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1 Introduction and preliminaries
Let E be a real Banach space, E* be the dual space of E, C is a nonempty closed convex

subset of E, ℜ+ is the set of nonnegative real numbers and J : E ® 2E* is the normal-

ized duality mapping defined by

J(x) = {f ∈ E∗ : 〈x, f 〉 = ||x|| · ||f ||, ||x|| = ||f ||}, x ∈ E. (1:1)

Let T : C ® C be a mapping, We use F (T) to denote the set of fixed points of T.

We also use “®” to stand for strong convergence and “⇀” for weak convergence. We

first recall some definitions:

A one parameter family � := {T(t) : t ≥ 0} of self mappings of C is said a nonexpan-

sive semigroup, if the following conditions are satisfied:

(i) T (t1 + t2)x = T (t1)T (t2)x, for any t1, t2 Î ℜ+ and x Î C;

(ii) T (0)x = x, for each x Î C;

(iii) for each x Î C, t ↦ T (t)x is continuous;

(iv) for any t ≥ 0, T (t) is nonexpansive mapping on C, that is for any x, y Î C,

||T(t)x − T(t)y|| ≤ ||x − y|| (1:2)

for any t ≥0.

If the family � := {T(t) : t ≥ 0} satisfies conditions (i)-(iii), then it is said
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(a) pseudocontractive semigroup, if for any x, y Î C, there exists j(x - y) Î J(x - y)

such that

〈T(t)x − T(t)y, j(x − y)〉 ≤ ||x − y||2 (1:3)

(b) uniformly Lipschitzian semigroup, if there exists a bounded measurable function L

: [0, ∞) ® (0, ∞) such that, for any x, y Î C and t ≥ 0,

||Tn(t)x − Tn(t)y|| ≤ L(t)||x − y|| ∀n ≥ 1 (1:4)

(c) strict pseudocontractive semigroup, if there exists a bounded function l : [0, ∞) ®
(0, ∞) and for any given x, y Î C, there exists j(x - y) Î J(x - y) such that

〈T(t)x − T(t)y, j(x − y)〉 ≤ ||x − y||2 − λ(t)||(I − T(t))x − (I − T(t))y||2 (1:5)

for any t ≥ 0.

It is easy to see that such semigroup is ((1 + λ(t))/λ(t))-Lipschitzian and pseudo-

contractive semigroup.

(d) demicontractive semigroup, if F(T(t)) ≠ j for all t ≥ 0, there exists bounded func-

tion l: [0, ∞) ® (0, ∞) and for any t ≥ 0, x Î C and y Î F (T (t)), there exists j(x - y)

Î J(x - y) such that

〈T(t)x − y, j(x − y)〉 ≤ ||x − y||2 − λ(t)||(I − T(t))x||2 (1:6)

In this article, we introduce the following semigroups.

Definition 1.1 A one parameter family � := {T(t) : t ≥ 0} of self mapping of C satis-

fies conditions (i)-(iii), then it is said

(e) total asymptotically strict pseudocontractive semigroup, if there exists bounded

function l : [0, ∞) ® (0, ∞) and sequences {μn} ⊂ [0, ∞)and {ξn} ⊂ [0, ∞) with μn

® 0 and ξn ® 0 as n ® ∞. for any given x, y Î C, there exists j(x - y) Î J(x - y), such

that

〈Tn(t)x − Tn(t)y, j(x − y)〉 ≤ ||x − y||2 − λ(t)||(I − Tn(t))x − (I − Tn(t))y||2
+μnφ(||x − y||) + ξn, ∀n ≥ 1

(1:7)

for any t ≥ 0.

where φ : [0, ∞) → [0, ∞) is a continuous and strictly increasing function with j
(0) = 0.

(f) asymptotically strict pseudocontractive semigroup, if there exists a bounded func-

tion l : [0, ∞) ® (0, ∞) and a sequence {kn} ⊂ [1, ∞) with kn ® 1 as n ® ∞, for any

given x, y Î C, there exists j(x - y) Î J(x - y) such that

〈Tn(t)x − Tn(t)y, j(x − y)〉
≤ kn||x − y||2 − λ(t)||(I − Tn(t))x − (I − Tn(t))y||2, ∀n ≥ 1

(1:8)

for any t ≥ 0.

