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Abstract

The purpose of this article is first to introduce the concept of total quasi-j-
asymptotically nonexpansive mapping which contains many kinds of mappings as its
special cases, and then by using the hybrid algorithm to introduce a new iterative
scheme for finding a common element of set of solutions for a system of
generalized mixed equilibrium problems, the set of common fixed points of a
countable family of total quasi-j-asymptotically nonexpansive mappings and null
spaces of finite family of g-inverse strongly monotone mappings in a 2-uniformly
convex and uniformly smooth real Banach space. As an application, we shall utilize
our results to study the iterative solutions of the nonlinear Hammerstian type
equation. The results presented in the article improve and extend the corresponding
results announced by some authors.
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1 Introduction
Throughout this article, we assume that E is a real Banach space with a dual E*, C is a

nonempty closed convex subset of E and 〈·, ·〉 is the duality pairing between members

of E and E*, R is the set of all real numbers. In the sequel, we denote by xn ⇀ x and

xn ® x the weak convergence and strong convergence of sequence {xn}, respectively.

The mapping J : E → 2E
∗ defined by

J(x) =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖2; ∥∥f ∗∥∥ = ‖x‖}

, x ∈ E,

is called the normalized duality mapping.

Let F : C × C → R be a bifunction, B: C ® E* be a nonlinear mapping and

� : C → R be a proper extended real-valued function. The “so called” generalized

mixed equilibrium problem (MEP) for F, B, Ψ is to find x* Î C such that

F(x∗, y) +
〈
y − x∗,Bx∗〉 + �(y) − �(x∗) ≥ 0, ∀y ∈ C. (1:1)
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The set of solutions of (1.1) is denoted by GMEP(F, B, Ψ), i.e.,

GMEP(F,B,�) = {x∗ ∈ C : F(x∗, y) +
〈
y − x∗,Bx∗〉

+ �(y) − �(x∗) ≥ 0, ∀y ∈ C}.

1.1 Special examples

(1) If B = 0, Ψ = 0, then problem (1.1) is reduced to the equilibrium problem (EP), and

the set of its solutions is denoted by

EP(F) = {x∗ ∈ C : F(x∗, y) ≥ 0, ∀y ∈ C}.

(2) If Ψ ≡ 0, then the problem (1.1) is reduced to the generalized equilibrium pro-

blem (GEP), and the set of its solutions is denoted by

GEP(F,B) = {x∗ ∈ C : F(x∗, y) +
〈
y − x∗,Bx∗〉 ≥ 0, ∀y ∈ C}.

(3) If B ≡ 0, then the problem (1.1) is reduced to the MEP, and the set of its solu-

tions is denoted by

MEP(F,�) = {x∗ ∈ C : F(x∗, y) + �(y) − �(x∗) ≥ 0, ∀y ∈ C}.

These show that the problem (1.1) is very general in the sense that numerous pro-

blems in physics, optimization, and economics reduce to finding a solution of (1.1).

Recently, some methods have been proposed for the generalized mixed equilibrium

problem in Banach space (see, for examples [1-5]).

Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty

closed convex subset of E. Throughout this article we assume that φ : E × E → R+ is

the Lyapunov function which is defined by

φ(x, y) = ‖x‖2 − 2
〈
x, Jy

〉
+

∥∥y∥∥2, ∀x, y ∈ E.

Following Alber [6], the generalized projection ∏C: E ® C is defined by

�C(x) = arg miny∈Cφ(y, x), ∀x ∈ E.

Let S: C ® C be a mapping and F(S) be the set of fixed points of S.

Recall that a point p Î C is called an asymptotic fixed point of S, if there exists a

sequence {xn} ⊂ C such that xn ⇀ p and ||xn - Sxn|| ® 0. We denoted the set of all

asymptotic fixed points of S by F̃(S). A point p Î C is called a strong asymptotic fixed

point of S, if there exists a sequence {xn} ⊂ C such that xn ® p and ||xn - Sxn|| ® 0.

We denoted the set of all strong asymptotic fixed points of S by F̂(S).

A mapping S: C ® C is said to be nonexpansive, if∥∥Sx − Sy
∥∥ ≤ ∥∥x − y

∥∥ , ∀x, y ∈ C.

A mapping S: C ® C is said to be relatively nonexpansive [7] if,

F(S) 	=	 0, F(S) = F̃(S), and

φ(p, Sx) ≤ φ(p, x), ∀x ∈ C, p ∈ F(S).

A mapping S: C ® C is said to be weak relatively nonexpansive [8], if

F(S) 	=	 0, F(S) = F̃(S), and
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φ(p, Sx) ≤ φ(p, x), ∀x ∈ C, p ∈ F(S).

A mapping S: C ® C is said to be closed, if for any sequence {xn} ⊂ C with xn ® x

and Sxn ® y, then Sx = y.

A mapping S: C ® C is said to be quasi-j-nonexpansive, if F(S) 	= 	 0 and

φ(p, Sx) ≤ φ(p, x), ∀x ∈ C, p ∈ F(S).

