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1 Introduction
Variational inequalities are among the most interesting and intensively studied classes of
mathematical problems and have wide applications in the fields of optimization and con-
trol, economics, transportation equilibrium and engineering sciences. There exists a vast
amount of literature (see, for instance, [–]) on the approximation solvability of nonlin-
ear variational inequalities as well as operator equations.
Iterative algorithms have played a central role in the approximation solvability, espe-

cially of nonlinear variational inequalities as well as of nonlinear equations, in several
fields such as applied mathematics, mathematical programming, mathematical finance,
control theory and optimization, engineering sciences and others. Projection methods
have played a significant role in the numerical resolution of variational inequalities based
on their convergence analysis. However, the convergence analysis does require some sort
of strong monotonicity besides the Lipschitz continuity. There have been some recent de-
velopments where convergence analysis for projection methods under somewhat weaker
conditions such as cocoercivity [] and partial relaxed monotonicity [] is achieved.
Recently, Chang et al. [] introduced a two-step iterative algorithm for a system of non-

linear variational inequalities and established strong convergence theorems. Huang and
Noor [] introduced the so-called explicit two-step iterative algorithm for a system of
nonlinear variational inequalities involving two different nonlinear operators and estab-
lished strong convergence theorems.
In this paper, we consider, based on the projection method, the approximate solvability

of a new system of generalized nonlinear variational inequalities involving three different
nonlinear operators in the framework ofHilbert spaces. The results presented in this paper
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extend and improve the corresponding results announced in Huang andNoor [], Chang
et al. [], Verma [–] and many others.
Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and

‖ · ‖, respectively. Let C be a nonempty closed convex subset of H and PC be the metric
projection from H onto C.
Given nonlinear operators T , f : C → H and g : C → C, we consider the problem of

finding u ∈ C such that

〈
g(u) – f (u) + λTu, v – g(u)

〉 ≥ , ∀v ∈ C, (.)

where λ >  is a constant. The variational inequality (.) is called the generalized varia-
tional inequality involving three operators.
We see that an element u ∈ C is a solution to the generalized variational inequality (.)

if and only if u ∈ C is a fixed point of the mapping

I – g + PC(f – λT),

where I is the identity mapping. This equivalence plays an important role in this work.
If f = g , then the generalized variational inequality (.) is equivalent to the following.
Find u ∈ C such that

〈
Tu, v – g(u)

〉 ≥ , ∀v ∈ C. (.)

Further, if g = I , then the problem (.) is reduced to finding u ∈ C such that

〈Tu, v – u〉 ≥ , ∀v ∈ C, (.)

which is known as the classical variational inequality originally introduced and studied by
Stampacchia [].
Let T : C → H be a mapping. Recall the following definitions.
() T is said to be monotone if

〈Tu – Tv,u – v〉 ≥ , ∀u, v ∈ C.

() T is called δ-strongly monotone if there exists a constant δ >  such that

〈Tx – Ty,x – y〉 ≥ δ‖x – y‖, ∀x, y ∈ C.

This implies that

‖Tx – Ty‖ ≥ δ‖x – y‖, ∀x, y ∈ C,

that is, T is δ-expansive.
() T is said to be γ -cocoercive if there exists a constant γ >  such that

〈Tx – Ty,x – y〉 ≥ γ ‖Tx – Ty‖, ∀x, y ∈ C.

Clearly, every γ -cocoercive mapping A is 
γ
-Lipschitz continuous.

http://www.fixedpointtheoryandapplications.com/content/2012/1/232


Zhang Fixed Point Theory and Applications 2012, 2012:232 Page 3 of 13
http://www.fixedpointtheoryandapplications.com/content/2012/1/232

() T is said to be relaxed γ -cocoercive if there exists a constant γ >  such that

〈Tx – Ty,x – y〉 ≥ (–γ )‖Tx – Ty‖, ∀x, y ∈ C.