(g) asymptotically demicontractive semigroup, if F (T (t)) ≠ j for all t ≥ 0 and there

exists a bounded function l : [0, ∞) ® (0, ∞)and a sequence {kn} ⊂ [1, ∞) with kn ® 1

as n ® ∞, for any t ≥ 0, x Î C and y Î F (T(t)), there exists j(x - y) Î J(x - y) such that

〈Tn(t)x − y, j(x − y)〉 ≤ kn||x − y||2 − λ(t)||(I − Tn(t))x||2, ∀n ≥ 1 (1:9)
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for any t ≥ 0.

Remark 1.2 If j(l) = l2 and ξn = 0, a total asymptotically strict pseudocontractive

semigroup is a asymptotically strict pseudocontractive semigroup. Every asymptotically

strict pseudocontractive semigroup with
⋂

t>0
F(T(t)) 
= φ is asymptotically demicon-

tractive semigroup. If kn = 1, n = 1, a asymptotically strict pseudocontractive semi-

group is a strict pseudocontractive semigroups a asymptotically demicontractive

semigroup is a demicontractive semigroup.

It is easy to see that the condition (1.7) is equivalent to following condition: for any t

≥ 0, x Î C and y Î F (T(t)), there exists j(x - y) Î J(x - y) such that

〈x − Tn(t)x, j(x − y)〉 ≥ λ(t)||x − Tn(t)x||2 − μnφ(||x − y||) − ξn (1:10)

The convergence problems of implicit and explicit iterative sequences for nonexpan-

sive semigroups to common fixed points has been considered by some authors in var-

ious spaces. see, for example [1-11].

In 1998, Shioji and Takahashi [1] introduced in a Hilbert space the implicit iteration

xn = αnu + (1 − αn)σtn(xn), n ≥ 1, (1:11)

where {an} is a sequence in (0, 1), {tn} a sequence of positive real number divergent

to ∞ and for each t >0 and x Î C, st(x) is the average given by

σt(x) =
1
t

t∫
0
T(s)xds.

Under certain restrictions to the sequence {an}, they proved the strong convergence

of {xn} to a point p ∈ F :=
⋂

t≥0
F(T(t)) .

In 2003, Suzuki [2] first introduced the following implicit iteration process:

xn = αnu + (1 − αn)T(tn)(xn), n ≥ 1, (1:12)

for the nonexpansive semigroup in a Hilbert space. He proved strong convergence of

his process (1.12) with appropriate assumptions imposed upon the parameter

sequences {an} and {tn}. Xu [3] proved that Suzuki’s result holds in a uniformly convex

Banach space with a weakly continuous duality mapping.

In 2005, Aleyner and Reich [4] first introduced the following explicit iteration

sequence

xn+1 = αnu + (1 − αn)T(tn)xn, n ≥ 0 (1:13)

in a reflexive Banach space with a uniformly Gâteaux differentiable norm such that

each nonempty, bounded, closed and convex subset of E has the common fixed point

property for nonexpansive mappings. Under appropriate assumptions imposed upon

the parameter sequences {an} and {tn}, they proved that the sequence {xn} defined by

(1.13) converges strongly to a common sixed point of the semigroup {T (t) : t ≥ 0}.

More recently, Chang et al. [11] introduced the following explicit iteration process:

x1 ∈ C,

xn+1 = (1 − αn)xn + αnT(tn)xn, n ≥ 1 (1:14)
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for the Lipschitzian and demicontractive semigroup � := {T(t) : t ≥ 0} in general

Banach spaces. Also under appropriate assumptions imposed upon the parameter

sequences {an} and {tn}, they proved the sequence {xn} defined by (1.14) converges

strongly to some point in F =:
⋂

t≥0
F(T(t)) .