A mapping S: C ® C is said to be quasi-j-asymptotically nonexpansive, if F(S) 	= 	 0
and there exists a real sequence {kn} ⊂ [1, ∞) with kn ® 1 such that

φ(p, Snx) ≤ knφ(p, x), ∀n ≥ 1, x ∈ C, p ∈ F(S). (1:2)

Definition 1.1 (1) A mapping S: C ® C is said to be total quasi-j-asymptotically

nonexpansive, if F(S) 	=	 0 and there exist nonnegative real sequences {νn}, {μn} with νn
® 0, μn ® 0 (as ® ∞) and a strictly increasing continuous function ς : R+ → R+

with ζ(0) = 0 such that for all x Î C, p Î F(S)

φ(p, Snx) ≤ φ(p, x) + νnς(φ(p, x)) + μn, ∀n ≥ 1. (1:3)

(2) A countable family of mappings {Sn}: C ® C is said to be uniformly total quasi-j-
asymptotically nonexpansive, if ∩∞

i=1F(Si) 	=	 0 and there exist nonnegative real

sequences {νn}, {μn} with νn ® 0, μn ® 0 (as n ® ∞) and a strictly increasing continu-

ous function ς : R+ → R+ with ζ(0) = 0 such that for for each i > 1, and each

φ(p, Sni x) ≤ φ(p, x) + νnς(φ(p, x)) + μn, ∀n ≥ 1.

φ(p, Sni x) ≤ φ(p, x) + νnς(φ(p, x)) + μn, ∀n ≥ 1. (1:4)

Remark 1.1 From the definitions, it is easy to know that

(1) Each relatively nonexpansive mapping is closed;

(2) Taking ζ(t) = t, t ≥ 0, νn = (kn - 1) and μn = 0, then (1.2) can be rewritten as

φ(p, Snx) ≤ φ(p, x) + νnς(φ(p, x)) + μn, ∀n ≥ 1, x ∈ C, p ∈ F(S). (1:5)

This implies that each quasi-j-asymptotically nonexpansive mapping must be a total

quasi-j-asymptotically nonexpansive mapping, but the converse is not true.

(3) The class of quasi-j-asymptotically nonexpansive mappings contains properly the

class of quasi-j-nonexpansive mappings as a subclass, but the converse is not true;

(4) The class of quasi-j-nonexpansive mappings contains properly the class of weak

relatively nonexpansive mappings as a subclass, but the converse may be not true;

(5) The class of weak relatively nonexpansive mappings contains properly the class of

relatively nonexpansive mappings as a subclass, but the converse is not true.

A mapping A: C ® E* is said to be a-inverse strongly monotone, if there exists a > 0

such that

〈x − y,Ax − Ay〉 ≥ α
∥∥Ax − Ay

∥∥2.
Remark 1.2 If A is an a-inverse strongly monotone mapping, then it is 1

α
-Lipschitz

continuous.

Iterative approximation of fixed points for relatively nonexpansive mappings in the

setting of Banach spaces has been studied extensively by many authors. In 2005, Mat-

sushita and Takahashi [7] obtained some weak and strong convergence theorems to
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approximate a fixed point of a single relatively nonexpansive mapping. Recently,

Ofoedu and Malonza [4], Zhang [5], Su et al. [8], Zhang and Su [9], Zegeye and Shah-

zad [10], Wattanawitoon and Kumam [11], Qin et al. [12], Takahashi and Zembayashi

[13] extend the notions from relatively nonexpansive mappings, weakly relatively non-

expansive mappings or quasi-j-nonexpansive mappings to quasi-j-asymptotically non-

expansive mappings and also proved some strong convergence theorems to

approximate a common fixed point of quasi-j-nonexpansive mappings or quasi-j-
asymptotically nonexpansive mappings.

The purpose of this article is first to introduce the concept of total quasi-j-asympto-

tically nonexpansive mapping which contains many kinds of mappings as its special

cases, and then by using hybrid algorithm to introduce a new iterative scheme for find-

ing a common element of set of solutions for a system of generalized mixed equili-

brium problems, set of common fixed points of a countable family of total quasi-j-
asymptotically nonexpansive mappings and null spaces of finite family of g-inverse
strongly monotone mappings in a 2-uniformly convex and uniformly smooth real

Banach space. As an application, we shall utilize our results to study the iterative solu-

tions of the nonlinear Hammerstian type equation. The results presented in the article

improve and extend the corresponding results in [1-5,7-16].

2 Preliminaries
For the sake of convenience, we first recall some definitions and conclusions which will

be needed in proving our main results.

A Banach space E is said to be strictly convex, if ‖x+y‖
2 < 1 for all x, y Î U = {z Î E:

||z|| = 1} with x ≠ y. It is said to be uniformly convex, if for each � Î (0, 2], there exists

δ > 0 such that ‖x+y‖
2 ≤ 1 − δ for all x, y Î U with ||x - y|| ≥ �. The convexity modulus

of E is the function δE: (0, 2] ® [0, 1] defined by

δE(ε) = inf
{
1 −

∥∥∥∥12(x + y)

∥∥∥∥ : x, y ∈ U,
∥∥x − y

∥∥ ≥ ε

}
,

for all � Î (0, 2]. It is well known that δE(�) is a strictly increasing and continuous

function with δE(0) = 0 and δE(ε)
ε

is nondecreasing for all � Î (0,2]. Let p > 1, then E is

said to be p-uniformly convex, if there exists a constant c > 0 such that δE(�) ≥ c�p, ∀�
Î (0, 2]. The space E is said to be smooth, if the limit

lim
t→0

∥∥x + ty
∥∥ − ‖x‖
t

exists for all x, y Î U. And E is said to be uniformly smooth, if the limit exists uni-

formly in x, y Î U.