() T is said to be relaxed (γ , δ)-cocoercive if there exist two constants γ , δ >  such that

〈Tx – Ty,x – y〉 ≥ (–γ )‖Tx – Ty‖ + δ‖x – y‖, ∀x, y ∈ C.

Let Ti : C × C × C → H , fi : C → H and gi : C → C be nonlinear mappings for each
i = , , . Consider a system of generalized nonlinear variational inequality (SGNVI) as
follows.
Find (x*, y*, z*) ∈ C ×C ×C such that for all s, t, r > ,

⎧⎪⎪⎨
⎪⎪⎩

〈sT(y*, z*,x*) + g(x*) – f(y*),x – g(x*)〉 ≥ , ∀x ∈ C,

〈tT(z*,x*, y*) + g(y*) – f(z*),x – g(x*)〉 ≥ , ∀x ∈ C,

〈rT(x*, y*, z*) + g(z*) – f(x*),x – g(x*)〉 ≥ , ∀x ∈ C.

(.)

One can easily see SGNVI (.) is equivalent to the following projection problem:

⎧⎪⎪⎨
⎪⎪⎩
g(x*) = PC(f(y*) – sT(y*, z*,x*)), ∀s > ,

g(y*) = PC(f(z*) – tT(z*,x*, y*)), ∀t > ,

g(z*) = PC(f(x*) – rT(x*, y*, z*)), ∀r > .

(.)

Next, we consider some special classes of SGNVI (.) as follows.
(I) If g = g = g = I , then SGNVI (.) is reduced to the following.
Find (x*, y*, z*) ∈ C ×C ×C such that for all s, t, r > ,

⎧⎪⎪⎨
⎪⎪⎩

〈sT(y*, z*,x*) + x* – f(y*),x – x*〉 ≥ , ∀x ∈ C,

〈tT(z*,x*, y*) + y* – f(z*),x – x*〉 ≥ , ∀x ∈ C,

〈rT(x*, y*, z*) + z* – f(x*),x – x*〉 ≥ , ∀x ∈ C.

(.)

We see that the problem (.) is equivalent to the following projection problem:

⎧⎪⎪⎨
⎪⎪⎩
x* = PC(f(y*) – sT(y*, z*,x*)), ∀s > ,

y* = PC(f(z*) – tT(z*,x*, y*)), ∀t > ,

z* = PC(f(x*) – rT(x*, y*, z*)), ∀r > .

(.)

(II) If f = f = f = I , then SGNVI (.) is reduced to the following.
Find (x*, y*, z*) ∈ C ×C ×C such that for all s, t, r > ,

⎧⎪⎪⎨
⎪⎪⎩

〈sT(y*, z*,x*) + g(x*) – y*,x – g(x*)〉 ≥ , ∀x ∈ C,

〈tT(z*,x*, y*) + g(y*) – z*,x – g(x*)〉 ≥ , ∀x ∈ C,

〈rT(x*, y*, z*) + g(z*) – x*,x – g(x*)〉 ≥ , ∀x ∈ C.

(.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/232
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We see that the problem (.) is equivalent to the following projection problem:
⎧⎪⎪⎨
⎪⎪⎩
g(x*) = PC[y* – sT(y*, z*,x*)], ∀s > ,

g(y*) = PC[z* – tT(z*,x*, y*)], ∀t > ,

g(z*) = PC[x* – rT(x*, y*, z*)], ∀r > .

(.)

(III) If g = g = g = f = f = f = I , then SGNVI (.) is reduced to the following.
Find (x*, y*, z*) ∈ C ×C ×C such that for all s, t, r > ,

⎧⎪⎪⎨
⎪⎪⎩

〈sT(y*, z*,x*) + x* – y*,x – x*〉 ≥ , ∀x ∈ C,

〈tT(z*,x*, y*) + y* – z*,x – x*〉 ≥ , ∀x ∈ C,

〈rT(x*, y*, z*) + z* – x*,x – x*〉 ≥ , ∀x ∈ C.