Inspired and motivated by the above works of Shioji and Takahashi [1], Suzuki [2],

Xu [3], Aleyner and Reich [4] and Chang et al. [11], the purpose of this article is to

introduce and study the strong convergence problem of the following explicit iteration

process:

x1 ∈ C,

xn+1 = (1 − αn)xn + αnTn(tn)xn, n ≥ 1 (1:15)

For the uniformly Lipschitzian and total asymptotically strict pseudocontractive semi-

group � := {T(t) : t ≥ 0} in general Banach spaces. The results presented in the article

extend and improve some recent results given in [4,5,7,9].

The following Lemmas will be needed in proving our main results.

Lemma 1.3 Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfy-

ing

an+1 ≤ (1 + δn)an + bn, ∀n ≥ n0, (1:16)

where n0 is some nonnegative integer. If
∑∞

i=1
δn < ∞ and

∑∞
i=1

bn < ∞ , then the

limit lim
n→∞an exists.

Lemma 1.4 [12] Let E be any real Banach space, E* be the dual space of E and

J : E → 2E
∗ be the normalized duality mapping. Then for any x, y Î E we have

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀j(x + y) ∈ J(x + y) (1:17)

2 Main results
Now, we are ready to give our main results.

Theorem 2.1 Let C be a nonempty closed convex subset of a real Banach space E,

and let � := {T(t) : t ≥ 0} be a uniformly Lipschitzian with bounded measurable func-

tion L(t) : [0, ∞) ® (0, ∞) and total asymptotically strict pseudocontractive semigroup

as defined in (1.7), such that

L := sup
t≥0

L(t) < ∞, λ := inf
t≥0

λ(t) > 0, F :=
⋂

t≥0

F(T(t)) 
= ∅ (2:1)

There exist positive constants M and M* such that j(l) ≤ M*l2 for all¸ l ≥ M. Let

{xn} be the sequence defined by (1.15), where {an} is a sequence in (0, 1) and {tn} be an

increasing sequence in [0, ∞). If the following conditions are satisfied:

(1)
∑∞

n=1
α2
n < ∞,

∑∞
n=1

αn = ∞,
∑∞

n=1
αnμn < ∞,

∑∞
n=1

αnξn < ∞.

(2) for any bounded subset D ⊂ C

lim
n→∞ sup

x∈D,s∈R+
||Tn(s + tn)x − Tn(tn)x|| = 0 (2:2)

Yang and Zhao Fixed Point Theory and Applications 2012, 2012:24
http://www.fixedpointtheoryandapplications.com/content/2012/1/24

Page 4 of 10



(3) There exist a compact subset G of E such that
⋂

t≥0
T(t)(C) ⊂ G .

Then the sequence {xn} converges strongly to a common fixed point of the semi-

group � := {T(t) : t ≥ 0} .
Proof The proof of Theorem 2.1 is divided into four steps:

Step 1. First we prove that lim
n→∞||xn − p|| exist for all p Î F.

For any p Î F, by (1.4) we have

||Tn(tn)xn − p|| = ||Tn(tn)xn − Tn(tn)p|| ≤ L(tn)||xn − p|| ≤ L||xn − p|| (2:3)

This follows from (1.15) and (2.3) that

||xn+1 − p|| = ||(1 − αn)xn + αnTn(tn)xn − (1 − αn)p − αnp||
≤ (1 − αn)||xn − p|| + αn||Tn(tn)xn − p||
≤ (1 − αn)||xn − p|| + αnL||xn − p||
≤ (1 + L)||xn − p||

(2:4)

and

||xn+1 − xn|| = αn||Tn(tn)xn − xn||
≤ αn(||Tn(tn)xn − p|| + ||xn − p||)
≤ αn(1 + L)||xn − p||

(2:5)

Since � := {T(t) : t ≥ 0} is total asymptotically strict pseudocontractive semigroup

with λ := inf
t≥0

λ(t) > 0 , for the point xn+1 and p there exists j(xn+1 - p) Î J(xn+1 - p)

such that

〈Tn(tn)xn+1 − xn+1, j(xn+1 − p)〉 ≤ −λ||Tn(tn)xn+1 − xn+1||2
+ μnφ(||xn+1 − p||) + ξn, ∀n ≥ 1

