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Abstract
A vector matrix game with more than two skew symmetric matrices, which is an
extension of the matrix game, is defined and the symmetric dual problem for a
nonlinear vector optimization problem is considered. Using the Kakutani fixed point
theorem, we prove an existence theorem for a vector matrix game. We establish
equivalent relations between the symmetric dual problem and its related vector
matrix game. Moreover, we give an example illustrating the equivalent relations.

1 Introduction
A matrix game is defined by B of a real m × n matrix together with the Cartesian prod-
uct Sn × Sm of all n-dimensional probability vectors Sn and allm-dimensional probability
vectors Sm; that is, Sn := {x = (x, . . . ,xn)T ∈ Rn : xi � ,

∑n
i= xi = }, where the symbol T

denotes the transpose. A point (x̄, ȳ) ∈ Sn × Sn is called an equilibrium point of a matrix
game B if xTBȳ� x̄TBȳ� x̄TBy for all x, y ∈ Sn and x̄Bȳ = v, where v is value of the game. If
n =m and B is skew symmetric, then we can check that (x̄, ȳ) ∈ Sn × Sn is an equilibrium
point of the game B if and only if Bx̄�  and Bȳ� . When B is an n× n skew symmetric
matrix, x̄ ∈ Sn is called a solution of the matrix game B if Bx̄�  [].
Consider the linear programming problem (LP) and its dual (LD) as follows:

(LP) Minimize cTx subject to Ax� b, x� ,

(LD) Maximize bTy subject to ATy� c, y� ,

where c ∈ Rn, x ∈Rn, b ∈Rm, y ∈Rm, A = [aij] is anm× n real matrix.
Now consider the matrix game associated with the following (n +m + ) × (n +m + )

skew symmetric matrix B:

B =

⎡
⎢⎣

 AT –c
–A  b
cT –bT 

⎤
⎥⎦ .

Dantzig [] gave the complete equivalence between the linear programming duality and
the matrix game B. Many authors [–] have extended the equivalence results of Dantzig
[] to several kinds of scalar optimization problems. Very recently, Hong and Kim [] de-
fined a vector matrix game and generalized the equivalence results of Dantzig [] to a
vector optimization problem by using the vector matrix game.
Recently, Kim and Noh [] established equivalent relations between a certain matrix

game and symmetric dual problems. Symmetric duality in nonlinear programming, in
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which the dual of the dual is the primal, was first introduced by Dorn []. Dantzig, Eisen-
berg and Cottle [] formulated a pair of symmetric dual nonlinear problems and estab-
lished duality results for convex and concave functions with non-negative orthant as the
cone.Mond andWeir [] presented two pairs of symmetric dual vector optimization prob-
lems and obtained symmetric duality results concerning pseudoconvex and pseudocon-
cave functions.
In this paper, a vectormatrix gamewithmore than two skew symmetric matrices, which

is an extension of thematrix game, is defined and a nonlinear vector optimization problem
is considered.We formulate a symmetric dual problem for the nonlinear vector optimiza-
tion problem and establish equivalent relations between the symmetric dual problem and
the corresponding vector matrix game. Moreover, we give a numerical example for show-
ing such equivalent relations.

2 Vector matrix game and existence theorem
Throughout this paper, we will denote the relative interior of Sp by

o
S p, and we will use the

following conventions for vectors in the Euclidean spaceRn for vectors x := (x, . . . ,xn) and
y := (y, . . . , yn):

x� y if and only if xi � yi, i = , . . . ,n;

x < y if and only if xi < yi, i = , . . . ,n;

x ≤ y if and only if xi � yi, and x �= y; and

x� y is the negation of x≤ y.

Consider the nonlinear programming problem (VOP):

(VOP) Minimize f (x) := (f(x), . . . , fp(x))

subject to x ∈ X ,

where X = {x ∈ Rn : g(x)� b,x� }, f : Rn → Rp, g : Rn → Rm are continuously differen-
tiable. The gradient ∇f (x) is an n× pmatrix, and ∇g(x) is an n×mmatrix.