(.)

One can easily get that the problem (.) is equivalent to the following projection prob-
lem:

⎧⎪⎪⎨
⎪⎪⎩
x* = PC(y* – sT(y*, z*,x*)), ∀s > ,

y* = PC(z* – tT(z*,x*, y*)), ∀t > ,

z* = PC(x* – rT(x*, y*, z*)), ∀r > .

(.)

(IV) If T, T and T are univariate mappings, then SGNVI (.) is reduced to the fol-
lowing.
Find (x*, y*, z*) ∈ C ×C ×C such that for all s, t, r > ,

⎧⎪⎪⎨
⎪⎪⎩

〈sTy* + g(x*) – f(y*),x – g(x*)〉 ≥ , ∀x ∈ C,

〈tTz* + g(y*) – f(z*),x – g(x*)〉 ≥ , ∀x ∈ C,

〈rTx* + g(z*) – f(x*),x – g(x*)〉 ≥ , ∀x ∈ C.

(.)

One can easily see that the problem (.) is equivalent to the following projection prob-
lem:

⎧⎪⎪⎨
⎪⎪⎩
g(x*) = PC(f(y*) – sTy*), ∀s > ,

g(y*) = PC(f(z*) – tTz*), ∀t > ,

g(z*) = PC(f(x*) – rTx*), ∀r > .

(.)

2 Preliminaries
In this section, to study the approximate solvability of the problems (.), (.), (.), (.)
and (.), we introduce the following three-step algorithms.

Algorithm . For any (x, y, z) ∈ C×C×C, compute the sequences {xn}, {yn} and {zn}
by the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
xn+ = ( – αn)xn + αn(xn – g(xn) + PC(f(yn) – sT(yn, zn,xn))), n≥ ,

g(zn+) = PC(f(xn+) – rT(xn+, yn, zn)), n≥ ,

g(yn+) = PC(f(zn+) – tT(zn+,xn, yn)), n≥ ,

where r, s, t >  are three constants and {αn} is a sequence in [, ].

http://www.fixedpointtheoryandapplications.com/content/2012/1/232
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If g = g = g = I , then Algorithm . is reduced to the following.

Algorithm . For any (x, y, z) ∈ C×C×C, compute the sequences {xn}, {yn} and {zn}
by the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
xn+ = ( – αn)xn + αnPC(f(yn) – sT(yn, zn,xn)), n≥ ,

zn+ = PC(f(xn+) – rT(xn+, yn, zn)), n≥ ,

yn+ = PC(f(zn+) – tT(zn+,xn, yn)), n≥ ,

where r, s, t >  are three constants and {αn} is a sequence in [, ].

If f = f = f = I , the identity mapping, then Algorithm . is reduced to the following.

Algorithm . For any (x, y, z) ∈ C×C×C, compute the sequences {xn}, {yn} and {zn}
by the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
xn+ = ( – αn)xn + αn(xn – g(xn) + PC(yn – sT(yn, zn,xn))), n≥ ,

g(zn+) = PC(xn+ – rT(xn+, yn, zn)), n≥ ,

g(yn+) = PC(zn+ – tT(zn+,xn, yn)), n≥ ,

where r, s, t >  are three constants and {αn} is a sequence in [, ].

If f = f = f = g = g = g = I , the identity mapping, then Algorithm . is reduced to the
following.

Algorithm . For any (x, y, z) ∈ C×C×C, compute the sequences {xn}, {yn} and {zn}
by the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
xn+ = ( – αn)xn + αnPC(yn – sT(yn, zn,xn)), n≥ ,

zn+ = PC(xn+ – rT(xn+, yn, zn)), n≥ ,

yn+ = PC(zn+ – tT(zn+,xn, yn)), n≥ ,

where r, s, t >  are three constants and {αn} is a sequence in [, ].

