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Abstract

In this article, we introduce the concept of a w-cone distance on topological vector
space (tvs)-cone metric spaces and prove various fixed point theorems for w-cone
distance contraction mappings in tvs-cone metric spaces. The techniques of the
proof of our theorems are more complex then in the corresponding previously
published articles, since a new technique was necessary for the considered class of
mappings. Presented fixed point theorems generalize results of Suzuki and Takahashi,
Abbas and Rhoades, Pathak and Shahzad, Raja and Veazpour, Hicks and Rhoades and
several other results existing in the literature.
Mathematics subject classification (2010): 47H10; 54H25.
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1 Introduction and preliminaries
There exist many generalizations of the concept of metric spaces in the literature.

Fixed point theory in abstract metric or K-metric spaces was developed in the middle

of 70th years of twentieth century. Huang and Zhang [1] re-introduced and studied

the concept of cone metric spaces over a Banach space, and proved several fixed point

theorems. Then, there have been a lot of articles in which known fixed point theorems

in metric are extended to cone metric spaces. Recently, Du [2] used the scalarization

function and investigated the equivalence of vectorial versions of fixed point theorems

in K-metric spaces and scalar versions of fixed point theorems in metric spaces. He

showed that many of the fixed point theorems for mappings satisfying contractive con-

ditions of a linear type in K-metric spaces can be considered as corollaries of corre-

sponding theorems in metric spaces. Nevertheless, the fixed point theory in K-metric

spaces proceeds to be actual, since the method of scalarization function cannot be

applied for a wide class of weakly contractive mapping, satisfying nonlinear contractive

conditions.

Kada et al. [3] introduced and studied the concept of w-distance on a metric space.

They give examples of w-distance and improved Caristi’s fixed point theorem, Eke-

land’s ε-variational’s principle and the nonconvex minimization theorem according to

Takahashi (see many useful examples and results on w-distance in [4-8] and in refer-

ences there in).

Definition 1. [3]. Let X be a metric space with metric d. Then a function p : X × X

® [0, ∞) is called a w-distance on X if the following are satisfied:
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(1) p(x, z) ≤ p(x, y) + p(y, z), for any x, y, z Î X,

(2) for any x Î X, p(x, ·): X ® [0, ∞) is lower semicontinuous,

(3) for any ε >0, there exist δ >0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

In the following we suppose that E is a real Hausdorff topological vector space (tvs

for short) with the zero vector θ. A proper nonempty and closed subset P of E is called

a (convex) cone if P + P ⊂ P, lP ⊂ P for l ≥ 0 and P ∩ (-P) = θ. We shall always

assume that the cone P has a nonempty interior int P (such cones are called solid).

Each cone P induces a partial order ≼ on E by x ≼ y ⇔ y - x Î P. x ≺ y will stand for

x ≼ y and x ≠ y, while x ≪ y will stand for y - x Î int P. The pair (E, P) is an ordered

tvs.

Let us recall that the algebraic operations in tvs-cone are continuous functions. For

the convenience of the reader we give the next result.

Lemma 2. Let E be a tvs over ℱ = ℝ, ℂ.

(1) Suppose that xn, yn, x, y Î E and xn ® x and yn ® y. Then xn + yn ® x + y.

(2) Suppose that xn, x Î E, ln, l Î ℱ, xn ® x and ln ® l. Then lnxn ® lx.
Proof. (1) Suppose that W ⊂ E is an open set and x + y Î W. Let us define f : E × E

↦ E by f(u, v) = u + v, u, v Î E. Because f is continuous at (x, y) there is an open set

G ⊂ E × E such that (x, y) Î G and f(G) ⊂ W. Now there are open sets Ui, Vi ⊂ E, i Î
I, such that G = ∪iÎIUi × Vi. Hence, there exists i0ÎI such that (x, y) ∈ Ui0 × Vi0.

Because x ∈ Ui0 and xn ® x, there exists n1 such that xn ∈ Ui0 for all n ≥ n1. Also,

because y ∈ Vi0 and yn ® y, there exists n2 such that yn ∈ Vi0 for all n ≥ n2. Hence,

xn + yn = f
(
xn, yn

) ∈ f (Ui0 × Vi0) ⊂ W for all n ≥ max{n1, n2}.Thus, xn + yn ® x + y.