Definition . [] A point x̄ ∈ X is said to be an efficient solution for (VOP) if there exists
no other feasible point x ∈ X such that (f(x), . . . , fp(x))≤ (f(x̄), . . . , fp(x̄)).

Now, we define solutions for a vector matrix game as follows.

Definition . [] Let Bi, i = , . . . ,p, be real n × n skew-symmetric matrices. A point
x̄ ∈ Sn is said to be a vector solution of the vector matrix game Bi, i = , . . . ,p if
(x̄TBx, . . . , x̄TBpx)� (x̄TBx̄, . . . , x̄TBpx̄)� (xTBx̄, . . . ,xTBpx̄) for any x ∈ Sn.

We proved the characterization of a vector solution of the vector matrix game in [].

Lemma . [] Let Bi, i = , . . . ,p, be an n × n skew symmetric matrix. Then ȳ ∈ Sn is a
vector solution of the vector matrix game Bi, i = , . . . ,p, if and only if there exists ξ ∈ o

S p

such that (
∑p

i= ξiBi)ȳ� .
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Remark . Let Bi, i = , . . . ,p, be an n× n skew symmetric matrix. From Lemma ., we
can obtain the following remark saying that the vector matrix game can be solved by fixed
point problems; ȳ ∈ Sn is a vector solution of the vector matrix game Bi, i = , . . . ,p, if and
only if there exists ξ ∈ o

S p such that ȳ ∈ Fξ (ȳ), where Fξ (x) = {y ∈ Sn | y ∈ x – (
∑p

i= ξiBi)x –
Rn

+}.

Noticing Remark ., we can obtain an existence theorem for the vector matrix game.

Theorem . Let Bi, i = , . . . ,p, be an n × n skew symmetric matrix. Then there exists a
vector solution of the vector matrix game Bi, i = , . . . ,p.

Proof Let ξ ∈ o
S p. Define a multifunction Fξ : Sn → Sn by, for any x ∈ Sn,

Fξ (x) =

{
y ∈ Sn

∣∣∣ y ∈ x –

( p∑
i=

ξiBi

)
x –Rn

+

}
.

Then the multifunction Fξ is closed and hence upper semi-continuous, and so it follows
from the well-known Kakutani fixed point theorem [] that the multifunction Fξ has a
fixed point. So, by Remark ., there exists a vector solution of the vector matrix game Bi,
i = , . . . ,p. �

3 Equivalence relations
Now, we consider the nonlinear symmetric programming problem (SP) together with its
dual (SD) as follows:

(SP) Minimize (f(x, y) – yT∇y(λT f )(x, y), . . . , fp(x, y) – yT∇y(λT f )(x, y))

subject to –∇y(λT f )(x, y)� ,

x� , λ > ,

(SD) Maximize (f(u, v) – uT∇u(λT f )(u, v), . . . , fp(u, v) – uT∇u(λT f )(u, v))

subject to –∇u(λT f )(u, v)� ,

v� , λ > ,

where f := (f, . . . , fp) :Rn ×Rm →Rp are continuously differentiable.
Consider the vector matrix game defined by the following (n+m+ )× (n+m+ ) skew

symmetric matrix Bi(x, y), i = , . . . ,p, related to (SP) and (SD):

Bi(x, y) =

⎡
⎢⎣

 –x∇yfi(x, y)T –∇xfi(x, y)
∇yfi(x, y)xT  ∇yfi(x, y)
∇xfi(x, y)T –∇yfi(x, y)T 

⎤
⎥⎦ .

Now, we give equivalent relations between (SD) and the vector matrix game Bi(x, y),
i = , . . . ,p.