(IV) If T, T and T are univariate mappings, then Algorithm . is reduced to the fol-
lowing.

Algorithm . For any (x, y, z) ∈ C×C×C, compute the sequences {xn}, {yn} and {zn}
by the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
xn+ = ( – αn)xn + αn(xn – g(xn) + PC(f(yn) – sTyn)), n ≥ ,

g(zn+) = PC(f(xn+) – rTxn+), n ≥ ,

g(yn+) = PC(f(zn+) – tTzn+), n ≥ ,

where r, s, t >  are three constants and {αn} is a sequence in [, ].

In order to prove our main results, we also need the following lemma and definitions.

http://www.fixedpointtheoryandapplications.com/content/2012/1/232
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Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – λn)an + bn, ∀n≥ n,

where n is a nonnegative integer, {λn} is a sequence in (, ) with
∑∞

n= λn = ∞ and bn =
◦(λn), then limn→∞ an = .

Definition . A mapping T : C × C × C → H is said to be relaxed (γ , δ)-cocoercive if
there exist constants γ , δ >  such that for all x,x′ ∈ C,

〈
T(x, y, z) – T

(
x′, y′, z′),x – x′〉

≥ (–γ )
∥∥T(x, y, z) – T

(
x′, y′, z′)∥∥ + δ

∥∥x – x′∥∥, ∀y, y′, z, z′ ∈ C.

Definition . Amapping T : C×C×C →H is said to be β-Lipschitz continuous in the
first variable if there exists a constant β >  such that for all x,x′ ∈ C,

∥∥T(x, y, z) – T
(
x′, y′, z′)∥∥ ≤ β

∥∥x – x′∥∥, ∀y, y′, z, z′ ∈ C.

3 Main results
Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
Ti : C × C × C → H be a relaxed (γi, δi)-cocoercive and βi-Lipschitz continuous mapping
in the first variable, fi : C → H be a relaxed (ηi,ρi)-cocoercive and λi-Lipschitz continu-
ous mapping and gi : C → C be a relaxed (η̄i, ρ̄i)-cocoercive and λ̄i-Lipschitz continuous
mapping for each i = , , . Suppose that (x*, y*, z*) ∈ C × C × C is a solution to the prob-
lem (.). Let {xn}, {yn} and {zn} be the sequences generated by Algorithm .. Assume that
the following conditions are satisfied:
(a)

∑∞
n= αn = ∞;

(b)  ≤ θ, θ < ;
(c) (θ + θ)(θ + θ)(θ + θ) ≤ ( – θ)( – θ)( – θ),

where

θ =
√
 – sδ + sγβ

 + sβ
 , θ =

√
 – ρ + λ

 + ηλ
 ,

θ =
√
 – ρ̄ + λ̄

 + η̄λ̄
 , θ =

√
 – tδ + tγβ

 + tβ
 ,

θ =
√
 – ρ + λ

 + ηλ
, θ =

√
 – ρ̄ + λ̄

 + η̄λ̄
,

θ =
√
 – rδ + rγβ

 + rβ
 , θ =

√
 – ρ + λ

 + ηλ
,

and

θ =
√
 – ρ̄ + λ̄

 + η̄λ̄
.

Then the sequences {xn}, {yn} and {zn} converge strongly to x*, y* and z*, respectively.

http://www.fixedpointtheoryandapplications.com/content/2012/1/232
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Proof In view of (x*, y*, z*) being a solution to the problem (.), we see that

⎧⎪⎪⎨
⎪⎪⎩
x* = ( – αn)x* + αn(x* – g(x*) + PC(f(y*) – sT(y*, z*,x*))), n≥ ,

g(z*) = PC(f(x*) – rT(x*, y*, z*)), n≥ ,

g(y*) = PC(f(z*) – tT(z*,x*, y*)), n≥ .

