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1. Introduction
One of the simplest and the most useful result in the fixed point theory is the Banach-

Caccioppoli contraction [1] mapping principle, a power tool in analysis. This principle

has been generalized in different directions in different spaces by mathematicians over

the years (see [2-10] and references mentioned therein). On the other hand, fixed

point theory has received much attention in metric spaces endowed with a partial

ordering. The first result in this direction was given by Ran and Reurings [11] and they

presented applications of their results to matrix equations. Subsequently, Nieto and

Rodríguez-López [12] extended the results in [11] for nondecreasing mappings and

obtained a unique solution for a first order ordinary differential equation with periodic

boundary conditions (see also, [13-19]).

Bhaskar and Lakshmikantham [20] introduced the concept of a coupled fixed point

and the mixed monotone property. Furthermore, they proved some coupled fixed

point theorems for mappings which satisfy the mixed monotone property and gave

some applications in the existence and uniqueness of a solution for a periodic bound-

ary value problem. A number of articles in this topic have been dedicated to the

improvement and generalization see in [21-24] and reference therein.

Mustafa and Sims [25,26] introduced a new concept of generalized metric spaces,

called G-metric spaces. In such spaces every triplet of elements is assigned to a non-

negative real number. Based on the notion of G-metric spaces, Mustafa et al. [27]

established fixed point theorems in G-metric spaces. Afterward, many fixed point

results were proved in this space (see [28-34]).

Recently, Choudhury and Maity [35] studied necessary conditions for existence of

coupled fixed point in partially ordered G-metric spaces. They obtained the following

interesting result.
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Theorem 1.1 ([35]). Let (X, ≼) be a partially ordered set such that X is a complete G-

metric space and F: X × X ® X be a mapping having the mixed monotone property on

X. Suppose there exists k Î [0,1) such that

G(F(x, y), F(u, v), F(w, z)) ≤ k
2
(G(x, u,w) + G(y, v, z))

for all x, y, z, u, v, w Î X for which x ≽ u ≽ w and y ≼ v ≼ z, where either u ≠ w or v

≠ z. If there exists x0, y0 Î X such that

x0 � F(x0, y0) and y0 � F(y0, x0)

and either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} ® x, then xn ≼ x for all n Î N,

(ii) if a non-increasing sequence {yn} ® y, then yn ≽ y for all n Î N,

then F has a coupled fixed point.

The aim of this article is to extend and unify coupled fixed point results in [35] and

to study necessary conditions to guarantee the uniqueness of coupled fixed point. We

also provide illustrative example in support of our results.

2. Preliminaries
Throughout this article, (X, ≼) denotes a partially ordered set with the partial order ≼.
By x ≺ y, we mean x ≼ y but x ≠ y. If (X, ≼) is a partially ordered set. A mapping f: X

® X is said to be non-decreasing (non-increasing) if for all x, y Î X, x ≼ y implies f(x)

≼ f(y) (f(y) ≼ f(x), respectively).

Definition 2.1 ([20]). Let (X, ≼) be a partial ordered set. A mapping F: X × X ® X is

said to has the a mixed monotone property if F is monotone non-decreasing in its first

argument and is monotone non-increasing in its second argument, that is, for any x, y

Î X

x1, x2 ∈ X, x1 � x2 ⇒ F(x1, y) � F(x2, y) (2:1)

and

y1, y2 ∈ X, y1 � y2 ⇒ F(x, y1) � F(x, y2). (2:2)

Definition 2.2 ([20]). An element (x, y) Î X × X is called a coupled fixed point of

mapping F: X × X ® X if

x = F(x, y) and y = F(y, x).

Consistent with Mustafa and Sims [25,26], the following definitions and results will

be needed in the sequel.

Definition 2.3 ([26]). Let X be a nonempty set. Suppose that a mapping G: X × X ×

X ® ℝ+ satisfies:

(G1) G(x,y,z) = 0 if x = y = z;

(G2) G(x, x, y) > 0 for all x, y Î X with x ≠ y;
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(G3) G(x,x,y) ≤ G(x,y,z) for all x,y,z Î X with z ≠ y;

(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = ..., (symmetry in all three variables);

(G5) G(x,y,z) ≤ G(x,a,a) + G(a,y, z) for all x,y,z,a Î X (rectangle inequality).

Then G is called a G-metric on X and (X, G) is called a G-metric space.