(2) Suppose that W ⊂ E is an open set and lx Î W. Let us define g : ℱ × ℰ ↦ ℰ by g

(μ, v) = μv, μ Î ℱ, v Î ℰ. Because g is continuous at (l, x) there is an open set G ⊂ ℱ

× ℰ such that (l, x) Î G and g(G) ⊂ W. Now there are open sets Ui ⊂ ℱ, Vi ⊂ ℰ, i Î
I, such that G = ∪ iÎIUi × Vi. Hence, there exists i0 Î I such that (λ, x) ∈ Ui0 × Vi0.

Because λ ∈ Ui0 and ln ® l, there exists n1 such that λn ∈ Ui0for all n ≥ n1. Also,

because x ∈ Vi0 and xn ® x, there exists n2 such that xn ∈ Vi0 for all n ≥ n2. Hence,

λnxn = g(λn, xn) ∈ g(Ui0 × Vi0) ⊂ W for all n ≥ max{n1, n2}. Thus, lnxn ® lx. ■
Following [1,2,9,10] we give the following

Definition 3. Let X be a nonempty set and (E.P) an ordered tvs. A function d : X × X

® E is called a tvs-cone metric and (X, d) is called a tvs-cone metric space if the fol-

lowing conditions hold:

(C1) θ ≼ d(x, y) for all x, y Î X and d(x, y) = θ if and only if x = y;

(C2) d(x, y) = d(y, x) for all x, y Î X;

(C3) d(x, z) ≼ d(x, y) + d(y, z) for all x, y, z Î X.

Let x Î X and {xn} be a sequence in X. Then, it is said that

(i) {xn} (tvs-cone) converges to x if for every c Î E with θ ≪ c there exists a natural

number n0 such that d(xn, x) ≪ c for all n >n0; we denote it by limn®∞ xn = x or xn
® x as n ® ∞;

(ii) {xn}is a (tvs-cone) Cauchy sequence if for every c Î E with 0 ≪ c there exists a

natural number n0 such that d(xm, xn) ≪ c for all m, n > n0;

(iii) (X, d) is (tvs-cone) complete if every tvs-Cauchy sequence is (tvs) convergent in X.

Let (X, d) be a tvs-cone metric space. Then the following properties are often used

(see e.g., [1,2,9-13]).

(p1) If u ≤ v and v ≪ w then u ≪ w.

Ćirić et al. Fixed Point Theory and Applications 2012, 2012:3
http://www.fixedpointtheoryandapplications.com/content/2012/1/3

Page 2 of 9



(p2) If a ≤ b + c for each c Î int P then a ≤ b.

(p3) If a ≤ la, where a Î P and 0 < l <1, then a = θ.

(p4) If ε Î int P, θ ≤ an and an ® θ, then there exists n0 such that for all n > n0 we

have an ≪ ε.

2 w-Cone distance in tvs-cone metric spaces
Let (X, d) be a tvs-cone metric space. Then

(c1) T : X ® X is continuous at x Î X if xn is a sequence in X and lim xn = x implies

T(x) = lim T(xn).

(c2) G : X ® P is lower semicontinuous at x Î X if for any ε in E with θ ≪ ε, there

is n0 in N such that

G(x) ≤ G(xn) + ε, for all n ≥ n0, (1)

whenever {xn} is a sequence in X and xn ® x.

(c3) For x Î X, T : X ® X, O(x; ∞) = {x, Tx, T2x, ...} is called the orbit of x. G : X ®
P is

T-orbitally lower semicontinuous at x if for any ε in E with θ ≪ ε, there is n0 in N

such that (1) with x = u holds whenever xn Î O(x; ∞) and xn ® u.

Observe that if in definitions (c1), (c2) and (c3) we have E = ℝ, P = [0, ∞), ||x|| = |x|,

x Î E, then we get the well-known definitions of continuity, lower and T-orbitally

lower semicontinuity.

Definition 4. Let (X, d) be a tvs-cone metric space. Then, a function p : X × X ® P is

called a w-cone distance on X if the following are satisfied:

(w1) p(x, z) ≤ p(x, y) + p(y, z), for any x, y, z Î X,

(w2) for any x Î X, p(x, ·): X ® P is lower semicontinuous,

(w3) for any ε in E with θ ≪ ε, there is δ in E with θ ≪ δ, such that p(z, x) ≪ δ and

p(z, y) ≪ δ imply d(x, y) ≪ ε.

