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1. Introduction
In 1974, Kirk [1] introduced the mappings of asymptotically nonexpansive type and

proved the existence of fixed points in Banach spaces with the characteristic of convex-

ity less than one. In 1992, You and Xu [2] extended Kirk’s theorem to k-uniformly

rotund (k-UR) Banach spaces for 1 < k <∞. In 1991, Xu [3] proved the existence of

fixed points of the mappings of asymptotically nonexpansive type in nearly uniformly

convex (NUC) Banach spaces. In 2002, Li and Sims [4] proved that continuous map-

pings of asymptotically nonexpansive type has a fixed point in a Banach space with

uniform normal structure (see also [5]). In 2004, Zeng [6] proved that if X is uniformly

convex in every direction and has weak uniform normal structure then every mapping

of asymptotically nonexpansive type has a fixed point.

One of the fundamental and celebrated results in the theory of nonexpansive map-

pings is Browder’s demiclosedness principle [7] which states that if X is a uniformly

convex Banach space, C is a nonempty closed convex subset of X, and T: C ® X is a

nonexpansive mapping, then I - T is demiclosed at each y Î X, that is, for any

sequence {xn} in C conditions xn
w−→ x and (I - T) xn ® y imply that (I - T) x = y.

(Here I is the identity operator of X into itself.) The principle is also valid in a space

satisfying Opial’s condition. It has been known that the demiclosedness principle plays

a key role in studying the asymptotic and ergodic behavior of nonexpansive mapping,

see for example [8-10]. In 1991, Xu [3] proved that the demiclosedness principle is
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valid for asymptotically non-expansive mappings in uniformly convex Banach spaces.

In 1995, Lin et al. [11] verified the demiclosedness principle for asymptotically nonex-

pansive mappings in Banach spaces with locally uniform Opial condition.

In this article, we state some fixed point theorems for mappings of asymptotically

nonexpansive type, which are more general than the previous results. In Section 3, we

give a fixed point theorem for a mapping of asymptotically nonexpansive type in the

framework of a reflexive Banach space whose characteristic of noncompact convexity

associated to the separation measure of noncompactness is less than the weakly con-

vergent sequence coefficient. If, in addition, X satisfies the nonstrict Opial condition

and its characteristic of noncompact convexity associated to the Hausdorff measure of

noncompactness less that 1, the conclusion is also valid. In Section 4, we prove that

the demiclosedness principle is valid for mappings of asymptotically nonexpansive type

in Banach spaces with locally uniform Opial condition. We also show that a NUC

Banach space X with Opial’s condition satisfies locally uniform Opial condition.

2. Preliminaries
Let X be a Banach space X. The asymptotically nonexpansive mappings were intro-

duced in 1972 by Geobel and Kirk [12].

Definition 2.1. Let C be bounded subset of X. A mapping T: C ® C is called asymp-

totically nonexpansive if there exists a sequence {kn} of positive real numbers with kn
® 1 as n ® ∞ for which

‖ Tnx − Tny ‖ ≤ kn ‖ x − y ‖, for all x, y ∈ C. (2:1)

If (2.1) is valid for the sequence {kn} with all kn = 1, T is said to be nonexpansive.

The mappings of asymptotically nonexpansive type in Banach spaces were defined in

1974 by Kirk [1].

Definition 2.2. Let C be a bounded subset of X. A mapping T: C ® C is called of

asymptotically nonexpansive type if T satisfies

lim sup
n→∞

sup
y∈C

{∥∥Tnx − Tny
∥∥ − ∥∥x − y

∥∥} ≤ 0

for each x Î C, and TN is continuous for some N Î N.

Obviously, asymptotically nonexpansive mappings are mappings of asymptotically

nonexpansive type.

The Hausdorff and the separation measures of noncompactness of a nonempty

bounded subset B of X are respectively defined as

c(B) = inf{d > 0: B can be covered by finitely many balls of radius ≤ d},

b(B) = sup{ε >0: there exists a sequence {xn} in B such that sep ({xn}) ≥ ε},

where

sep ({xn}) = inf { ‖ xn − xm‖ : n �= m} .