Definition 2.4 ([26]). Let X be a G-metric space and let {xn} be a sequence of points

of X, a point x Î X is said to be the limit of a sequence {xn} if G(x,xn,xm) ® 0 as n, m

® ∞ and sequence {xn} is said to be G-convergent to x.

From this definition, we obtain that if xn ® x in a G-metric space X, then for any � >

0 there exists a positive integer N such that G(x,xn,xm) < �, for all n,m ≥ N.

It has been shown in [26] that the G-metric induces a Hausdorff topology and the

convergence described in the above definition is relative to this topology. So, a

sequence can converge at the most to one point.

Definition 2.5 ([26]). Let X be a G-metric space, a sequence {xn} is called G-Cauchy

if for every � > 0 there is a positive integer N such that G(xn,xm,xl) < � for all n, m, l ≥

N, that is, if G(xn, xm, xl) ® 0, as n, m, l ® ∞.

We next state the following lemmas.

Lemma 2.6 ([26]). If X is a G-metric space, then the following are equivalent:

(1) {xn} is G-convergent to x.

(2) G(xn,xn,x) ® 0 as n ® ∞.

(3) G(xn,x,x) ® 0 as n ® ∞.

(4) G(xm,xn,x) ® 0 as n,m ® ∞.

Lemma 2.7 ([26]). If X is a G-metric space, then the following are equivalent:

(a) The sequence {xn} is G-Cauchy.

(b) For every � > 0, there exists a positive integer N such that G(xn,xm,xm) < �, for all

n,m ≥ N.

Lemma 2.8 ([26]). If X is a G-metric space then G(x,y,y) ≤ 2G(y,x,x) for all x,y Î X.

Definition 2.9 ([26]). Let (X, G), (X’, G’) be two generalized metric spaces. A map-

ping f: X ® X’ is G-continuous at a point x Î X if and only if it is G sequentially con-

tinuous at x, that is, whenever {xn} is G-convergent to x, {f(xn)} is G’-convergent to f(x).

Definition 2.10 ([26]). A G-metric space X is called a symmetric G-metric space if

G(x, y, y) = G(y, x, x)

for all x,y Î X.

Definition 2.11 ([26]). A G-metric space X is said to be G-complete (or a complete

G-metric space) if every G-Cauchy sequence in X is convergent in X.

Definition 2.12 ([26]). Let X be a G-metric space. A mapping F: X × X ® X is said

to be continuous if for any two G-convergent sequences {xn} and {yn} converging to x

and y, respectively, {F(xn,yn)} is G-convergent to F(x,y).

Abbas et al. Fixed Point Theory and Applications 2012, 2012:31
http://www.fixedpointtheoryandapplications.com/content/2012/1/31

Page 3 of 14



3. Coupled fixed point in G-metric spaces
Let Θ denotes the class of all functions θ: [0, ∞) × [0, ∞) ® [0,1) which satisfies fol-

lowing condition:

For any two sequences {tn} and {sn} of nonnegative real numbers,

θ(tn, sn) → 1 implies that tn, sn → 0.

Following are examples of some function in Θ.

(1) θ1(s,t) = k for s,t Î [0,∞), where k Î [0,1).

(2) θ2(s, t) =

⎧⎨
⎩

ln(1 + ks + lt)
ks + lt

; s > 0 or t > 0,

r ∈ [0, 1) ; s = 0, t = 0,

where k, l Î (0,1)

(3) θ3(s, t) =

⎧⎨
⎩

ln(1 + max{s, t})
max{s, t} ; s > 0 or t > 0,

r ∈ [0, 1) ; s = 0, t = 0,

Now, we prove our main result.

Theorem 3.1. Let (X, ≼) be a partially ordered set such that there exists a complete

G-metric on X and F: X × X ® X be a continuous mapping having the mixed monotone

property. Suppose that there exists θ Î Θ such that

G(F(x, y), F(u, v), F(w, z)) + G(F(y, x), F(v, u), F(z,w))

≤ θ(G(x, u,w),G(y, v, z))(G(x, u,w) + G(y, v, z))
(3:1)

for all x, y, z, u, v, w Î X for which x ≽ u ≽ w and y ≼ v ≼ z where either u ≠ w or v

≠ z. If there exists x0, y0 Î X such that

x0 � F(x0, y0) and y0 � F(y0, x0),

then F has a coupled fixed point.