In the sequel, we shall make use of the following lemmas.

Lemma 2.1 [17] Let E be a 2-uniformly convex real Banach space, then for all x, y Î
E, the following inequality holds:

∥∥x − y
∥∥ ≤ 2

c2
∥∥Jx − Jy

∥∥ , (2:1)

where 0 <c ≤ 1, and c is called the 2-uniformly convex constant of E.
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Lemma 2.2 [18] Let E be a smooth, strict convex and reflexive Banach space and C

be a nonempty closed convex subset of E. Then, the following conclusions hold:

(i) j(x, ∏Cy) + j(∏Cy, y) ≤ j (x, y), ∀x Î C, y Î E.

(ii) Let x Î E and z Î C, then

z = �Cx ⇔ 〈z − y, Jx − Jz〉 ≥ 0, ∀y ∈ C.

Lemma 2.3 [18] Let E be a uniformly convex and smooth Banach space and {xn},

{yn} be sequences of E. If j(xn, yn) ® 0 (as n ® ∞) and either {xn} or {yn} is bounded,

then xn - yn ® 0(as n ® ∞).

Lemma 2.4 [19] Let E be a uniformly convex Banach space, r be a positive number

and Br(θ) be a closed ball of E. For any given points {x1, x2, ... , xn, ...} ⊂ Br(θ) and for

any given positive numbers {l1, l2,...} with
∑∞

n=1 λn = 1, then there exists a continuous,

strictly increasing and convex function g: [0, 2r) ® [0, ∞) with g(0) = 0 such that for

any i, j Î {1, 2,..., }, i <j,∥∥∥∥∥
∞∑
n=1

λnxn

∥∥∥∥∥
2

≤
∞∑
n=1

λn‖xn‖2 − λiλjg(‖xi − xi‖). (2:2)

Lemma 2.5 [20] Let E be a smooth, strict convex and reflexive Banach space and C

be a nonempty closed convex subset of E, f : C × C → R be a bifunction satisfying

the following conditions:

(A1) f(x, x) = 0 for all x Î C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0, ∀x, y Î C;

(A3) lim supt↓0 f(x + t(z - x), y) ≤ f(x, y), ∀x, y, z Î C;

(A4) The function y ↦ f(x, y) is convex and lower semicontinuous.

Then the following conclusions hold:

(1) For any given r > 0 and x Î E, there exists a unique z Î C such that

f (z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C. (2:3)

(2) For given r > 0 and x Î E, define a mapping Kf
r : E → C by

Kf
r (x) =

{
z ∈ C : f (z, y) +

1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
. (2:4)

Then, the following hold:

(i) Kf
r is single-valued;

(ii) Kf
r is a firmly nonexpansive-type mapping, i.e., for any x, y Î E,

〈Kf
r (x) − Kf

r (y), JK
f
r (x) − JKf

r (y)〉 ≤ 〈Kf
r (x) − Kf

r (y), Jx − Jy〉;

(iii) F
(
Kf
r

)
= EP(f ) (the set of solutions of equilibrium problem for function f);

(iv) EP(f) is closed and convex.

(v) φ
(
p,Kf

r (x)
)
+ φ

(
Kf
r (x), x

)
≤ φ(p, x), ∀p ∈ F

(
Kf
r

)
..
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For solving the generalized mixed equilibrium problem (1.1), let us assume that the

following conditions are satisfied:

(1) E is a smooth, strictly convex and reflexive Banach space and C is a nonempty

closed convex subset of E

(2) B: C ® E* is a b-inverse strongly monotone mapping;

(3) F : C × C → R is a bifunction satisfying the conditions (A1), (A3), (A4) in

Lemma 2.5 and the following condition (A2)’:

(A2)’ for some g ≥ 0 with g ≤ b

F(x, y) + F(y, x) ≤ γ
∥∥Bx − By

∥∥2, ∀x, y ∈ C;

(4) � : C → R is a lower semi-continuous and convex function.

Under the assumptions as above, we have the following results.

Lemma 2.6 Let E, C, B, F, Ψ satisfy the above conditions (1)-(4). Denote by

�(x, y) = F(x, y) + �(y) − �(x) + 〈y − x, Bx〉, ∀x, y ∈ C. (2:5)

For any given r > 0 and x Î E, define a mapping K�
r : E → C by

K�
r (x) =

{
z ∈ C : �(z, y) +

1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
. (2:6)

Then, the following hold:

(i) K�
r is single-valued;

(ii) K�
r is a firmly nonexpansive-type mapping, i.e., for all x,y Î E,

〈K�
r (x) − K�

r (y), JK
�
r (x) − JK�

r (y)〉 ≤ 〈K�
r (x) − K�

r (y), Jx − Jy〉;

(iii) F(K�
r ) = EP(�) = GMEP(F,,B);

(iv) GMEP(F, F, B) is closed and convex.