The modulus of noncompact convexity associated to j (j = c, or b) is defined in the

following way:
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�X,φ (ε) = inf {1 − d (0, A) : A ⊂ BX is convex, φ (A) ≥ ε} .

The characteristic of noncompact convexity of X associated with the measure of

non-compactness j is defined by

εφ(X) = sup
{
ε ≥ 0 : �X,φ(ε) = 0

}
.

When X is a reflexive Banach space we have the following alternative expression for

the modulus of noncompact convexity associated with c and b,

�X,χ(ε) = inf
{
1 − ‖x‖ : {xn} ⊂ BX , x = w − lim

n
xn, χ({xn}) ≥ ε

}
,

�X,β(ε) = inf
{
1 − ‖x‖ : {xn} ⊂ BX, x = w − lim

n
xn, sep ({xn}) ≥ ε

}
.

It is known that X is NUC if and only if εj (X) = 0, where j is b or c. Another
important fact is that if εb (X) <1, then X is reflexive. The above-mentioned definitions

and properties can be found in [13].

Recall that a Banach space X is said to satisfy Opial condition [14] if for each

sequence {xn} in X the condition xn
w−→ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥∥xn − y
∥∥

for all y ≠ x. If <is replaced by ≤ in the above inequality, X is said to satisfy nonstrict

Opial condition. In 1992, Prus [15] introduced uniform Opial condition. A Banach

space X is said to satisfy the uniform Opial condition if for each c >0, there exists an r

>0 such that

1 + r ≤ lim inf
n→∞ ‖xn + x‖

for each x Î X with ||x|| ≥ c and each sequence {xn} in X such that w-limn®∞ xn = 0

and lim infn®∞ ||xn|| ≥ 1.

In 1995, Lin, Tan and Xu [11] first introduced the locally uniform Opial condition.

In 2003, Fetter and Gamboa de Buen [16] amended the locally uniform Opial condi-

tion: a Banach space X is said to satisfy the locally uniform Opial condition if for any

weakly null sequence {xn} in X with lim supn®∞ ||xn|| ≥ 1 and any c >0, there is r >0

such that

1 + r ≤ lim sup
n→∞

‖xn + x‖

for every x Î X with ||x|| ≥ c. Clearly, uniform Opial condition implies local uniform

Opial condition, which in turn implies Opial’s condition. The following equivalent defi-

nition for local uniform Opial condition holds.

Proposition 2.3. [[16], Theorem 1.3] A Banach space X is said to satisfy the locally

uniform Opial condition if and only if for any sequence {xn} in X which converges

weakly to x Î X and for any sequence {ym} in X, the condition

lim sup
m→∞

lim sup
n→∞

∥∥xn − ym
∥∥ ≤ lim sup

n→∞
‖xn − x‖

implies that {ym} converges to x in norm.
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We also recall the Bynum’s weakly convergent sequence coefficient. The asymptotic

diameter and asymptotic radius of a sequence {xn} in a Banach space X are defined by

diama ({xn}) = lim
k→∞

{sup ‖xn − xm‖ : n, m ≥ k} ,

ra ({xn}) = inf
{
lim sup

n→∞

∥∥xn − y
∥∥ : y ∈ conv ({xn})

}
.

The weakly convergent sequence coefficient [17] of X is defined by

WCS (X) = inf
{
diama ({xn})
ra ({xn})

}

where the infimum is taken over all sequences {xn} weakly convergent to zero which

are not norm convergent to zero. It is clear that 1 ≤ WCS(X) ≤ 2. The definition of

WCS(X) above does not make sense if the space X has the Schur property but in that

case we may say by convention that WCS(X) = 2. In this article, we use the following

equivalent formulation (see [18]

WCS (X) = inf
{

lim
n,m;n�=m

‖xn − xm‖
}

where the infimum is taken over all weakly null sequences {xn} ⊂ X with ||xn|| ® 1

and limn, m;n≠m ||xn - xm|| exists.