Proof. As F(X × X) ⊆ X, we can construct sequences {xn} and {yn} in X such that

xn+1 = F(xn, yn) and yn+1 = F(yn, xn) for all n ≥ 0. (3:2)

Next, we show that

xn � xn+1 and yn � yn+1 for all n ≥ 0. (3:3)

Since x0 ≼ F(x0,y0) = x1 and y0 ≽ F(y0,x0) = y1, therefore (3.3) holds for n = 0.

Suppose that (3.3) holds for some fixed n ≥ 0, that is,

xn � xn+1 and yn � yn+1. (3:4)

Since F has a mixed monotone property, from (3.4) and (2.1), we have

F(xn, y) � F(xn+1, y) and F(yn+1, x) � F(yn, x) (3:5)

for all x, y Î X and from (3.4) and (2.2), we have

F(y, xn) � F(y, xn+1) and F(x, yn+1) � F(x, yn), (3:6)
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for all x,y Î X. If we take y = yn and x = xn in (3.5), then we obtain

xn+1 = F(xn, yn) � F(xn+1, yn) and F(yn+1, xn) � F(yn, xn) = yn+1. (3:7)

If we take y = yn+1 and x = xn+1 in (3.6), then

F(yn+1, xn) � F(yn+1, xn+1) = yn+2 and xn+2 = F(xn+1, yn+1) � F(xn+1, yn). (3:8)

Now, from (3.7) and (3.8), we have

xn+1 � xn+2 and yn+1 � yn+2. (3:9)

Therefore, by the mathematical induction, we conclude that (3.3) holds for all n ≥ 0,

that is,

x0 � x1 � x2 � · · · � xn�n+1 � · · · (3:10)

and

y0 � y1 � y2 � · · · � yn � yn+1 � · · · . (3:11)

If there exists some integer k ≥ 0 such that

G(xk+1, xk+1, xk) + G(yk+1, yk+1, yk) = 0,

then G(xk+1,xk+1,xk) = G(yk+1,yk+1,yk) = 0 implies that xk = xk+1 and yk = yk+1. There-

fore, xk = F(xk,yk) and yk = F(yk,xk) gives that (xk,yk) is a coupled fixed point of F.

Now, we assume that G(xn+1,xn+1,xn) + G(yn+1,yn+1,yn) ≠ 0 for all n ≥ 0. Since xn ≼ xn

+1 and yn ≽ yn+1 for all n ≥ 0 so from (3.1) and (3.2), we have

G(xn+1, xn+1, xn) + G(yn+1, yn+1, yn)

= G(F(xn, yn), F(xn, yn), F(xn−1, yn−1)) + G(F(yn, xn), F(yn, xn), F(yn−1, xn−1))

≤ θ(G(xn, xn, xn−1, ),G(yn, yn, yn−1))
[
G(xn, xn, xn−1, ) + G(yn, yn, yn−1)

] (3:12)

which implies that

G(xn+1, xn+1, xn) + G(yn+1, yn+1, yn) < G(xn, xn, xn−1, ) + G(yn, yn, yn−1). (3:13)

Thus the sequence {Gn+1 := G(xn+1, xn+1, xn) + G(yn+1, yn+1, yn)} is monotone

decreasing. It follows that Gn ® g as n ® ∞ for some g ≥ 0. Next, we claim that g = 0.

Assume on contrary that g > 0, then from (3.12), we obtain

G(xn+1, xn+1, xn) + G(yn+1, yn+1, yn)
G(xn, xn, xn−1) + G(yn, yn, yn−1)

≤ θ(G(xn, xn, xn−1),G(yn, yn, yn−1)) < 1.

On taking limit as n ® ∞, we obtain

θ(G(xn, xn, xn−1),G(yn, yn, yn−1)) → 1.