It follows from Algorithm (.) that

∥∥xn+ – x*
∥∥

=
∥∥( – αn)xn + αn

(
xn – g(xn) + PC

(
f(yn) – sT(yn, zn,xn)

))
– x*

∥∥
≤ ( – αn)

∥∥xn – x*
∥∥ + αn

∥∥(
xn – g(xn) + PC

(
f(yn) – sT(yn, zn,xn)

))
–

(
x* – g

(
x*

)
+ PC

(
f
(
y*

)
– sT

(
y*, z*,x*

)))∥∥
≤ ( – αn)

∥∥xn – x*
∥∥ + αn

∥∥xn – x* –
(
g(xn) – g

(
x*

))∥∥ + αn
∥∥f(yn) – f

(
y*

)
– s

(
T(yn, zn,xn) – T

(
y*, z*,x*

))∥∥
≤ ( – αn)

∥∥xn – x*
∥∥ + αn

∥∥xn – x* –
(
g(xn) – g

(
x*

))∥∥
+ αn

∥∥yn – y* –
(
f(yn) – f

(
y*

))∥∥
+αn

∥∥(
yn – y*

)
– s

(
T(yn, zn,xn) – T

(
y*, z*,x*

))∥∥. (.)

By the assumption that T is relaxed (γ, r)-cocoercive and β-Lipschitz continuous in the
first variable, we obtain that

∥∥(
yn – y*

)
– s

(
T(yn, zn,xn) – T

(
y*, z*,x*

))∥∥

=
∥∥yn – y*

∥∥ – s
〈
T(yn, zn,xn) – T

(
y*, z*,x*

)
, yn – y*

〉
+ s

∥∥T(yn, zn,xn) – T
(
y*, z*,x*

)∥∥

≤ ∥∥yn – y*
∥∥ – s

(
(–γ)

∥∥T(yn, zn,xn) – T
(
y*, z*,x*

)∥∥ + δ
∥∥yn – y*

∥∥)
+ s

∥∥T(yn, zn,xn) – T
(
y*, z*,x*

)∥∥

= ( – sδ)
∥∥yn – y*

∥∥ +
(
sγ + s

)∥∥T(yn, zn,xn) – T
(
y*, z*,x*

)∥∥

≤ ( – sδ)
∥∥yn – y*

∥∥ +
(
sγ + s

)
β

∥∥yn – y*

∥∥

= θ

∥∥yn – y*

∥∥, (.)

where θ =
√
 – sδ + sγβ

 + sβ
 . On the other hand, it follows from the assumption

that f is relaxed (η,ρ)-cocoercive and λ-Lipschitz continuous that

∥∥yn – y* –
(
f(yn) – f

(
y*

))∥∥

=
∥∥yn – y*

∥∥ – 
〈
f(yn) – f

(
y*

)
, yn – y*

〉
+

∥∥f(yn) – f
(
y*

)∥∥

≤ ∥∥yn – y*
∥∥ – 

(
(–η)

∥∥f(yn) – f
(
y*

)∥∥ + ρ
∥∥yn – y*

∥∥) + λ

∥∥yn – y*

∥∥

=
(
 – ρ + λ


)∥∥yn – y*

∥∥ + η
∥∥f(yn) – f

(
y*

)∥∥

≤ θ

∥∥yn – y*

∥∥, (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/232
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where θ =
√
 – ρ + λ

 + ηλ
 . In a similar way, we can obtain that

∥∥xn – x* –
(
g(xn) – g

(
x*

))∥∥ ≤ θ
∥∥xn – x*

∥∥, (.)

where θ =
√
 – ρ̄ + λ̄

 + η̄λ̄
 . Substituting (.), (.) and (.) into (.), we arrive at

∥∥xn+ – x*
∥∥ ≤ [

 – αn( – θ)
]∥∥xn – x*

∥∥ + αn(θ + θ)
∥∥yn – y*

∥∥. (.)