(v) φ(p,K�
r (x)) + φ(K�

r (x), x) ≤ φ(p, x), ∀p ∈ F(K�
r ).

Proof. It follows from Lemma 2.5 that in order to prove the conclusions of Lemma

2.6 it is sufficient to prove that the function � : C × C → R satisfies the conditions

(A1)-(A4) in Lemma 2.5.

In fact, by the similar method as given in the proof of Lemma 2.5 in [1], we can

prove that the function Γ satisfies the conditions (A1), (A3), and (A4). Now we prove

that Γ also satisfies the condition (A2).

Indeed, for any x, y Î C, by condition (A2)’ we have

�(x, y) + �(y, x) = F(x, y) + �(y) − �(x) + 〈y − x, Bx〉
+ F(y, x) + �(x) − �(y) + 〈x − y, By〉
= F(x, y) + F(y, x) − 〈x − y, Bx − By〉
≤ (γ − β)

∥∥Bx − By
∥∥2 ≤ 0.

This implies that the function Γ satisfies the condition (A2). Therefore the conclu-

sions of Lemma 2.6 can be obtained from Lemma 2.5 immediately.
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In the sequel, we make use of the function V : E × E∗ → R which is defined by

V(x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ∥∥x∗∥∥2,
for all x Î E and x* Î E*. Observe that V(x, x*) = j(x, J-1 x*) for all x Î E and x* Î E*.

The following lemma is well known.

Lemma 2.7 [6] Let E be a smooth, strictly convex and reflexive Banach space with E*

as its dual. Then

V(x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V(x, x∗ + y∗)

for all x Î E and x*, y* Î E*.

3 Main results
In this section we shall make use of the following assumptions.

(1) Let E be a 2-uniformly convex and uniformly smooth real Banach space with a

dual E* and C be a nonempty closed and convex subset of E;

(2) Let Ti: C ® C, i = 1, 2,... be a countable family of closed and uniformly total

quasi-j-asymptotically nonexpansive mappings with nonnegative real sequences {νn},

{μn} and a strictly increasing continuous functions ς : R+ → R+ such that νn ® 0, μn
® 0 (as n ® ∞) and ζ(0) = 0. Suppose further that for each i ≥ 1, Ti is a uniformly Li-

Lipschitzian mapping, i.e., there exists a positive number Li > 0 such that∥∥Tn
i x − Tn

i y
∥∥ ≤ Li

∥∥x − y
∥∥ , ∀x, y ∈ C, ∀n ≥ 1;

(3) Let Ai: C ® E*, i = 1, 2,..., N be a δi-inverse strongly monotone mapping and

denote by δ = min{δn, i = 1,2,..., N};

(4) Let Bi: C ® E*, i = 1,2,... , M be a bi-inverse strongly monotone mappings;

(5) Let Fi : C × C → R, i = 1, 2, . . . ,M be a finite family of bifunctions satisfying

conditions (A1), (A3), (A4) and the following condition (A2)":

(A2)” For each i = 1, 2,..., M there exists gi ≥ 0 with gi ≤ bi such that

Fi(x, y) + Fi(y, x) ≤ γi
∥∥Bix − Biy

∥∥2, ∀x, y ∈ C;

(6) Let �i : C → R, i = 1, 2, ·,M be a finite family of lower semi-continuous convex

functions.

We are now in a position to give the main results of this article.

Theorem 3.1 Let E, C, {Ti}∞i=1, {An}Nn=1, {Bi}Mi=1, {Fi}Mi=1, {�i}Mi=1 satisfy the above

conditions (1)-(6). Suppose that

F :=
∞⋂
i=1

F(Ti)
⋂ M⋂

n=1
A−1
n (0)

⋂ ∞⋂
m=1

GMEP(Fm,Bm,m)

is a nonempty and bounded subset of C. For any given x0 Î C, let {xn} be the

sequence generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C0 = C,
yn = �CJ−1(Jxn − λAn+1xn),

zn = J−1

(
αn,0Jxn +

∞∑
i=1

αn,iJTn
i yn

)
,

un = K�M
rM,n

KM−1
rM−1,n

. . .K�2
r2,nK

�1
r1,n zn,

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn) + ηn},
xn+1 = �Cn+1x0, n ≥ 0,

(3:1)
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where

ηn = νn sup
u∈F

ς(φ(u, xn)) + μn, ∀n ≥ 1,

K�k
rk,n : E → C, k = 1, 2, . . . ,M is the mapping defined by (2.6) with Γ = Γk, r = rk,n,

and

�k(x, y) = Fk(x, y) + 〈y − x, Bkx〉 + �k(y) − �k(x), ∀x, y ∈ C, (3:2)

An = An(modN), rk,n Î [d, ∞), k = 1,2,..., M, n ≥ 1 for some d > 0, 0 < λ < c2δ
2
, where c

is the 2-uniformly convex constant of E, and for each n ≥ 1

(i) for each n ≥ 1,
∑∞

i=0 αn,i = 1;

(ii) for each j ≥ 1, lim infn®∞ an,0an,j > 0.