Theorem. Let (x̄, ȳ, ξ̄ ) be feasible for (SP) and (SD),with ȳT∇y(ξ̄T f )(x̄, ȳ) = x̄T∇x(ξ̄T f )×
(x̄, ȳ) = . Let z* = /( +

∑
i x̄i +

∑
j ȳj), x* = z*x̄ and y* = z*ȳ. Then (x*, y*, z*) is a vector

solution of the vector matrix game Bi(x̄, ȳ), i = , . . . ,p.
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Proof Let (x̄, ȳ, ξ̄ ) be feasible for (SP) and (SD). Then the following holds:

–∇y
(
ξ̄T f

)
(x̄, ȳ)� , (.)

–∇x
(
ξ̄T f

)
(x̄, ȳ)� , (.)

ȳT∇y
(
ξ̄T f

)
(x̄, ȳ) = x̄T∇x

(
ξ̄T f

)
(x̄, ȳ) = , (.)

x̄� , ȳ� , ξ̄ ∈ o
S p. (.)

Multiplying (.) by x̄�  gives –x̄∇y(ξ̄T f )(x̄, ȳ)T ȳ =  and from (.),

–x̄∇y
(
ξ̄T f

)
(x̄, ȳ)T ȳ –∇x

(
ξ̄T f

)
(x̄, ȳ)� . (.)

Multiplying (.) by x̄T x̄� , ∇y(ξ̄T f )(x̄, ȳ)x̄T x̄� . It implies that since ∇y(ξ̄T f )(x̄, ȳ)� ,

∇y
(
ξ̄T f

)
(x̄, ȳ)x̄T x̄ +∇y

(
ξ̄T f

)
(x̄, ȳ)� . (.)

From (.) we have

∇x
(
ξ̄T f

)
(x̄, ȳ)T x̄ –∇y

(
ξ̄T f

)
(x̄, ȳ)T ȳ = . (.)

But z* >  by (.), from (.), (.) and (.), we get

–x̄∇y
(
ξ̄T f

)
(x̄, ȳ)Ty* –∇x

(
ξ̄T f

)
(x̄, ȳ)z* � , (.)

∇y
(
ξ̄T f

)
(x̄, ȳ)x̄Tx* +∇y

(
ξ̄T f

)
(x̄, ȳ)z* � , (.)

∇x
(
ξ̄T f

)
(x̄, ȳ)Tx* –∇y

(
ξ̄T f

)
(x̄, ȳ)Ty* = , (.)

x* � , y* � , z* > .

From (.), (.) and (.), we have the following inequality:

( p∑
i=

ξ̄iBi(x̄, ȳ)

)⎛
⎜⎝
x*

y*

z*

⎞
⎟⎠ � .

By Lemma ., (x*, y*, z*) is a vector solution of the vector matrix game Bi(x̄, ȳ), i = , . . . ,p.
�

Theorem . Let (x*, y*, z*) with z* >  be a vector solution of the vector matrix game
Bi(x̄, ȳ), i = , . . . ,p, where x̄ = x*/z* and ȳ = y*/z*. Then there exists ξ̄ ∈ o

S p such that (x̄, ȳ, ξ̄ )
is feasible for (SP) and (SD), and ȳT∇y(ξ̄T f )(x̄, ȳ) = x̄T∇x(ξ̄T f )(x̄, ȳ) = .Moreover, if fi(·, y),
i = , . . . ,p, are convex for fixed y and fi(x, ·), i = , . . . ,p, are concave for fixed x, then (x̄, ȳ)
is efficient for (SP) with fixed ξ̄ and (x̄, ȳ) is efficient for (SD) with fixed ξ̄ .

Proof Let (x*, y*, z*) with z* >  be a vector solution of the vector matrix game Bi(x̄, ȳ),
i = , . . . ,p. Then by Lemma ., there exists ξ̄ ∈ o

S p such that

( p∑
i=

ξ̄iBi(x̄, ȳ)

)⎛
⎜⎝
x*

y*

z*

⎞
⎟⎠ � .
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Thus, we get

–x̄∇y
(
ξ̄T f

)
(x̄, ȳ)Ty* –∇x

(
ξ̄T f

)
(x̄, ȳ)z* � , (.)