By property of function θ, we have G(xn, xn, xn-1) ® 0, G(yn, yn, yn-1) ® 0 as n ® ∞

and we have

G(xn, xn, xn−1) + G(yn, yn, yn−1) → 0, (3:14)

a contradiction. Therefore,

G(xn+1, xn+1, xn) + G(yn+1, yn+1, yn) → 0.
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Similarly, we can prove that

G′
n+1 := G(xn+1, xn, xn) + G(yn+1, yn, yn) → 0. (3:15)

Next, we show that {xn} and {yn} are Cauchy sequences. On contrary, assume that at

least one of {xn} or {yn} is not a Cauchy sequence. By Lemma 2.7, there is an � > 0 for

which we can find subsequences {xn(k)}, {xm(k)} of {xn} and {yn(k)}, {ym(k)} of {yn} with m

(k) >n(k) ≥ k such that

G(xn(k), xm(k), xm(k)) + G(yn(k), ym(k), ym(k)) ≥ ε. (3:16)

and

G(xn(k)−1, xm(k), xm(k)) + G(yn(k)−1, ym(k), ym(k)) < ε. (3:17)

Using (3.16), (3.17) and the rectangle inequality, we have

ε ≤ rk := G(xn(k),xm(k), xm(k)) + G(yn(k),ym(k), ym(k))

≤ G(xn(k),xn(k)−1, xn(k)−1) + G(xn(k)−1,xm(k), xm(k))

+ G(yn(k),yn(k)−1, yn(k)−1) + G(yn(k)−1,ym(k), ym(k))

< G(xn(k),xn(k)−1, xn(k)−1) + G(yn(k)−1,yn(k)−1, yn(k)−1) + ε.

On taking limit as k ® ∞, we have

rk = G(xn(k), xm(k), xm(k)) +G(yn(k), ym(k), ym(k)) → ε. (3:18)

By the rectangle inequality, we get

rk = G(xn(k), xm(k), xm(k)) + G(yn(k), ym(k), ym(k))

≤ G(xn(k), xn(k)+1, xn(k)+1) + G(xn(k)+1, xm(k)+1, xm(k)+1) + G(xm(k)+1, xm(k), xm(k))

+ G(yn(k), yn(k)+1, yn(k)+1) + G(yn(k)+1, ym(k)+1, ym(k)+1) + G(ym(k)+1, ym(k), ym(k))

=
[
G(xn(k)+1, xm(k)+1, xm(k)+1) + G(yn(k)+1, ym(k)+1, ym(k)+1)

]
+

[
G(xn(k), xn(k)+1, xn(k)+1) + G(yn(k), yn(k)+1, yn(k)+1)

]
+

[
G(xm(k)+1, xm(k), xm(k)) + G(ym(k)+1, ym(k), ym(k))

]
=

[
G(xn(k)+1, xm(k)+1, xm(k)+1) + G(yn(k)+1, ym(k)+1, ym(k)+1)

]
+ Gn(k)+1 + G′

m(k)+1

=
[
G(xm(k)+1, xm(k)+1, xn(k)+1) + G(ym(k)+1, ym(k)+1, yn(k)+1)

]
+ Gn(k)+1 + G′

m(k)+1

=
[
G(F(xm(k),ym(k)), F(xm(k), ym(k)), F(xn(k), yn(k)))

+G(F(ym(k), xm(k)), F(ym(k),xm(k)), F(yn(k), xn(k)))
]
+ Gn(k)+1 + G′

m(k)+1

≤ θ(G(xm(k), xm(k), xn(k)),G(ym(k), ym(k), yn(k)))(G(xm(k), xm(k), xn(k)) + G(ym(k), ym(k), yn(k)))

+ Gn(k)+1 + G′
m(k)+1

= θ(G(xn(k), xm(k), xm(k)),G(yn(k), ym(k), ym(k)))rk + Gn(k)+1 + G′
m(k)+1.

Therefore, we have

rk ≤ θ(G(xn(k), xm(k), xm(k)),G(yn(k), ym(k), ym(k)))rk + Gn(k)+1 + G′
m(k)+1.

This further implies that

rk − Gn(k)+1 − G′
m(k)+1

rk
≤ θ(G(xn(k), xm(k), xm(k)),G(yn(k), ym(k), ym(k))) < 1.

On taking limit as k ® ∞ and using (3.14), (3.15) and (3.18), we obtain

θ(G(xn(k),xm(k), xm(k)),G(yn(k),ym(k), ym(k))) → 1.
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Since θ Î Θ, we have G(xn(k), xm(k), xm(k)) ® 0 and G(yn(k), ym(k), ym(k)) ® 0, that is

G(xn(k), xm(k), xm(k)) + G(yn(k), ym(k), ym(k)) → 0,

a contradiction. Therefore, {xn} and {yn} are G-Cauchy sequence. By G-completeness of X,

there exists x,y Î X such that {xn} and {yn} G-converges to x and y, respectively. Now, we

show that F has a coupled fixed point. Since F is a continuous, taking n ® ∞ in (3.2), we get

x = lim
n→∞ xn+1 = lim

n→∞ F(xn, yn) = F
(
lim
n→∞ xn, lim

n→∞ yn
)
= F(x, y)

and

y = lim
n→∞ yn+1 = lim

n→∞ F(yn, xn) = F
(
lim
n→∞ yn, lim

n→∞ xn
)
= F(y, x).