If F is a nonempty and bounded subset in C, then {xn} converges strongly to some

point x∗ ∈ F .

Proof. We divide the proof of Theorem 3.1 into five steps.

(I) Sequences {xn}, {yn} and {Tn
i yn} are all bounded.

In fact, since xn = �Cnx0, for any p ∈ F , from Lemma 2.2, we have

φ(xn, x0) = φ(�Cnx0, x0) ≤ φ(p, x0) − φ(p, xn) ≤ φ(p, x0).

This implies that the sequence {j(xn, x0)} is bounded, and so {xn} is bounded.

On the other hand, by Lemmas 2.2, 2.7, and 2.1, we have that

φ(p, yn) = φ(p,�CJ−1(Jxn − λAn+1xn))

≤ φ(p, J−1(Jxn − λAn+1xn))

= V(p, Jxn − λAn+1xn)

≤ V(p, (Jxn − λAn+1xn) + λAn+1xn)

− 2〈J−1(Jxn − λAn+1xn) − p,λAn+1xn〉
= V(p, Jxn) − 2λ〈J−1(Jxn − λAn+1xn) − p,An+1xn〉
= φ(p, xn) − 2λ〈xn − p,An+1xn〉

− 2λ〈J−1(Jxn − λAn+1xn) − xnAn+1xn〉
= φ(p, xn) − 2λ(xn − p,An+1xn − An+1p) (since An+1p = 0)

− 2λ〈J−1(Jxn − λAn+1xn) − xn,An+1xn〉
≤ φ(p, xn) − 2λδ‖An+1xn‖2(by condition (3))

+ 2λ
∥∥J−1(Jxn − λAn+1xn) − J−1Jxn

∥∥ × ‖An+1xn‖

≤ φ(p, xn) − 2λδ‖An+1xn‖2 + 4λ2

c2
‖An+1xn‖2(by Lemma 2.1)

= φ(p, xn) + 2λ

(
2λ

c2
− δ

)
‖An+1xn‖2

(3:3)

Thus, using the fact that λ ≤ c2

2 δ, we have that

φ(p, yn) ≤ φ(p, xn). (3:4)

This shows that {yn} is also bounded. Moreover, by condition (2), {Ti : C → C}∞i=1 is a
countable family of uniformly total quasi-j-asymptotically nonexpansive mappings
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with nonnegative real sequences {νn}, {μn} and a strictly increasing continuous func-

tions ς : R+ → R+ such that νn ® 0, μn ® 0 (as n ® ∞) and ζ(0) = 0. Therefore for

each i ≥ 1 and for given p ∈ F we have

φ(p,Tn
i yn) ≤ φ(p, yn) + νnς(φ(p, yn)) + μn, ∀n ≥ 1.

Since {yn} is bounded, this shows that, {Tn
i yn} is uniformly bounded. Denote by

K̃ = sup
n≥0,i≥1

{‖xn‖ ,
∥∥yn∥∥ , ∥∥Tn

i yn
∥∥} < ∞.

By the way, from the definition of {hn}, it is easy to see that

ηn = νn sup
u∈F

ς(φ(u, xn)) + μn → 0 (as n → ∞). (3:5)

(II) For each n ≥ 0, Cn is a closed and convex subset of C and Ω ⊂ Cn.

It is obvious that C0 = C is closed and convex. Suppose that Cn is closed and convex

for some n ≥ 1. Since the inequality j(v,un) ≤ j(v, xn) + hn is equivalent to

2〈v, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 + ηn,

therefore, we have

Cn+1 = {v ∈ Cn : 2〈v, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 + ηn}. (3:6)

This implies that Cn+1 is closed and convex. Thus for each n ≥ 0, Cn is a closed and

convex subset of C

Next, we prove that F ⊂ Cn for all n ≥ 0. Indeed, it is obvious that, F ⊂ C0 = C .

Suppose F ⊂ Cn for some n ≥ 1. Since E is uniformly smooth, E* is uniformly convex.

For any given p ∈ F ⊂ Cn and for any positive integers j ≥ 1 and any positive integer

m = 1, 2,..., M - 1, from Lemmas 2.6(v) and 2.4, we have

φ(p, un) = φ
(
p,K�M

rM,n
K�M
rM−1,n

. . .K�2
r2,nK

�1
r1,n zn

)
≤ φ

(
p,Km

rm,n
K�m−1
rm−1,n

· · ·K�2
r2,nK

�1
r1,n zn

)
≤ φ(p, zn) (by Lemma 2.6(v))

= φ

(
p, J−1

(
αn,0Jxn +

∞∑
i=1

αn,iJTn
i yn

))

=
∥∥p∥∥2 − 2

〈
p, αn,0Jxn +

∞∑
i=1

αn,iJTn
i yn

〉

+

∥∥∥∥∥αn,0Jxn +
∞∑
i=1

αn,iJTn
i yn

∥∥∥∥∥
2

≤ ∥∥p∥∥2 − 2αn,0〈p, Jxn〉 − 2
∞∑
i=1

αn,i〈p, JTn
i yn〉

+ αn,0‖xn‖2 +
∞∑
i=1

αn,i
∥∥Tn

i yn
∥∥2 − αn,0αn,jg

(∥∥∥Jxn − JTn
j yn

∥∥∥)