∇y
(
ξ̄T f

)
(x̄, ȳ)x̄Tx* +∇y

(
ξ̄T f

)
(x̄, ȳ)z* � , (.)

∇x
(
ξ̄T f

)
(x̄, ȳ)Tx* –∇y

(
ξ̄T f

)
(x̄, ȳ)Ty* � , (.)

x* � , y* � , z* > . (.)

Dividing (.), (.) and (.) by z* > , we have

–x̄∇y
(
ξ̄T f

)
(x̄, ȳ)T ȳ –∇x

(
ξ̄T f

)
(x̄, ȳ)� , (.)

∇y
(
ξ̄T f

)
(x̄, ȳ)x̄T x̄ +∇y

(
ξ̄T f

)
(x̄, ȳ)� , (.)

∇x
(
ξ̄T f

)
(x̄, ȳ)T x̄ –∇y

(
ξ̄T f

)
(x̄, ȳ)T ȳ� . (.)

From (.),

x̄� , ȳ� . (.)

By (.), ∇y(ξ̄T f )(x̄, ȳ)(x̄T x̄ + )� . It implies that since x̄T x̄ +  > ,

–∇y
(
ξ̄T f

)
(x̄, ȳ)� . (.)

From (.), –x̄∇y(ξ̄T f )(x̄, ȳ)T ȳ � ∇x(ξ̄T f )(x̄, ȳ). Using (.) and (.), we obtain  �
–x̄∇y(ξ̄T f )(x̄, ȳ)T ȳ � ∇x(ξ̄T f )(x̄, ȳ). It implies that –∇x(ξ̄T f )(x̄, ȳ) � . From (.),
x̄T∇x(ξ̄T f )(x̄, ȳ)� ȳT∇y(ξ̄T f )(x̄, ȳ). But since x̄�  and∇x(ξ̄T f )(x̄, ȳ)� , x̄T∇x(ξ̄T f )(x̄, ȳ)�
 and since ȳ�  and ∇y(ξ̄T f )(x̄, ȳ)� , ȳT∇y(ξ̄T f )(x̄, ȳ)� . Then we have

� x̄T∇x
(
ξ̄T f

)
(x̄, ȳ)� ȳT∇y

(
ξ̄T f

)
(x̄, ȳ)� .

Hence, x̄T∇x(ξ̄T f )(x̄, ȳ) = ȳT∇y(ξ̄T f )(x̄, ȳ). Thus, (x̄, ȳ, ξ̄ ) is feasible for (SP) and (SD) with
fi(x̄, ȳ) – ȳT∇y(ξ̄T f )(x̄, ȳ) = fi(x̄, ȳ) – x̄T∇x(ξ̄T f )(x̄, ȳ), i = , . . . ,p. Since (x̄, ȳ, ξ̄ ) is feasible
for (SD), by weak duality in [], (f(x, y) – yT∇y(ξT f )(x, y), . . . , fp(x, y) – yT∇y(ξT f )(x, y)) �
(f(x̄, ȳ)– ȳT∇y(ξ̄T f )(x̄, ȳ), . . . , fp(x̄, ȳ)– ȳT∇y(ξ̄T f )(x̄, ȳ)) and (f(x̄, ȳ)– x̄T∇x(ξ̄T f )(x̄, ȳ), . . . , fp(x̄, ȳ)–
x̄T∇x(ξ̄T f )(x̄, ȳ)) � (f(u, v) – uT∇u(ξT f )(u, v), . . . , fp(u, v) – uT∇u(ξT f )(u, v)) for any feasi-
ble (u, v, ξ ) of (SP) and (SD). Therefore, (x̄, ȳ) is efficient for (SP) with fixed ξ̄ and (x̄, ȳ) is
efficient for (SD) with fixed ξ̄ . �

Now, we give an example illustrating Theorems . and ..