Example 5. Let (X, d) be a cone metric space. Then, a cone metric d is a w-cone dis-

tance p on X.

Proof. Clearly, if p = d, a w-cone distance p satisfies (w1) and (w3). So we have only

to prove (w2). Suppose that x, y Î X, yn Î X, yn ® y and ε in E with θ ≪ ε be arbi-

trary. Since yn ® y, then there is n0 in N such that d(yn, y) ≪ ε for all n ≥ n0. Define

G(y) = d(x, y). Then we have

G(y) = d(x, y) ≤ d(x, yn) + d(yn, y) ≤ d(x, yn) + ε = G(yn) + ε

for all n ≥ n0. Therefore p(x, ·) = d(x, ·) is lower semicontinuous.

Remark 6. Wang and Guo [14]defined the concept of c-distance on a cone metric

space in the sense of Huang and Zhang [1], which is also a generalization of w-distance

of Kada et al. [3]. They proved a common fixed point theorem (Theorem 2.2) by using

c-distance in a cone metric space (X, d), where a cone P is normal with normal con-

stant K. Now we shall present an example (Example 7 below), which shows that there

are cone metric spaces where underlying cone is not normed, and so theorems of Wang

and Guo [14]cannot be applied. On the other case, our presented fixed point theorems

for mappings under contractive conditions expressed in the terms of w-distance can be

applied, although the underlying cone is not normed.
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Example 7. Let E = C[0, 1] be the Banach space of real-valued continuous functions

with the usual norm

||f (t) − g(t)|| = max
0≤t≤1

|f (t) − g(t)|

and let a cone P be defined by P = {f Î E : f(t) ≥ 0 for t Î [0, 1]}. This cone is normal

in the Banach-space topology on E. Let τ* be the strongest locally convex topology on the

linear vector space E. Then, intP ≠ ∅, but the cone P is not normal in the topology τ*.

Indeed, if we suppose, to the contrary, that P is normal cone, then the topology τ* is

normed (see, e.g., [15]). But if the cone of an ordered tvs is solid and normal, then such

tvs must be an ordered normed space, which is impossible because an infinite dimen-

sional space with the strongest locally convex topology cannot be metrizable (see, e.g.,

[13]). Let now X = [0, +∞) and d : X × X ® (E, τ*) be defined by d(x, y)(t) = |x - y|.et.

Then (X, d) is a tvs-cone metric space over the non normedzable linear tvs (E, τ*).

The following lemma is crucial and is an extension of Lemma 1 in [3] for a w-metric

distance to a w-cone distance.

Lemma 8. Let (X, d) be a tvs-cone metric space and let p be a w-cone distance on X.

Let {xn} and {yn} be sequences in X, let{an} with θ ≤ an, and {bn} with θ ≤ bn, be
sequences in E converging to θ, and let x, y, z Î X. Then the following hold:

(i) If p(xn, y) ≤ an and p(xn, z) ≤ bn for any n Î N, then y = z. In particular, if p(x, y)

= θ

and p(x, z) = θ, then y = z.

(ii) If p(xn, yn) ≤ an and p(xn, z) ≤ bn for any n Î N, then {yn} converges to z.

(iii) If p(xn, xm) ≤ an for any n, m Î N with m > n, then {xn} is a Cauchy sequence.

(iv) If p(y, xn) ≤ an for any n Î N, then {xn} is a Cauchy sequence.

Proof. We shall prove (ii). Let ε in E with θ ≪ ε be arbitrary. From (w3) of Defini-

tion 4 there is δ in E with θ ≪ δ, such that p(xn, yn) ≪ δ and p(yn, z) ≪ δ imply d(yn,

z) ≪ ε. Since an ® θ and bn ® θ, there is n0 Î N such that an ≤ δ and bn ≤ δ for all

n ≥ n0. Then for all n ≥ n0 we have

p(xn, yn) ≤ αn � δ and p(xn, z) ≤ βn � δ.

Thus from (w3), d(yn, z) ≪ ε. Hence yn ® z as n ® ∞. Similarly, following lines of

the proof of Lemma 1 in [3], one can prove (i), (iii) and (iv). ■

3 Fixed point theorems for w-cone distance contraction mappings in K-
metric spaces
We note that the method of Du [2] for cone contraction mappings cannot be applied

for a w-cone distance contraction mappings.

In the following theorem, which extends and improves Theorem 2 of [3] and Theo-

rem 1 of [5], we give an estimate for a w-cone distance p(xn, z) of an approximate

value xn and a fixed point z.

