ h−1)∗ = h∗ ◦ (q∗p−1
∗ ◦ g∗) ◦ h−1

∗ = IdH∗(h(x)),

where i : h(X) ® V is an inclusion.

Assume now that X Î am - ANR. Let ψ : U ⊸ h(X) be an admissible multi-retrac-

tion, where U ⊂ Y is an open set, h : X ® Y homeomorphism, h(X) is a closed set in Y

and h(X) ⊂ U. Then we have

for each y ∈ h(X) y ∈ ψ(y), (13)

there exists (p, q) ⊂ ψIdH∗(h(X)) = q∗p−1
∗ ◦ j∗, (14)

where j : h(X) ® U is an inclusion. We define a continuous map g : X ® U given by

formula g(x) = j(h(x)) for each x Î X and an admissible map � : U ⊸ X given by �(x)

= h-1(ψ(x)) for each x Î U. Obviously x Î �(g(x)) for each x Î X. From (14) we get

h−1
∗ ◦ (q∗p−1

∗ ◦ j∗) ◦ h∗ = IdH∗(X).

Remark 3.15. In Theorem 3.14 (3.14.5 and 3.14.6), a locally convex space can be

replaced by a normed space, without loss of generality (see, [6, Theorem 3.6]).

Multi-valued domination in the sense of Suszycki was determined in the class of

compact metric spaces. Multi-domination defined in this article (see, Definition 3.1)

encompasses a broader class of metric spaces, not necessarily compact, which is illu-

strated by the following example:

Example 3.16. Let X be a non-compact metric space and such that X Î ANMR and

X ∉ ANR (see, [4]). Then there exists a normed space E, an open set U ⊂ E, an admissi-

ble map ψ : X ⊸ U and a continuous map r : U ® X such that r(ψ(x)) = {x} for each x

Î X (U ≥ ○s X). Let Y be a compact metric space and such that Y Î m - ANR and Y ∉
ANR (see, [2]) (V ○ ≥ Y) (see, Theorem 3.14). Then there exists an open set V ⊂ Q, a

continuous map g : Y ® V, a multi-valued map � : V ⊸ Y such that y Î �(g(y)) for

each y Î Y, where �(x) is a compact and of trivial shape for any x Î V. Obviously (X ×

Y) ∉ m - ANR, since the space X × Y is non-compact from assumption. We show that

(U × V) ◦ ≥ ◦ (X × Y).
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We have

X × Y
ψ×g−−→ U × V

r×ϕ−−→ X × Y.

Hence

(r × ϕ)(ψ × g)(x, y) = x × ϕ(g(y)), for each (x, y) ∈ (X × Y).

For each (x, y) Î (X × Y) the set x × �(g(y)) is a compact and of trivial shape and (x,

y) Î (x × �(g(y))). Hence, and from (4), the conditions of the Definition 3.1 are satisfied.

The last example also shows that the Definition 3.1 is necessary because we certainly

know that (U × V) ○ ≥ ○ (X × Y). However, the following open problem still remains:

Open problem 3.17. Are there metric spaces X, Y such that Y ○ ≥ ○ X, but it is false

that Y ○ ≥ ○ X.
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