= αn,0φ(p, xn) +
∞∑
i=1

αn,iφ(p,Tn
i yn) − αn,0αn,jg

(∥∥∥Jxn − JTn
j yn

∥∥∥)

≤ αn,0φ(p, xn) +
∞∑
i=1

αn,i{φ(p, yn) + νnς(φ(p, yn)) + μn}

− αn,0αn,jg
(∥∥∥Jxn − JTn

j yn
∥∥∥)
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Combining (3.4), we have

φ(p, un) ≤ φ(p, zn)

≤ αn,0φ(p, xn) +
∞∑
i=1

αn,i{φ(p, xn) + νnς(φ(p, xn)) + μn}

− αn,0αn,jg
(∥∥Jxn − JTn

i yn
∥∥)

≤ φ(p, xn) + νn sup
u∈�

ς(φ(u, xn)) + μn − αn,0αn,jg
(∥∥∥Jxn − JTn

j yn
∥∥∥)

= φ(p, xn) + ηn − αn,0αn,jg
(∥∥∥Jxn − JTn

j yn
∥∥∥)

≤ φ(p, xn) + ηn.

(3:8)

Hence p Î Cn+1 and F ⊂ Cn for all n ≥ 0.

(III) {xn} is a Cauchy sequence.

Since xn = �Cnx0 and xn+1 = �Cn+1x0 ∈ Cn+1 ⊂ Cn, we have that

φ(xn, x0) ≤ φ(xn+1, x0)

which implies that the sequence {j(xn, x0)} is nondecreasing and bounded, and so

lim
n→∞ φ(xn, x0)

exists. Hence for any positive integer m, using Lemma 2.2(i) we have

φ(xn+m, xn) = φ(xn+m,�Cnx0) ≤ φ(xn+m, x0) − φ(xn, x0)

for all n ≥ 0. Since lim
n→∞ φ(xn, x0) exists, we obtain that

φ(xn+m, xn) → 0(n → ∞), ∀m ≥ 1. (3:9)

Thus, by Lemma 2.3 we have that ||xn+m - xn|| ® 0 as n ® ∞. This implies that the

sequence {xn} is a Cauchy sequence in C. Since C is a nonempty closed subset of

Banach space E, it is complete. Hence there exists an x* in C such that

xn → x∗(n → ∞). (3:10)

(IV) We show that x∗ ∈
∞⋂
i=1

F(Ti).

Since xn+1 Î Cn+1 by the structure of Cn+1, we have that

φ(xn+1, un) ≤ φ(xn+1, xn) + ηn.

Again by (3.5), (3.9), and Lemma 2.3, we get that lim
n→∞ ‖xn+1 − un‖ = 0. But

‖xn − un‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − un‖ .

Thus

lim
n→∞ ‖xn − un‖ = 0. (3:11)

This implies that un ® x* as n ® ∞. Since J is norm-to-norm uniformly continuous

on bounded subsets of E we have that

lim
n→∞ ‖Jxn − Jun‖ = 0. (3:12)
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From (3.8), (3.11), and (3.12), we have that

αn,0αn,jg
(∥∥∥Jxn − JTn

j yn
∥∥∥)

≤ φ(p, xn) − φ(p, un) + ηn

≤ ‖xn − un‖ (‖un‖ + ‖xn‖) + 2〈p, Jun − Jxn〉 + ηn

→ 0 (n → ∞).

(3:13)

In view of condition lim inf
n→∞ αn,0αn,j > 0, we have that

g
(∥∥∥Jxn − JTn

j yn
∥∥∥)

→ 0(n → ∞). (3:14)

It follows from the property of g that∥∥∥Jxn − JTn
j yn

∥∥∥ → 0(n → ∞). (3:15)

Since xn ® x* and J is uniformly continuous, it yields Jxn ® Jx*. Hence from (3.15)

we have

JTn
j yn → Jx∗(n → ∞), ∀j ≥ 1. (3:16)

Since E* is uniformly smooth, J-1 is uniformly continuous, it follows that

Tn
j yn → x∗(n → ∞), ∀j ≥ 1. (3:17)

Moreover, using inequalities (3.7) and (3.3), we obtain that

φ(p, un) ≤ αn,0φ(p, xn) +
∞∑
i=1

αn,i{φ(p, yn) + νnς(φ(p, yn)) + μn}

≤ αn,0φ(p, xn) +
∞∑
i=1

αn,i

{
φ(p, xn) + 2λ

(
2λ

c2
− δ

)
‖An+1xn‖2

+νnς(φ(p, yn)) + μn
}

≤ φ(p, xn) + αn,j2λ

(
2λ

c2
− δ

)
‖An+1xn‖2 + νnς(φ(p, xn)) + μn

≤ φ(p, xn) + αn,j2λ

(
2λ

c2
− δ

)
‖An+1xn‖2 + ηn.

This implies that

2αn,jλ

(
δ − 2λ

c2

)
‖An+1xn‖2 ≤ φ(p, xn) − φ(p, un) + ηn → 0 (as n → ∞).