Theorem 9. Let (X, d) be a complete tvs-cone metric space with w-cone distance p on

X. Suppose that for some 0 ≤ k <1 a mapping T : X ® X satisfies the following condi-

tion:

p(Tx,T2x) ≤ kp(x,Tx), for all x ∈ X. (2)

Assume that either of the following holds:

Ćirić et al. Fixed Point Theory and Applications 2012, 2012:3
http://www.fixedpointtheoryandapplications.com/content/2012/1/3

Page 4 of 9



(i) If y ≠ Ty, there exists c Î int(P), c ≠ θ, such that

c � p(x, y) + p(x,Tx), for all x ∈ X;

(ii) T is continuous.

Then, there exists z Î X, such that z = Tz and

p(Tnx, z) ≤ kn

1 − k
· p(x,Tx) for n ≥ 1. (3)

Moreover, if v = Tv for some v Î X, then p(v, v) = θ.

Proof. Let x Î X and define a sequence {xn} by x0 = x; xn = Tnx for any n Î N .

Then from (2) we have, for any n Î N,

p(xn, xn+1) = p(Txn−1,Txn) ≤ kp(xn−1, xn) ≤ · · · ≤ knp(x,Tx). (4)

Thus, if m > n, then from (w1) of Definition 4 and (4),

p(xn, xm) ≤ p(xn, xn+1) + · · · + p(xm−1, xm)

≤ knp(x,Tx) + · · · + km−1p(x,Tx)

≤ kn

1 − k
· p(x,Tx).

(5)

Hence, by (iii) of Lemma 8 with an = [kn/(1 - k)] · p(x, Tx), {xn} is a Cauchy

sequence in X. Since X is complete, {xn} converges to some point z Î X.

Now we shall prove the estimate (3). Define a function G : X ® P by G(x) = p(xn, x),

where n is any fixed positive integer. Since xn ® z as n ® ∞, from (w2) of Definition 4

and (2) we have that for any ε in E with θ ≪ ε, there is m0 in N such that

p(xn, z) ≤ p(xn, xm ) + ε for m > m0.

Thus by (5) we get

p(xn, z) ≤ k
n

1 − k
· p(x,Tx) + ε. (6)

Hence, as xn = Tnx,

p(T
n
x, z) ≤ k

n

1 − k
· p(x,Tx) + ε for any ε in E withθ � ε.

Thus, taking ε = ε/i we have

p(Tnx, z) ≤ kn

1 − k
· p(x,Tx) + ε

i
for each i ≥ 1. (7)

From (7) and by definition of the partial order ≤ on E, we obtain

ε

i
− p(Tnx, z) +

kn

1 − k
· p(u,Tu) ∈ P.

By Lemma 2, it is easy to show that

lim
i→∞

[
ε

i
− p(Tnx, z) +

kn

1 − k
· p(u,Tu)

]
= −p(Tnx, z) +

kn

1 − k
· p(u,Tu).
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Therefore, as P is closed,

−p(Tnx, z) +
kn

1 − k
· p(x,Tx) ∈ P. (8)

From the definition of partial order ≤, (8) is equivalent to (3). Thus we proved (3).

Suppose that the case (i) is satisfied. We have to prove that Tz = z. Suppose, to the

contrary, that z ≠ Tz. Then from (i) there exists c Î int(P) such that

c � p(x, z) + p(x,Tx), forall x ∈ X. (9)

From (6) and (3) we conclude that there exists n0 Î N such that

p(xn, z) � c
4

and p(xn, xn+1) � c
4

for all n > n0. (10)

Since xn ® z as n ® ∞, by (ii) of Definition 4 with x = xn0, there exists m0 > n0, such

that Then from (9) with x = xn, and from (10), we have

c � p(xn, z) + p(xn,Txn) = p(xn, z) + p(xn, xn+1) ≤ c
4
+
c
4
=

c
2
,

a contradiction, as c Îint(P) Therefore, our assumption z ≠ Tz was wrong and so z =

Tz.

If v = Tv then we have,

p(v, v) = p(Tv,T2v) ≤ kp(v,Tv) = knp(v, v),

knp(v, v) − p(v, v) ∈ P.

and by (p3) we have p(v, v) = 0.