(2:6)

Again since j is an increasing function, it results that j(l) ≤ j(M) if l ≤ M and j(l)
≤ M*l2, if l ≤ M. In either case, we can obtain that

φ(λ) ≤ φ(M) +M∗λ2 (2:7)

Thus, by Lemma 1.4, (2.4)-(2.7), we have

||xn+1 − p||2 ≤ ||xn − p + αn(Tn(tn)xn − xn)||2
≤ ||xn − p||2 + 2αn 〈Tn(tn)xn − xn, j(xn+1 − p)〉
= ||xn − p||2 + 2αn 〈Tn(tn)xn − Tn(tn)xn+1, j(xn+1 − p)〉
+ 2αn〈Tn(tn)xn+1 − xn+1, j(xn+1 − p)〉
+ 2αn〈xn+1 − xn, j(xn+1 − p)〉

≤ ||xn − p||2 + 2αnL||xn+1 − xn||||xn+1 − p||
− 2αnλ||Tn(tn)xn+1 − xn+1||2 + 2αnμnφ(||xn+1 − p||)
+ 2αnξn + 2αn||xn+1 − xn||||xn+1 − p||

≤ (1 + 2α2
n(1 + L)3 + 2αnμnM

∗(1 + L)2)||xn − p||2
− 2αnλ||Tn(tn)xn+1 − xn+1||2
+ 2αnμnφ(M) + 2αnξn

≤ (1 + 2α2
n(1 + L)3 + 2αnμnM∗(1 + L)2)||xn − p||2

+ 2αnμnφ(M) + 2αnξn

(2:8)
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By the condition (1), it follows from Lemma 1.3 that the limit lim
n→∞||xn − p|| exist

and so the sequence {xn} is bounded in C.

Step 2. Now we prove that

lim inf
n→∞ ||xn − Tn(tn)xn|| = 0 (2:9)

In fact, it follows from (2.8) that

||xn+1 − p||2 ≤ ||xn − p||2 − 2αnλ||Tn(tn)xn+1 − xn+1||2
+ (2α2

n(1 + L)3 + 2αnμnM∗(1 + L)2)||xn − p||2
+ 2αnμnφ(M) + 2αnξn

(2:10)

This implies that

2αnλ||Tn(tn)xn+1 − xn+1||2 ≤ ||xn − p||2 − ||xn+1 − p||2 + 2α2
n(1 + L)3K2

+ (2M∗(1 + L)2K2 + 2φ(M))αnμn + 2αnξn
(2:11)

Where K = sup
n≥1

||xn − p|| . Hence, for some m ≥ 1,

2λ

m∑

n=1

αn||Tn(tn)xn+1 − xn+1||2

≤
m∑

n=1

(||xn − p||2 − ||xn+1 − p||2) + 2(1 + L)3K2
m∑

n=1

α2
n

+(2M∗(1 + L)2K2 + 2φ(M))
m∑

n=1

αnμn + 2
m∑

n=1

αnξn

≤ ||x1 − p||2 + 2(1 + L)3K2
m∑

n=1

α2
n

+(2M∗(1 + L)2K2 + 2φ(M))
m∑

n=1

αnμn + 2
m∑

n=1

αnξn

(2:12)

Letting m ® ∞, we have

2λ

∞∑

n=1

αn||Tn(tn)xn+1 − xn+1||2

≤ ||x1 − p||2 + 2(1 + L)3K2
∞∑

n=1

α2
n

+ (2M∗(1 + L)2K2 + 2φ(M))
∞∑

n=1

αnμn + 2
∞∑

n=1

αnξn

(2:13)

By the condition (1), we obtain

∞∑

n=1

αn||Tn(tn)xn+1 − xn+1||2 < ∞ (2:14)
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Which implies

lim inf
n→∞ ||xn+1 − Tn(tn)xn+1|| = 0 (2:15)

Since lim
n→∞||xn − p|| exist for all p Î F and lim

n→∞αn = 0 , using (2.5), we have

lim
n→∞ ||xn+1 − xn|| = 0 (2:16)

it follows from (2.15) and (2.16) that

lim inf
n→∞ ||xn − Tn(tn)xn||
≤ lim inf

n→∞ {||xn − xn+1|| + ||xn+1 − Tn(tn)xn+1|| + ||Tn(tn)xn+1 − Tn(tn)xn||}
≤ lim inf

n→∞ {(1 + L)||xn − xn+1|| + ||xn+1 − Tn(tn)xn+1||} = 0

(2:17)

Therefore the conclusion (2.9) is proved.