Next, we estimate ‖yn – y*‖. From Algorithm ., we see that

∥∥g(yn+) – g
(
y*

)∥∥ =
∥∥PC

(
f(zn+) – tT(zn+,xn, yn)

)
– PC

(
f

(
z*

)
– tT

(
z*,x*, y*

))∥∥
≤ ∥∥(

f(zn+) – tT(zn+,xn, yn)
)
–

(
f

(
z*

)
– tT

(
z*,x*, y*

))∥∥
≤ ∥∥(

zn+ – z*
)
–

(
f(zn+) – f

(
z*

))∥∥
+

∥∥(
zn+ – z*

)
– t

(
T(zn+,xn, yn) – T

(
z*,x*, y*

))∥∥. (.)

By the assumption that T is relaxed (γ, r)-cocoercive and β-Lipschitz continuous in
the first variable, we obtain that

∥∥(
zn+ – z*

)
– t

(
T(zn+,xn, yn) – T

(
z*,x*, y*

))∥∥

=
∥∥zn+ – z*

∥∥ – t
〈
T(zn+,xn, yn) – T

(
z*,x*, y*

)
, zn+ – z*

〉
+ t

∥∥T(zn+,xn, yn) – T
(
z*,x*, y*

)∥∥

≤ ∥∥zn+ – z*
∥∥ – t

(
(–γ)

∥∥T(zn+,xn, yn) – T
(
z*,x*, y*

)∥∥ + δ
∥∥zn+ – z*

∥∥)
+ t

∥∥T(zn+,xn, yn) – T
(
z*,x*, y*

)∥∥

= ( – tδ)
∥∥zn+ – z*

∥∥ +
(
tγ + t

)∥∥T(zn+,xn, yn) – T
(
z*,x*, y*

)∥∥

≤ ( – tδ)
∥∥zn+ – z*

∥∥ +
(
tγ + t

)
β

∥∥zn+ – z*

∥∥

= θ

∥∥zn+ – z*

∥∥, (.)

where θ =
√
 – tδ + tγβ

 + tβ
 . It follows from the assumption that f is relaxed

(η,ρ)-cocoercive and λ-Lipschitz continuous that

∥∥(
zn+ – z*

)
–

(
f(zn+) – f

(
z*

))∥∥

=
∥∥zn+ – z*

∥∥ – 
〈
f(zn+) – f

(
z*

)
, zn – z*

〉
+

∥∥f(zn+) – f
(
z*

)∥∥

≤ ∥∥zn+ – z*
∥∥ – 

(
(–η)

∥∥f(zn+) – f
(
z*

)∥∥ + ρ
∥∥zn+ – z*

∥∥) + λ

∥∥zn+ – z*

∥∥

=
(
 – ρ + λ


)∥∥zn+ – z*

∥∥ + η
∥∥f(zn+) – f

(
z*

)∥∥

= θ

∥∥zn+ – z*

∥∥, (.)

where θ =
√
 – ρ + λ

 + ηλ
. Substituting (.) and (.) into (.), we see that

∥∥g(yn+) – g
(
y*

)∥∥ ≤ (θ + θ)
∥∥zn+ – z*

∥∥. (.)
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On the other hand, we have

∥∥yn+ – y*
∥∥ ≤ ∥∥yn+ – y* –

(
g(yn+) – g

(
y*

))∥∥ +
∥∥g(yn+) – g

(
y*

)∥∥. (.)

From the proof of (.), we arrive at

∥∥(
yn+ – y*

)
–

(
g(yn+) – g

(
y*

))∥∥ ≤ θ
∥∥yn+ – y*

∥∥, (.)

where θ =
√
 – ρ̄ + λ̄

 + η̄λ̄
. Substituting (.) and (.) into (.), we see that

∥∥yn+ – y*
∥∥ ≤ θ

∥∥yn+ – y*
∥∥ + (θ + θ)

∥∥zn+ – z*
∥∥.