Example . Let f(x, y) = x – y and f(x, y) = y – x. Consider the following vector opti-
mization problem (SP) together with its dual (SD) as follows:

(SP) Minimize (x – y + λy – λy, y – x + λy – λy)

subject to λy – λ � ,

x� , λ = (λ,λ) ∈
o
S ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/233
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(SD) Maximize (u – v – λu + λu, v – u – λu + λu)

subject to λu – λ � ,

v� , λ = (λ,λ) ∈
o
S .

Now, we determine the set of all vector solutions of the vectormatrix game Bi(x, y), i = , .
Let

Bi(x, y) =

⎛
⎜⎝

 –x∇yfi(x, y)T –∇xfi(x, y)
–∇yfi(x, y)xT  ∇yfi(x, y)
∇xfi(x, y)T –∇yfi(x, y)T 

⎞
⎟⎠ .

Then

B(x, y) =

⎛
⎜⎝

 xy –x
–xy  –y
x y 

⎞
⎟⎠ and B(x, y) =

⎛
⎜⎝

 –x 
x  
– – 

⎞
⎟⎠ .

Let (x, y) ∈ R and (x*, y*, z*) ∈ S be a vector solution of the vector matrix game Bi(x, y),
i = , , if and only if there exist ξ > , ξ > , ξ + ξ =  such that

⎛
⎜⎝ξ

⎛
⎜⎝

 xy –x
–xy  –y
x y 

⎞
⎟⎠ + ξ

⎛
⎜⎝

 –x 
x  
– – 

⎞
⎟⎠

⎞
⎟⎠

⎛
⎜⎝
x*

y*

z*

⎞
⎟⎠�

⎛
⎜⎝




⎞
⎟⎠ .

⇐⇒ there exist ξ > , ξ > , ξ + ξ =  such that

⎛
⎜⎝

x(yξ – ξ)y* – (xξ – ξ)z*

–x(yξ – ξ)x* – (yξ – ξ)z*

(xξ – ξ)x* + (yξ – ξ)y*

⎞
⎟⎠�

⎛
⎜⎝




⎞
⎟⎠ .

Thus, we determine the set of all the vector solutions of the vector matrix game Bi(x, y),
i = , .

(I) the case that x > :
(a) xξ – ξ > , yξ – ξ > : (x*, y*, z*) = (, , ).
(b) xξ – ξ > , yξ – ξ = : (x*, y*, z*) : {(,α,  – α) | � α � }.
(c) xξ – ξ > , yξ – ξ < : (x*, y*, z*) = (, , ).
(d) xξ – ξ = , yξ – ξ > : (x*, y*, z*) : {(α, ,  – α) | � α � }.
(e) xξ – ξ = , yξ – ξ = :

(x*, y*, z*) : {(x,x,x) | x � ,x � ,x � ,x + x + x = }.
(f ) xξ – ξ = , yξ – ξ < : (x*, y*, z*) = (, , ).
(g) xξ – ξ < , yξ – ξ > : (x*, y*, z*) = (, , ).
(h) xξ – ξ < , yξ – ξ = : (x*, y*, z*) : {(α,  – α, ) | � α � }.
(i) xξ – ξ < , yξ – ξ < : (x*, y*, z*) = (, , ).

(II) the case that x = :
(a) yξ – ξ > : (x*, y*, z*) : {( – α,α, ) | α � ξ

yξ
, y > , ξ > , ξ > , ξ + ξ = }.

(b) yξ – ξ = : (x*, y*, z*) : {(α,  – α, ) | � α � }.
(c) yξ – ξ < : (x*, y*, z*) : {(α,  – α, ) | � α � }.

http://www.fixedpointtheoryandapplications.com/content/2012/1/233
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(III) the case that x < :
(a) yξ – ξ > :

(x*, y*, z*) : {( yξ–ξ
yξ–xξ–xyξ+xξ

, – xξ–ξ
yξ–xξ–xyξ+xξ

, – xyξ–xξ
yξ–xξ–xyξ+xξ

) :
yξ – xξ – xyξ + xξ > , yξ – ξ > , xξ – ξ < , ξ > , ξ > , ξ + ξ = }.