If v = Tv then we have, by using (4),

p(v, v) = p(Tnv,Tn+1v) = p(vn, vn+1) ≤ knp(v,Tv) = knp(v, v). (11)

Hence

knp(v, v) − p(v, v) ∈ P.

Since P is closed, by Lemma 2, we get

lim
n→∞[knp(v, v) − p(v, v)] = −p(v, v),

and P is closed, we get -p(v, v) Î P. Since also p(v, v) Î P, then p(v, v) = 0.

To complete the proof, we have to prove (ii). Suppose that T is continuous. Then

from (c1), as {xn} converge to z, we have

T(z) = lim
i→∞

T(xn) = lim
i→∞

xn+1 = z.

Thus we proved that T(z) = z and so the proof is complete. ■
Now we shall present an example where our Theorem 9 can be applied, but the

main Theorem 2.2 of Wang and Guo [14] cannot.

Example 10. Let X = [0, +∞) and d : X × X ® (E, τ*) be defined by d(x, y)(t) = |x -

y|.et, as in Example 7 above. Then (X, d) is a tvs-cone metric space over the non-

normed linear tvs (E, τ*). Define a mapping T : X ® X by Tx = x/2. Then T satisfies

the following condition:
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p(Tx,T2x) ≤ 1
2
p(x,Tx), for all x ∈ X,

and if y ≠ Ty, there exists c Î int(P), c ≠ θ , such that

c � p(x, y) + p(x,Tx), for all x ∈ X.

Thus all hypotheses of our Theorem 9 are satisfied and z = 0 is a fixed point of T.

Note that the mapping T : X ® X satisfies the condition (2.1) in the main Theorem 2.2

of Wang and Guo [14] with g(x) = x and a1 = 1/2, a2 = a3 = a4 = 0, but Theorem 2.2

cannot be applied since a cone P is not normed.

The following corollary implies the recent result Theorem 3.5. of [4].

Corollary 11. Let (X, d) be a complete tvs-cone metric space with w-cone distance p

on X and 0 ≤ r <1/2. Suppose T : X ® X and

p(Tx,T2x) ≤ rp(x,T2x), for all x ∈ X. (12)

Assume that either (i) or (ii) of Theorem 9 holds. Then, there exists z Î X, such that z

= Tz. Moreover, if v = Tv, then p(v, v) = θ.

Proof. Let x Î X. From (12) we have p(Tx, T2x) ≤ rp(x, T2x) ≤ r[p(x, Tx) + p(Tx,

T2x)]. Hence we get

p(Tx,T2x) ≤ kp(x,Tx),

where 0 ≤ k = r/(1 - r) <1. Now, Corollary 11 follows from Theorem 9. ■
If f : X ® X and F(f) is a set of all fixed points of f, then in a general case F(f) ≠ F(fn).

Abbas and Rhoades [11] studied cases when F(f) = F(fn) for each n Î N, that is, when f

has a property P. The following theorem extends and improves Theorem 2 of [11].

Theorem 12. Let (X, d) be a complete tvs-cone metric space with w-cone distance p

on X. Suppose T : X ® X satisfies the following condition:

p(Tx,T2x) ≤ kp(x,Tx), for all x ∈ X, (13)

where 0 ≤ k <1, or T satisfies strict the inequality (13) with k = 1, for all x Î X with x

≠ Tx. If F(T) ≠ ∅, then T has property P.

Proof. Let u Î F(Tn) for some n >1. Suppose that T satisfies (13). Then

p(u,Tu) = p(Tnu,TTnu) ≤ kp(Tn−1u,TTn−1u) ≤ · · · ≤ knp(u,Tu). (14)

Similarly as from (11) we get p(v, v) = θ, from (14) we obtain p(u, Tu) = θ. Then

from (14), p(Tiu, Ti+1u) ≤ kip(u, Tu) = θ for all i Î N. Now, from (w1) of Definition 4

and Tnu = u we get

p(u, u) ≤ p(u,Tu) + p(Tu,T2u) + · · · + p(Tn−1u,Tnu) = θ .