It follows from the condition (b) that

∥∥yn+ – y*
∥∥ ≤ θ + θ

 – θ

∥∥zn+ – z*
∥∥.

That is,

∥∥yn – y*
∥∥ ≤ θ + θ

 – θ

∥∥zn – z*
∥∥. (.)

Finally, we estimate ‖zn – z*‖. It follows from Algorithm . that

∥∥g(zn+) – g
(
z*

)∥∥
=

∥∥PC
(
f(xn+) – rT(xn+, yn, zn)

)
– PC

[
f

(
x*

)
– rT

(
x*, y*, z*

)]∥∥
≤ ∥∥(

xn+ – x*
)
–

(
f(xn+) – f

(
x*

))∥∥
+

∥∥(
xn+ – x*

)
– r

(
T(xn+, yn, zn) – T

(
x*, y*, z*

))∥∥. (.)

In a similar way, we can show that

∥∥(
xn+ – x*

)
– r

(
T(xn+, yn, zn) – T

(
x*, y*, z*

))∥∥ ≤ θ
∥∥xn+ – x*

∥∥ (.)

and

∥∥(
xn+ – x*

)
–

(
f(xn+) – f

(
x*

))∥∥ ≤ θ
∥∥xn+ – x*

∥∥, (.)

where θ =
√
 – rδ + rγβ

 + rβ
 and θ =

√
 – ρ + λ

 + ηλ
. Substituting (.)

and (.) into (.), we arrive at

∥∥g(zn+) – g
(
z*

)∥∥ ≤ (θ + θ)
∥∥xn+ – x*

∥∥. (.)

Note that

∥∥zn+ – z*
∥∥ ≤ ∥∥zn+ – z* –

(
g(zn+) – g

(
z*

))∥∥ +
∥∥g(zn+) – g

(
z*

)∥∥. (.)
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On the other hand, we have

∥∥zn+ – z* –
(
g(zn+) – g

(
z*

))∥∥ ≤ θ
∥∥zn+ – z*

∥∥, (.)

θ =
√
 – ρ̄ + λ̄

 + η̄λ̄
. Substituting (.) and (.) into (.), we arrive at

∥∥zn+ – z*
∥∥ ≤ θ

∥∥zn+ – z*
∥∥ + (θ + θ)

∥∥xn+ – x*
∥∥.

It follows from the condition (b) that

∥∥zn+ – z*
∥∥ ≤ θ + θ

 – θ

∥∥xn+ – x*
∥∥.

That is,

∥∥zn – z*
∥∥ ≤ θ + θ

 – θ

∥∥xn – x*
∥∥. (.)

Combining (.), (.) with (.), we obtain that

∥∥xn+ – x*
∥∥ ≤

(
 – αn

(
 – θ – (θ + θ)

θ + θ

 – θ

θ + θ

 – θ

))∥∥xn – x*
∥∥.

Since
∑∞

n= αn = ∞ and the condition (c), we can conclude the desired conclusion easily
from Lemma .. This completes the proof. �

Remark . Theorem . includes the corresponding results in Huang and Noor []
Chang et al. [], and Verma [–] as special cases.

From Theorem ., we can get the following results immediately.

Corollary . Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
Ti : C × C × C → H be a relaxed (γi, δi)-cocoercive and βi-Lipschitz continuous mapping
in the first variable and fi : C →H be a relaxed (ηi,ρi)-cocoercive and λi-Lipschitz contin-
uous mapping for each i = , , . Suppose that (x*, y*, z*) ∈ C × C × C is a solution to the
problem (.). Let {xn}, {yn} and {zn} be the sequences generated by Algorithm .. Assume
that the following conditions are satisfied:
(a)

∑∞
n= αn = ∞;

(b) (θ + θ)(θ + θ)(θ + θ) ≤ ,
where

θ =
√
 – sδ + sγβ

 + sβ
 , θ =

√
 – ρ + λ

 + ηλ
 ,

θ =
√
 – tδ + tγβ

 + tβ
 , θ =

√
 – ρ + λ

 + ηλ
,

and

θ =
√
 – rδ + rγβ

 + rβ
 , θ =

√
 – ρ + λ

 + ηλ
.