Step 3. Now we prove that

lim inf
n→∞ ||xn − T(tn)xn|| = 0 (2:18)

Letting dn = ||xn − Tn(tn)xn|| , it follows from (1.4) that

||xn+1 − T(tn+1)xn+1||
≤ ||xn+1 − Tn+1(tn+1)xn+1|| + ||Tn+1(tn+1)xn+1 − T(tn+1)xn+1||
≤ dn+1 + L||Tn(tn+1)xn+1 − xn+1||
≤ dn+1 + L{||Tn(tn+1)xn+1 − Tn(tn)xn+1||

+||Tn(tn)xn+1 − Tn(tn)xn||
+||Tn(tn)xn − xn|| + ||xn − xn+1||}

≤ dn+1 + Ldn + L(1 + L)||xn+1 − xn||
+L||Tn((tn+1 − tn) + tn)xn+1 − Tn(tn)xn+1||

≤ dn+1 + Ldn + L(1 + L)||xn+1 − xn||
+L sup

z∈{xn},s∈R+
||Tn(s + tn)z − Tn(tn)z||

(2:19)

By the condition (2), (2.9), and (2.16), we have

lim inf
n→∞ ||xn+1 − T(tn+1)xn+1|| ≤ lim inf

n→∞ {dn+1 + Ldn + L(1 + L)||xn+1 − xn||
+L sup

z∈{xn},s∈R+
||Tn(s + tn)z − Tn(tn)z||} = 0

(2:20)

Therefore the conclusion (2.18) is proved.

Step 4. Finally we prove the sequence {xn} converges strongly to a common fixed

point of the semigroup � := {T(t) : t ≥ 0} .
By (2.9) and (2.18), we have

lim inf
n→∞ ||xn − Tn(tn)xn|| = 0, lim inf

n→∞ ||xn − T(tn)xn|| = 0

Again by the condition (3), there exists a compact subset G of E such that
⋂

t≥0
T(t)(C) ⊂ G and so there exists subsequence {xni} of {xn}, for some point q Î

G such that

lim
i→∞

T(tni)xni = q, lim
i→∞

||xni − T(tni)xni || = 0 (2:21)
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and

lim
i→∞

||xni − Tni(tni)xni || = 0 (2:22)

Hence it follows from (2.21) that xni → q as i ® ∞.

Next, we prove that

lim
i→∞

||xni − Tni(t)xni || = 0, (2:23)

for all t ≥ 0. In fact, it follows from the condition (2) and (2.22) that, for any t ≥ 0

||xni − Tni(t)xni || ≤ ||xni − Tni(tni)xni ||
+||Tni(t + tni)xni − Tni(tni)xni || + ||Tni(t)xni − Tni(t + tni)xni ||

≤ (1 + L)||xni − Tni(tni)xni || + ||Tni(t + tni)xni − Tni(tni)xni ||
≤ (1 + L)||xni − Tni(tni)xni ||

+ sup
z∈{xn},s∈R+

||Tni(s + tni)z − Tni(tni)z|| → 0

(2:24)

as i ® ∞. Letting eni = ||xni − Tni(t)xni || , it follows from (2.16) and (2.23) that

||xni − T(t)xni || ≤ ||xni − Tni(t)xni || + ||Tni(t)xni − T(t)xni ||
≤ eni + L||Tni−1(t)xni − xni ||
≤ eni + L(||xni − xni−1|| + ||xni−1 − Tni−1(t)xni−1||