(b) yξ – ξ = : (x*, y*, z*) : {(α,  – α, ) | � α � }.
(c) yξ – ξ < : (x*, y*, z*) = (, , ).

Let (x, y) ∈ R and S(x,y) be the set of vector solutions of the vector matrix game Bi(x, y),
i = , . From (I), (II) and (III),

⋃
(x,y)∈R

S(x, y) =
{
(α,  – α, ) | � α � 

} ∪ {
(,α,  – α) | � α � 

}

∪ {
(α, ,  – α) | � α � 

}
∪ {

(α,β ,γ ) | α � ,β � ,γ � ,α + β + γ = 
}

∪
{(

yξ – ξ

yξ – xξ – xyξ + xξ
, –

xξ – ξ

yξ – xξ – xyξ + xξ
,

–
xyξ – xξ

yξ – xξ – xyξ + xξ

) ∣∣∣ x < , yξ – xξ – xyξ + xξ > ,

yξ – ξ > , xξ – ξ < , ξ > , ξ > , ξ + ξ = 
}
.

Let (x̄, ȳ, ξ̄ ) be feasible for (SP) and (SD) with ȳ∇y(ξ̄T f )(x̄, ȳ) = x̄∇x(ξ̄T f )(x̄, ȳ) = . We can
easily check that

{
(x, y, ξ ) | (x, y, ξ ) is feasible for (SP) and (SD), ȳ∇y

(
ξT f

)
(x, y) = x̄∇x

(
ξT f

)
(x, y) = 

}
=

{(
ξ

ξ
,

ξ

ξ
, ξ, ξ

) ∣∣∣ ξ > , ξ > , ξ + ξ = 
}
.

Thus,

(
x̄

 + x̄ + ȳ
,

ȳ
 + x̄ + ȳ

,


 + x̄ + ȳ

)

∈
{(

ξ


,
ξ


, ξ

) ∣∣∣ ξ > , ξ > , ξ + ξ = 
}

⊂ S(x̄,ȳ).

Therefore, Theorem . holds.
Let (x, y) ∈ R and S(x,y) be the set of vector solutions of the vector matrix game Bi(x, y),

i = , . Then

⋃
(x,y)∈R

S(x,y) =
{
(α,  – α, ) | � α � 

} ∪ {
(,α,  – α) | � α � 

}

∪ {
(α, ,  – α) | � α � 

}
∪ {

(α,β ,γ ) | α � ,β � ,γ � ,α + β + γ = 
}

∪
{(

yξ – ξ

yξ – xξ – xyξ + xξ
, –

xξ – ξ

yξ – xξ – xyξ + xξ
,

http://www.fixedpointtheoryandapplications.com/content/2012/1/233
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–
xyξ – xξ

yξ – xξ – xyξ + xξ

) ∣∣∣ x < , yξ – xξ – xyξ + xξ > ,

yξ – ξ > , xξ – ξ < , ξ > , ξ > , ξ + ξ = 
}
.

So,

{(
x*

z*
,
y*

z*

) ∣∣∣ z* >  and
(
x*, y*, z*

) ∈ S
( x*
z*
, y
*
z*
)

}
=

{(
ξ

ξ
,

ξ

ξ

) ∣∣∣ ξ > , ξ > , ξ +ξ = 
}
.

Let F be the set of all feasible solutions of (SP) and let G be the set of all feasible solutions
of (SD). Then we can check that {( ξ

ξ
, ξ
ξ

, ξ, ξ) | ξ > , ξ > , ξ + ξ = } ⊂ F ∩ G and
( ξ
ξ

)∇y(ξT f )( ξ
ξ

, ξ
ξ

) = ( ξ
ξ

)∇x(ξT f )( ξ
ξ

, ξ
ξ

) = . Therefore, Theorem . holds.
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