Then the sequences {xn}, {yn} and {zn} converge strongly to x*, y* and z*, respectively.
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Corollary . Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
Ti : C × C × C → H be a relaxed (γi, δi)-cocoercive and βi-Lipschitz continuous mapping
in the first variable and gi : C → C be a relaxed (η̄i, ρ̄i)-cocoercive and λ̄i-Lipschitz contin-
uous mapping for each i = , , . Suppose that (x*, y*, z*) ∈ C × C × C is a solution to the
problem (.). Let {xn}, {yn} and {zn} be the sequences generated by Algorithm .. Assume
that the following conditions are satisfied:
(a)

∑∞
n= αn = ∞;

(b)  ≤ θ, θ < ;
(c) θθθ ≤ ( – θ)( – θ)( – θ),

where

θ =
√
 – sδ + sγβ

 + sβ
 , θ =

√
 – ρ̄ + λ̄

 + η̄λ̄
 ,

θ =
√
 – tδ + tγβ

 + tβ
 , θ =

√
 – ρ̄ + λ̄

 + η̄λ̄
,

and

θ =
√
 – rδ + rγβ

 + rβ
 , θ =

√
 – ρ̄ + λ̄

 + η̄λ̄
.

Then the sequences {xn}, {yn} and {zn} converge strongly to x*, y* and z*, respectively.

Corollary . Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
Ti : C × C × C → H be a relaxed (γi, δi)-cocoercive and βi-Lipschitz continuous mapping
in the first variable for each i = , , . Suppose that (x*, y*, z*) ∈ C × C × C is a solution
to the problem (.). Let {xn}, {yn} and {zn} be the sequences generated by Algorithm ..
Assume that the following conditions are satisfied:
(a)

∑∞
n= αn = ∞;

(b) θθθ ≤ ,
where

θ =
√
 – sδ + sγβ

 + sβ
 , θ =

√
 – tδ + tγβ

 + tβ
 ,

and

θ =
√
 – rδ + rγβ

 + rβ
 .

Then the sequences {xn}, {yn} and {zn} converge strongly to x*, y* and z*, respectively.

Corollary . Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
Ti : C → H be a relaxed (γi, δi)-cocoercive and βi-Lipschitz continuousmapping, fi : C →H
be a relaxed (ηi,ρi)-cocoercive and λi-Lipschitz continuous mapping and gi : C → C be a
relaxed (η̄i, ρ̄i)-cocoercive and λ̄i-Lipschitz continuous mapping for each i = , , . Suppose
that (x*, y*, z*) ∈ C ×C ×C is a solution to the problem (.). Let {xn}, {yn} and {zn} be the
sequences generated by Algorithm .. Assume that the following conditions are satisfied:
(a)

∑∞
n= αn = ∞;

(b)  ≤ θ, θ < ;
(c) (θ + θ)(θ + θ)(θ + θ) ≤ ( – θ)( – θ)( – θ),
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where

θ =
√
 – sδ + sγβ

 + sβ
 , θ =

√
 – ρ + λ

 + ηλ
 ,

θ =
√
 – ρ̄ + λ̄

 + η̄λ̄
 , θ =

√
 – tδ + tγβ

 + tβ
 ,

θ =
√
 – ρ + λ

 + ηλ
, θ =

√
 – ρ̄ + λ̄

 + η̄λ̄
,

θ =
√
 – rδ + rγβ

 + rβ
 , θ =

√
 – ρ + λ

 + ηλ
,

and

θ =
√
 – ρ̄ + λ̄

 + η̄λ̄
.

Then the sequences {xn}, {yn} and {zn} converge strongly to x*, y* and z*, respectively.
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