Therefore, x = F(x, y) and y = F(y, x), that is, F has a coupled fixed point.

Theorem 3.2. Let (X, ≼) be a partially ordered set such that there exists a complete

G-metric on X and F: X × X ® X be a mapping having the mixed monotone property.

Suppose that there exists θ Î Θ such that

G(F(x, y), F(u, v), F(w, z)) + G(F(y, x), F(v, u), F(z,w))

≤ θ(G(x, u,w),G(y, v, z))(G(x, u,w) + G(y, v, z))
(3:19)

for all x, y, z, u, v, w Î X for which x ≽ u ≽ w and y ≼ v ≼ z where either u ≠ w or v

≠ z. If there exists x0,y0 Î X such that

x0 � F(x0, y0) and y0 � F(y0, x0)

and X has the following property:

(i) if a non-decreasing sequence {xn} ® x, then xn ≼ x for all n Î N,

(ii) if a non-increasing sequence {yn} ® y, then yn ≽ y for all n Î N,

then F has a coupled fixed point.

Proof. Following arguments similar to those given in Theorem 3.1, we obtain a non-

decreasing sequence {xn} converges to x and a non-increasing sequence {yn} converges

to y for some x,y Î X. By using (i) and (ii), we have xn ≼ x and yn ≽ y for all n.

If xn = x and yn = y for some n ≥ 0, then, by construction, xn+1 = x and yn+1 = y.

Thus (x, y) is a coupled fixed point of F. So we may assume either xn ≠ x or yn ≠ y, for

all n ≥ 0. Then by the rectangle inequality, we obtain

G(F(x, y), x, x) + G(F(y, x), y, y)

≤ G(F(x, y), F(xn, yn), F(xn, yn)) + G(F(xn, yn), x, x)

+ G(F(y, x), F(yn, xn), F(yn, xn)) + G(F(yn, xn), y, y)

= G(F(xn, yn), F(xn, yn), F(x, y)) + G(xn+1, x, x)

+ G(F(yn, xn), F(yn, xn), F(y, x)) + G(yn+1, y, y)

= G(F(yn, xn), F(yn, xn), F(y, x)) + G(F(xn, yn), F(xn, yn), F(x, y))

+ G(xn+1, x, x) + G(yn+1, y, y)

≤ θ(G(yn, yn, y) + G(xn, xn, x))(G(yn, yn, y) + G(xn, xn, x))

+ G(xn+1, x, x) + G(yn+1, y, y)

≤ (G(yn, yn, y) + G(xn, xn, x)) + G(xn+1, x, x) + G(yn+1, y, y).
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On taking limit as n ® ∞, we have G(F(x,y),x,x) + G(F(y,x),y,y) = 0. Thus x = F(x,y)

and y = F(x, y) and so (x, y) is a coupled fixed point of F.

Corollary 3.3. Let (X, ≼) be a partially ordered set such that there exists a complete

G-metric on X and F: X × X ® X be a mapping having the mixed monotone property.

Suppose that there exists h Î Θ such that

G(F(x, y), F(u, v), F(w, z)) ≤ 1
2

η(G(x, u,w),G(y, v, z))(G(x, u,w) + G(y, v, z)) (3:20)

for all x, y, z, u, v, w Î X for which x ≽ u ≽ w and y ≼ v ≼ z, where either u ≠ w or v

≠ z. If there exists x0,y0 Î X such that

x0 � F(x0, y0) and y0 � F(y0, x0)

and either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} ® x, then xn ≼ x for all n Î N,

(ii) if a non-increasing sequence {yn} ® y, then yn ≽ y for all n Î N,

then F has a coupled fixed point.