+||Tni−1(t)xni−1 − Tni−1(t)xni ||)
≤ eni + L(||xni − xni−1|| + eni−1 + L||xni−1 − xni ||)
≤ eni + L(1 + L)||xni − xni−1|| + Leni−1 → 0

(2:25)

as i ® ∞. Since xni → q as i ® ∞ and the semigroup � := {T(t) : t ≥ 0} is Lipschit-

zian, it follows from (2.25) that q = T (t)q for all t ≥ 0, that is

q ∈ F :=
⋂

t≥0

F(T(t)) (2:26)

Since xni → q as i ® ∞ and the limit lim
n→∞||xn − q|| exist, which implies that

xni → q ∈ F as n ® ∞. This completes the proof.

The following theorem can be obtained from Theorem 2.1 immediately.

Theorem 2.2 Let C be a nonempty closed convex subset of a real Banach space E,

and let � := {T(t) : t ≥ 0} be a uniformly Lipschitzian with bounded measurable func-

tion L(t) : [0, ∞) ® (0, ∞) and asymptotically strict pseudocontractive semigroup as

defined in (1.8), such that

L := sup
t≥0

L(t) < ∞, λ := inf
t≥0

λ(t) > 0, F :=
⋂
t≥0

F(T(t)) 
= ∅

Let {xn} be the sequence defined by (1.15), where {an} is a sequence in (0, 1) and {tn}

be an increasing sequence in [0, ∞). If the following conditions are satisfied:

(1)
∑∞

n=1
α2
n < ∞,

∑∞
n=1

αn = ∞,
∑∞

n=1
αn(kn − 1) < ∞.

(2) for any bounded subset D ⊂ C

lim
n→∞ sup

x∈D,s∈R+
||Tn(s + tn)x − Tn(tn)x|| = 0
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(3) There exist a compact subset G of E such that
⋂

t≥0
T(t)(C) ⊂ G .

Then the sequence {xn} converges strongly to a common fixed point of the semi-

group � := {T(t) : t ≥ 0} .
Proof Taking j(l) = l2, ξn = 0, µn = kn - 1 in Theorem 2.1, Since all conditions in

Theorem 2.1 are satisfied. It follows from Theorem 2.1 that the sequence

xn → q ∈ F :=
⋂

t≥0
F(T(t)) as n ® ∞. This completes the proof of Theorem 2.2.

The following theorem can be obtained from Theorem 2.2 immediately.

Theorem 2.3 Let C be a nonempty closed convex subset of a real Banach space E,

and let � := {T(t) : t ≥ 0} be a uniformly Lipschitzian with bounded measurable func-

tion L(t) : [0, ∞) ® (0, ∞) and asymptotically demicontractive semigroup as defined in

(1.9), such that

L := sup
t≥0

L(t) < ∞, λ := inf
t≥0

λ(t) > 0, F :=
⋂
t≥0

F(T(t)) 
= ∅

Let {xn} be the sequence defined by (1.15), where {an} is a sequence in (0, 1) and {tn}

be an increasing sequence in [0, ∞). If the following conditions are satisfied:

(1)
∑∞

n=1
α2
n < ∞,

∑∞
n=1

αn = ∞,
∑∞

n=1
αn(kn − 1) < ∞.

(2) for any bounded subset D ⊂ C

lim
n→∞ sup

x∈D,s∈R+
||Tn(s + tn)x − Tn(tn)x|| = 0

(3) There exist a compact subset G of E such that
⋂

t≥0
T(t)(C) ⊂ G .

Then the sequence {xn} converges strongly to a common fixed point of the semi-

group � := {T(t) : t ≥ 0} .
Proof Taking y Î F (T (t)), for any t ≥ 0 in Theorem 2.2, Since all conditions in

Theorem 2.2 are satisfied. It follows from Theorem 2.2 that the sequence

xn → q ∈ F :=
⋂

t≥0
F(T(t))as n ® ∞. This completes the proof of Theorem 2.3.

Remark 2.4 Theorem 2.3 extend and improved the corresponding results of Chang

et al. [11], Shioji and Takahashi [1], Suzuki [2], Xu [3], Aleyner and Reich [4] and

others.
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