Thus p(u, u) = θ. Hence, and by (i) of Lemma 8 with x = u, y = Tu and z = u, we

have Tu = u. Now suppose that T satisfies strict the inequality (13) with k = 1 and let

u Î F(Tn). If we suppose that Tu ≠ u, then we have p(Tu, T2u) < p(u, Tu). If we sup-

pose that Tu = T2u, then Tiu = TTiu for all i Î N. Thus we have

p(Tu,T2u) = p(T2u,TT2u) = · · · = p(Tnu,Tn+1u) = p(u,Tu),

a contradiction with p(Tu, T2u) < p(u, Tu). Therefore, Tu ≠ T2u. Then we have p

(T2u, T3u) < p(Tu, T2u) < p(u, Tu). Continuing this process we obtain
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p(u,Tu) = p(Tnu,TTnu) < p(Tn−1u,TTn−1u) < · · · < p(u,Tu),

a contradiction. Therefore, our supposition Tu ≠ u was wrong. Thus we proved that

F(Tn) = F(T). ■
The following theorem extends Theorem 2.1 of [16] and implies Theorem 3.7 of

[17].

Theorem 13. Let (X, d) be a complete tvs-cone metric space with w-cone distance p

on X and 0 ≤ k <1. Suppose T : X ® X and there exists an x Î X such that

p(Ty,T2y) ≤ kp(y,Ty), for all y ∈ 0(x,∞).

Then,

(i) lim Tnx = z exists and

p(Tnx, z) ≤ kn

1 − k
· p(x,Tx) for n ≥ 1.

(ii) p(z, Tz) = θ if and only if G(x) = p(x, Tx) is T-orbitally lower semicontinuous at z.

Proof. Observe that (i) follows from the proof of Theorem 9. Now we prove (ii). It is

clear that p(z, Tz) = θ implies G(z) = p(z, Tz) = θ and hence G(z) ≤ G(xn) + ε for any ε

in E with θ ≪ ε and all xn Î 0(x, ∞). Suppose now that G is T-orbitally lower semicon-

tinuous at z. Then from (c3), as xn = Tnx ® z, for any ε in E with θ ≪ ε there is n0 in

N such that

θ ≤ p(z,Tz) = G(z) ≤ G(xn) + ε = p(xn, xn+1) + ε ≤ knp(x,Tx) +
1
i
ε,

for all n ≥ n0 and i ≥ 1. Hence knp(x,Tx) + 1
i ε − p(z,Tz) ∈ P. Letting n ® ∞, By

Lemma 2, we get θ ≤ p(z,Tz) ≤ 1
i ε. Hence, we get p(z, Tz) = θ. ■

The following theorem extends and unifies Theorem 2 of [6] and results of ([1,18]).

Theorem 14. Let (X, d) be a complete tvs-cone metric space with w-cone distance p

on X and 0 ≤ k <1. Suppose that T : X ® X is a p-contractive mapping i.e.,

p(Tx,Ty) ≤ kp(x, y), for all x, y ∈ X. (15)

Then, T has a unique fixed point z Î X, and p(z, z) = θ.

Proof. Let x Î X and define xn+1 = Tnx for any n Î N. Then, from the proof of The-

orem 9, lim Tnx = z Î X and (3) holds for all n ≥ 1. From (3) we have

p(Tnx, z) ≤ kn

1 − k
· p(x,Tx) for n ≥ 1,

and from (15) and (3) we get

p(Tnx,Tz) ≤ kp(Tn−1x, z) ≤ k
kn−1

1 − k
· p(x,Tx) = kn

1 − k
· p(x,Tx) for n ≥ 1.

Thus from Lemma 2 and (i) of Lemma 8, with an = bn = [kn/(1 - k)] · p(x, Tx) we

obtain Tz = z. Then p(z, z) = p(Tz, T2z) ≤ kp(z, Tz) = kp(z, z). Hence, p(z, z) = θ. Sup-

pose that u Î X is also a fixed point of T. Then p(z, u) = p(Tz, Tu) ≤ kp(z, u) and

hence p(z, u) = θ. From p(z, u) = θ, p(z, z) = θ and by (i) of Lemma 8, we have u = z. ■
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In 1998, Ume [8] proved the w-distance version of Ćirić’s [19] results for quasi-con-
traction on metric space. Recently, cone metric version of Ćirić’s results has been

proved [12]. Now, a natural question arises:

Question. Let (X, d) be a complete tvs-cone metric space with w-cone distance p on

X. Suppose f : X ↦ X such that for some constant l Î (0, 1) and for every x, y Î X,

there exists v Î {p(x, y), p(x, fx), p(y, fy), p(x, fy), p(y, fx)}, such that p(fx, fy) ≤ l · v.

Does there exist a unique fixed point z Î X of f, and p(z, z) = θ?
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