Proof. For x,y,z,u,v,w Î X with x ≽ u ≽ w and y ≼ v ≼ z, where either u ≠ w or v ≠ z,

from (3.20), we have

G(F(x, y), F(u, v), F(w, z)) ≤ 1
2

η(G(x, u,w),G(y, v, z))(G(x, u,w) + G(y, v, z)) (3:21)

and

G(F(y, x), F(v, u), F(z,w)) = G(F(z,w), F(v, u), F(y, x))

≤ 1
2

η(G(z, v, y),G(w, u, x))(G(z, v, y) + G(w, u, x))

=
1
2

η(G(y, v, z),G(x, u,w))(G(x, u,w) + G(y, v, z)).

(3:22)

From (3.21) and (3.22), we have

G(F(x, y), F(u, v), F(w, z)) + G(F(y, x), F(v, u), F(z,w))

≤ 1
2

[
η(G(x, u,w),G(y, v, z)) + η(G(y, v, z),G(x, u,w))

]
(G(x, u,w) + G(y, v, z))

(3:23)

= θ(G(x, u,w),G(y, v, z)))(G(x, u,w) + G(y, v, z)) (3:24)

for x,y,z,u,v,w Î X with x ≽ u ≽ w and y ≼ v ≼ z where either u ≠ w or v ≠ z, where

θ(t1, t2) =
1
2

[
η(t1, t2) + η(t2, t1)

]

for all t1,t2 Î [0, ∞). It is easy to verify that θ Î Θ and we can apply Theorems 3.1

and 3.2. Hence F has a coupled fixed point.

Corollary 3.4. [[35], Theorems 3.1 and 3.2] Let (X,≼) be a partially ordered set such

that there exists a complete G-metric on X and F: X × X ® X be a mapping having the

mixed monotone property. Suppose that there exists a k Î [0,1) such that
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G(F(x, y), F(u, v), F(w, z)) ≤ k
2
(G(x, u,w) + G(y, v, z))

for all x, y, z, u, v, w Î X for which x ≽ u ≽ w and y ≼ v ≼ z, where either u ≠ w or v

≠ z. If there exists x0, y0 Î X such that

x0 � F(x0, y0) and y0 � F(y0, x0)

and either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} ® x, then xn ≼ x for all n Î N,

(ii) if a non-increasing sequence {yn} ® y, then yn ≽ y for all n Î N,

then F has a coupled fixed point.

Proof. Taking h(t1, t2) = k with k Î [0,1) for all t1, t2 Î [0, ∞) in Theorems 3.1 and

3.2, result follows immediately.

Let Ω denotes the class of those functions ω: [0, ∞) ® [0,1) which satisfies the con-

dition: For any sequences {tn} of nonnegative real numbers, ω(tn) ® 1 implies tn ® 0.

Theorem 3.5. Let (X, ≼) be a partially ordered set such that there exists a complete

G-metric on X and F: X × X ® X be a mapping having the mixed monotone property.

Suppose that there exists ω Î Ω such that

G(F(x, y), F(u, v), F(w, z)) + G(F(y, x), F(v, u), F(z,w))

≤ ω(G(x, u,w) + G(y, v, z))(G(x, u,w) + G(y, v, z))
(3:25)

for all x, y, z, u, v, w Î X for which x ≽ u ≽ w and y ≼ v ≼ z where either u ≠ w or v

≠ z. If there exists x0,y0 Î X such that

x0 � F(x0, y0) and y0 � F(y0, x0)

and either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} ® x, then xn ≼ x for all n Î N,

(ii) if a non-increasing sequence {yn} ® y, then yn ≽ y for all n Î N,

then F has a coupled fixed point.

Proof. Taking θ(t1,t2) = ω(t1 + t2) for all t1,t2 Î [0,∞) in Theorems 3.1 and 3.2, result

follows.

Taking ω(t) = k with k Î [0,1) for all t Î [0, ∞) in Theorem 3.5, we obtain the fol-

lowing corollary.

Corollary 3.6. Let (X, ≼) be a partially ordered set such that there exists a complete

G-metric on X and F: X × X ® X be a mapping having the mixed monotone property.

Suppose that there exists Î [0,1) such that

G(F(x, y), F(u, v), F(w, z)) + G(F(y, x), F(v, u), F(z,w))

≤ k(G(x, u,w) + G(y, v, z))
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for all x, y, z, u, v, w Î X for which x ≽ u ≽ w and y ≼ v ≼ z where either u ≠ w or v

≠ z. If there exists x0,y0 Î X such that

x0 � F(x0, y0) and y0 � F(y0, x0)

and either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} ® x, then xn ≼ x for all n Î N,

(ii) if a non-increasing sequence {yn} ® y, then yn ≽ y for all n Î N,

then F has a coupled fixed point.