By the assumption that for each j ≥ 1, lim infn®∞ an,j ≥ lim infn®∞ an,0an,j > 0, and

λ(δ − 2λ
c2 ) > 0, hence we have

lim
n→∞ ‖An+1xn‖2 = 0. (3:19)

This together with (3.1) shows that

lim
n→∞

∥∥yn − x∗∥∥ = lim
n→∞

∥∥�CJ−1(Jxn − λAn+1xn) − �Cx∗∥∥
≤ lim

n→∞
∥∥J−1(Jxn − λAn+1xn) − x∗∥∥ = 0

(3:20)
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Furthermore, by the assumption that for each j ≥ 1, Tj is uniformly Lj-Lipschitz con-

tinuous, hence we have∥∥∥Tn+1
j yn − Tn

j yn
∥∥∥ ≤

∥∥∥Tn+1
j yn − Tn+1

j yn+1
∥∥∥ +

∥∥∥Tn+1
j yn+1 − yn+1

∥∥∥
+

∥∥yn+1 − yn
∥∥ +

∥∥∥yn − Tn
j yn

∥∥∥
≤ (Lj + 1)

∥∥yn+1 − yn
∥∥ +

∥∥∥Tn+1
j yn+1 − yn+1

∥∥∥
+

∥∥∥yn − Tn
j yn

∥∥∥ .
(3:21)

This together with (3.17) and (3.20), yields

lim
n→∞

∥∥∥Tn+1
j yn − Tn

j yn
∥∥∥ = 0.

Hence from (3.17) we have

lim
n→∞ Tn+1

j yn = x∗,

i.e.,

lim
n→∞ TjT

n
j yn = x∗.

In view of (3.17) and the closeness of Tj it yields that Tjx* = x* for all j ≥ 1. This

implies that x∗ ∈ ∩∞
j=1F(Tj).

(IV) Now, we prove that x∗ ∈ ∩N
n=1A

−1
n (0).

It follows from (3.19) that

lim
n→∞ ‖An+1xn‖ = 0. (3:22)

Since limn®∞ xn = x*, we have that for every subsequence

{xnj}j≥1 ⊂ {xn}n≥0, limj→∞xnj = x∗ and

lim
j→∞

Anj+1xnj = 0. (3:23)

Let {nq}q ≥1 ⊂ N be an increasing sequence of natural numbers such that

Anq+1 = A1,∀q ∈ N. Then lim
p→∞

∥∥xnq − x∗∥∥ = 0 and

0 = lim
q→∞Anq+1xnq = lim

q→∞A1xnq .

Since A1 is g-inverse strongly monotone, it is 1
γ -Lipschitz continuous and thus

A1x∗ = A1

(
lim
q→∞ xnq

)
= lim

q→∞A1xnq = 0.

Hence

x∗ ∈ A−1
1 (0).

Continuing this process, we obtain that x∗ ∈ A−1
i (0),∀i = 1, 2, . . . ,N, ∀i = 1, 2,..., N.

Hence
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x∗ ∈
N⋂
n=1

A−1
n (0).

(V) Next, we prove that x∗ ∈
M⋂
m=1

GMEP(Fm,Bm,�m).

Denote

S m
n = K�m

rm,n
K�m−1
rm−1,n

. . .K�2
r2,nK

�1
r1,n , m = 1, 2, . . . ,M

and S 0
n = I for all n ≥ 1. By Lemma 2.6, for any p ∈ F , we have

φ(S m
n zn,S m−1

n zn) ≤ φ(p,S m−1
n zn) − φ(p,S m

n zn)

≤ φ(p, zn) − φ(p,S m
n zn)

≤ φ(p, xn) + ηn − φ(p,S m
n zn)(by (3.8) and (3.7))

≤ φ(p, xn) + ηn − φ(p, un)(by (3.7)) → 0 (as n → ∞).

(3:24)

From (3.13) we have that limn→∞φ(S m
n zn,S m−1

n zn) = 0 . Since E is 2-uniformly

convex and uniformly smooth Banach space and {zn} is bounded, we have that

lim
n→∞

∥∥S m
n zn − S m−1

n zn
∥∥ = 0, m = 1, 2, . . . ,M. (3:25)

Next we prove that for each m = 1, 2,..., M

S m
n zn → x∗(as n → ∞).

In fact, since xn ® x* and un ® x* (as n ® ∞), if m = M then we have

lim
n→∞

∥∥S M
n zn − S M−1

n zn
∥∥ = lim

n→∞
∥∥un − S M−1

n zn
∥∥ = 0.

This implies that S M−1
n zn → x∗ . By induction, the conclusion can be obtained.