Theorem 3.7. Let (X, ≼) be a partially ordered set such that there exists a complete

G-metric on X and F: X × X ® X be a mapping having the mixed monotone property

and F(x,y) ≼ F(y,x), whenever x ≼ y. Suppose that there exists θ Î Θ such that

G(F(x, y), F(u, v), F(w, z)) + G(F(y, x), F(v, u), F(z,w))

≤ θ(G(x, u,w),G(y, v, z))(G(x, u,w) + G(y, v, z))
(3:26)

for all x, y, z, u, v, w Î X for which w ≼ u ≼ x≼ y ≼ v ≼ z, where either u ≠ w or v ≠

z. If there exists x0,y0 Î X such that

x0 � y0, x0 � F(x0, y0) and y0 � F(y0, x0)

and either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} ® x, then xn ≼ x for all n Î N,

(ii) if a non-increasing sequence {yn} ® y, then yn ≽ y for all n Î N,

then F has a coupled fixed point.

Proof. By given hypothesis, there exist x0,y0 Î X such that

x0 � F(x0, y0) and y0 � F(y0, x0).

We define x1,y1 Î X by

x1 = F(x0, y0) � x0 and y1 = F(y0, x0) � y0.

Since x0 ≼ y0, by given assumptions, we have F(x0,y0) ≼ F(y0,x0). Hence

x0 � x1 = F(x0, y0) � F(y0, x0) = y1 � y0.

Continuing the above process, we have two sequences {xn} and {yn} such that

xn+1 = F(xn, yn), yn+1 = F(yn, xn)

and

xn � xn+1 = F(xn, yn) � F(yn, xn) = yn+1 � yn
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for all n ≥ 0. If there is k Î N such that xk = yk = a (say), then we have

α � F(α,α) � F(α,α) � α,

that is, a = F(a, a). Therefore, (a, a) is a coupled fixed point of F. Next, assume that

xn ≺ yn (3:27)

for all n Î N. Further, using similar arguments as stated in Theorem 3.1, we may

assume that (xn,yn) ≠ (xn+1,yn+1). Then, in view of (3.27), for all n ≥ 0, the inequality

(3.26) holds with

x = xn+2, u = xn+1,w = xn, y = yn, v = yn+1 and z = yn+2.

The rest of the proof follows by following the same steps as given in Theorem 3.1 for

case (a). For case (b), we follow the same steps as given in Theorem 3.2.

Example 3.8. Let X = N ∪ {0} and G: X × X × X ® X be define by

G(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x + y + z ; if x, y, z are all distinct and different from zero,
x + z ; if x = y 
= z and are all different from zero,
y + z + 1 ; if x = 0, y 
= z and y, zdifferent from zero,
y + 2 ; if x = 0, y = z 
= 0,
z + 1 ; if x = y = 0, z 
= 0,
0 ; if x = y = z.

Then X is a complete G-metric space. Let partial order ≼ on X be defined as follows:

For x,y Î X,

x � y holds if x > y and 3 divides (x − y) and 3 � 1 and 0 � 1 hold.

Let F: X × X ® X be defined by

F(x, y) =
{
1 ; if x ≺ y,
0 ; if otherwise.

If w ≼ u ≼ x ≼ y ≼ v ≼ z holds, then we have w ≥ u ≥ x >y ≥ v ≥ z. Therefore F(x,y) =

F(u,v) = F(w,z) = 1 and F(y,x) = F(v,u) = F(z,w) = 0. So the left side of (3.26) becomes

G(1, 1, 1) + G(0, 0, 0) = 0

and (3.26) is satisfied for all θ Î Θ. Thus Theorem 3.7 is applicable to this example

with x0 = 0 and y0 = 81. Moreover, F has coupled fixed points (0,0) and (1,0).

Remark 3.9. A G-metric naturally induces a metric dG given by dG(x,y) = G(x,y,y) +

G(x,x,y) [25]. From the condition that either u ≠ w or v ≠ z, the inequality (3.1), (3.19),

(3.25) and (3.26) do not reduce to any metric inequality with the metric dG. Therefore,

the corresponding metric space (X, dG) results are not applicable to Example 3.8.