Since J is norm-to-norm uniformly continuous on bounded subsets of E, from (3.25)

we have

lim
n→∞

∥∥JS m
n zn − JS m−1

n zn
∥∥ = 0, ∀m = 1, 2, . . . ,M. (3:26)

Again since {rm,n}Mm=1 ⊂ [d,∞) for some d > 0, we have that

lim
n→∞

∥∥JS m
n zn − JS m−1

n zn
∥∥

rm,n
= 0, ∀m = 1, 2, . . . ,M. (3:27)

In the proof of Lemma 2.6 we have proved that the function Γm, m = 1, 2,... M

defined by (3.2) satisfies the condition (A1)-(A4) and

�m(S m
n zn, y) +

1
rm,n

〈y − S m
n zn, JS m

n zn − JS m−1
n zn〉 ≥ 0, ∀y ∈ C,

Therefore for any y Î C we have

1
rm,n

〈y − S m
n zn, JS m

n zn − JS m−1
n zn〉 ≥ −�m(S m

n zn, y) ≥ �m(y,S m
n zn). (3:28)
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This implies that

�m(y,S m
n zn) ≤ 1

rm,n
〈y − S m

n zn, JS m
n zn − JS m−1

n zn〉

≤ (M1 +
∥∥y∥∥)

∥∥JS m
n zn − JS m−1

n zn
∥∥

rm,n
,

(3:29)

for some constant M1 > 0. Since the function y ↦ Γm(x, y) is a convex and lower

semi-continuous, from (3.27) and (3.29) we have

�m(y, x∗) ≤ lim inf
n→∞ �m(y,S m

n zn) ≤ 0, ∀y ∈ C. (3:30)

For any t Î (0, 1] and y Î C, then yt = ty + (1 -t)x* Î C. Since Γm satisfies condi-

tions (A1), (A4),

from (3.30) we have

0 = �m(yt, yt) ≤ t�m(yt, y) + (1 − t)�m(yt, x∗)
≤ t�m(yt, y), ∀m = 1, 2, . . .M.

Deleting t and then letting t ® 0, by condition (A3) we have

0 ≤ �m(x∗, y), ∀y ∈ C, ∀m = 1, 2, . . .M,

i.e., for each m = 1, 2,..., M we have

Fm(x∗, y) + 〈y − x∗,Bmx
∗〉 + �m(y) − �m(x∗) ≥ 0, ∀y ∈ C.

This implies that x* Î GMEP(Fm, Bm, Ψm), for each m = 1, 2,..., M. Therefore, we

have that

x∗ ∈
M⋂
m=1

GMEP(Fm,Bm,�m).

This completes the proof of Theorem 3.1.

4 Application
It is well known that the following Hammerstian type equation

u + Kfu = 0, (4:1)

where K is a linear operator and f is a nonlinear Nemytskii operator, plays a crucial

role in the theory of optimal control systems (see, example, [21]). Several existence

and uniqueness theorems have been proved for equation (4.1) (see, for examples,

[22-25].

We are now ready to give an application of Theorem 3.1 to an iterative solution of

the nonlinear Hammerstein type Equation (4.1).

Theorem 4.1 Let E be a real Banach space with a dual E* such that X = E x E* is a

2-uniformly convex and uniformly smooth real Banach space with norm

‖z‖2X = ‖u‖2E + ‖v‖2E∗, z = (u, v) Î X. Let C be a nonempty closed convex subset of X.

Let f: E ® E* and K: E* ® E with D(K) = f(E) = E* be continuous monotone type

operators such that Equation (4.1) has a solution in E and such that the mapping

A: X ® X* defined by
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Az := A(u, v) = (fu − v, u + Kv) (4:2)

is δ-inverse strongly monotone. Let B: C ® X* be a b-inverse strongly monotone

mappings. Let F : C × C → R be a bifunction satisfying condition (A1), (A2)”, (A3),

(A4) in Theorem 3.1 and � : C → R be a lower semi-continuous and convex func-

tion. Let T: C ® C be a closed and total quasi-j-asymptotically nonexpansive mapping

with nonnegative real sequences {νn}, {μn} and a strictly increasing continuous func-

tions ς : R+ → R+ such that νn ® 0, μn ® 0 (as n ® ∞) and ζ(0) = 0, and T is uni-

formly L-Lipschitzian. If F := F(T) ∩ A−1(0) ∩ GMEP(F,B,�) is a nonempty

bounded subset of C, then the sequence {xn} defined by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C0 = C,
yn = �CJ−1(Jxn − λAxn),
zn = J−1(αnJxn + (1 − αnJTnyn),
un = K�

rn zn,
Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn) + ηn},
xn+1 = �Cn+1x0, n ≥ 0,

(4:3)

converges strongly to some point x∗ ∈ F where

ηn = νn sup
u∈F

ς(φ(u, xn)) + μn, ∀n ≥ 1, (4:4)

K�
rn : E → C is the mapping defined by (2.6) and

�(x, y) = F(x, y) + �(y) − �(x) + 〈y − x, Bx〉, ∀x, y ∈ C,

rn Î [d, ∞), n ≥ 1 for some d > 0, 0 < λ < c2δ
2
, where c is the 2-uniformly convex

constant of E and {an} is the sequence in (0, 1) with lim infn®∞ an(1 - an) > 0.

Remark 4.1 Since x∗ ∈ F , therefore we have x* Î A-1(0), i.e., Ax* = 0. Since x* =

(u*,v*) for some u* Î E, v* Î E*, we have Ax* = A(u*, v*) = (fu* - v*, u* + Kv*) = (0, 0).

This implies that fu* - v* = 0 and u* + Kv* = 0, i.e., u* + Kfu* = 0. Hence u* is a solu-

tion of the nonlinear Hammerstein type equation (4.1) and xn ® x* (as n ® ∞).
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