Remark 3.10. Example 3.8 is not supported by Theorems 3.1, 3.2 and 3.5. This is

evident by the fact that the inequality (3.1), (3.19) and (3.25) are not satisfied when w

= u = x = y = 3, v = 0 and z = 1. Moreover, the coupled fixed point is not unique.

4. Uniqueness of coupled fixed point in G-metric spaces
In this section, we study necessary conditions to obtain the uniqueness of a coupled

fixed point in the setting of partially ordered G-metric spaces. If (X, ≼) is a partially

ordered set, then we endow the product of X × X with the following partial order:
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For (x, y), (u, v) Î X × X, (x, y) ⊴ (u, v) if and only if x ≼ u and y ≽ v.

Theorem 4.1. In addition to the hypotheses in Theorem 3.1, suppose that for every (x,

y), (z, t) Î X × X, there exists a point (u,v) Î X × X that is comparable to (x,y) and (z,

t). Then F has a unique coupled fixed point.

Proof. From Theorem 3.1, F has a coupled fixed points. Suppose (x, y) and (z, t) are

coupled fixed points of F, that is, x = F(x,y),y = F(y,x),z = F(z,t) and t = F(t,z). Next, we

claim that x = z and y = t. By given hypothesis, there exists (u,v) Î X × X that is com-

parable to (x,y) and (z,t). We put u0 = u and v0 = v and construct sequences {un} and

{vn} by

un = F(un−1, vn−1) and vn = F(vn−1, un−1) for all n ∈ N.

Since (u,v) is comparable with (x,y), we assume that (u0,v0) = (u,v) ⊴ (x,y). Using the

mathematical induction, it is straight forward to prove that

(un, vn) � (x, y) for all n ∈ N.

From (3.1), we have

G(x, x, un) + G(y, y, vn) = G(F(x, y), F(x, y), F(un−1, vn−1)) + G(F(y, x), F(y, x), F(vn−1, un−1))

≤ θ(G(x, x, un−1),G(vn−1, y, y))[G(x, x, un−1) + G(vn−1, y, y)]

< G(x, x, un−1) + G(vn−1, y, y).

(4:1)

Consequently, sequence {G(x,x,un) + G(y,y,vn)} is non-negative and decreasing, so

G(x, x, un) + G(y, y, vn) → g,

for some g ≥ 0. We claim that g = 0. Indeed, if g > 0 then following similar argu-

ments to those given in the proof of Theorem 3.1, we conclude that

θ(G(x, x, un−1),G(un−1, y, y)) → 1.

Since θ Î Θ, we obtain G(x,x,un-1) ® 0 and G(vn-1,y,y) ® 0. Therefore,

G(x, x, un−1) + G(vn−1, y, y) → 0

which is a contradiction. Hence

G(x, x, un) + G(vn, y, y) → 0. (4:2)

Similarly, one can prove that

G(x, un, un) + G(vn, vn, y) → 0, (4:3)

G(z, z, un) + G(vn, t, t) → 0, (4:4)

and

G(z, un, un) + G(t, vn, vn) → 0. (4:5)

From rectangular inequality, we have

G(z, x, x) ≤ G(z, un, un) + G(un, x, x) (4:6)

and

G(y, t, t) ≤ G(y, vn, vn) + G(vn, t, t). (4:7)
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Combine (4.6) and (4.7), we have

G(z, x, x) + G(y, t, t) ≤ (G(z, un, un) + G(un, x, x)) + (G(y, vn, vn) + G(vn, t, t))

≤ (G(x, x, un) + G(vn, y, y)) + (G(x, un, un) + G(vn, vn, y))

+ (G(z, z, un) + G(vn, t, t)) + (G(z, un, un) + G(t, vn, vn))

Taking n ® ∞, by (4.2), (4.3), (4.4) and (4.5), we have G(z,x,x) + G(y,t,t) ≤ 0. So G(z,

x,x) = 0 and G(y,t,t) = 0, that is, z = x and y = t. Therefore, F has a unique coupled

fixed point. This completes the proof.

Theorem 4.2. In addition to the hypotheses in Theorem 3.2, suppose that for every (x,

y), (z, t) Î X × X, there exists a point (u,v) Î X × X that is comparable to (x,y) and (z,

t). Then F has a unique coupled fixed point.

Proof. Proof is similar to the one given in Theorems 4.1 and 3.2.
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