3. Fixed points and moduli of noncompact convexity
Let C be a nonempty weakly compact convex subset of a Banach space X, and T: C ®
C be a mapping of asymptotically nonexpansive type. Denote by F the family of all

closed convex nonempty subsets K of C with the following property (ω):

x ∈ K ⇒ ωw (x) ⊂ K, (3:1)

where

ωw (x) : =
{
y ∈ X : y = w − lim

i→∞
Tni x for some ni ↑ ∞

}

is the weak ω-limit set of T at x. Let F be ordered by inclusion. The weak compact-

ness of C allows us to use Zorn’s Lemma to obtain a minimal element (say) K in F .

To prove the theorem we use the following lemma from [3] (see also [[4], Lemma 1]).

Lemma 3.1. Let C be a nonempty subset of a Banach space X and let T be a map-

ping of asymptotically nonexpansive type C. Suppose there exists a nonempty bounded

closed convex subset E of C with the property (ω). Then there is a closed convex none-

mpty subset K of C and a r >0 such that:

(i) if x Î K; then every weak limit point of {Tnx} is contained in K;

(ii) rx(y) = r for all x, y Î K; where rx is the functional defined by

rx
(
y
)
= lim sup

n→∞

∥∥Tn x − y
∥∥ , y ∈ X.
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Remark 3.2. From [3], the set K in Lemma 3.1 is the above minimal element

obtained by Zorn’ Lemma. In fact, r and K are respectively the asymptotic radius and

asymptotic center of the sequence {Tnx} with respect to C.

From Kirk’s proof of Theorem 2 in [1], we have the following lemma.

Lemma 3.3. (Kirk [1]) Let C be a nonempty weakly compact convex subset of a

Banach space X, and T: C ® C be a mapping of asymptotically nonexpansive type and

TN be continuous for some N Î N. If there exists a nonempty compact convex subset K

of C satisfying that

x ∈ K ⇒ � 0 �= ω‖·‖ (x) ⊂ K,

where

ω‖·‖ (x) =
{
y ∈ X : y = ‖ · ‖ − lim

i→∞
Tni x for some ni ↑ ∞

}
,

then T has a fixed point in C.

Theorem 3.4. Let C be a nonempty bounded closed convex subset of a reflexive

Banach space X and T: C ® C be a mapping of asymptotically nonexpansive type and

TN be continuous for some N Î N. If εb (X) <WCS(X), then T has a fixed point in C.

Proof. Since X is reflexive, C is a nonempty weakly compact convex subset of X.

Denote by F the family of all closed convex nonempty subsets K of C with the prop-

erty (ω):

x ∈ K ⇒ ωw (x) ⊂ K,

where ωw (x) is the weak ω-limit set of T at x. By the weakly compactness of C, we

have C ∈ F , so F �=� 0 . Let F be ordered by inclusion. Using Zorn’s Lemma, we obtain

a minimal element K in F . Then K be a minimal subset of C with respect to being

nonempty, closed, convex and satisfying the property (ω).

Since x Î K implies ωw(x) ⊂ K, thus ω|| · ||(x) ⊂ K. By Lemma 3.3, we only need to

show that for each x Î K, {Tnx} admits a norm-convergence subsequence, thus

ω‖·‖ (x) �=� 0 .
If r = 0, it is easy to see that {Tnx} converges in norm to a fixed point of T for any x

Î K. Now we assume that r >0. Let x be arbitrary element in K and {ni} be a subse-

quence of the positive integers {n}. If {Tni x} contains no norm-convergent subse-

quence, then we may assume without loss of generality that it has a subsequence,

denoted by {xn}, such that limn≠m ||xn - xm|| exists Since X is reflexive, we may assume

that {xn} converges weakly to some z Î K. Thus, by Lemma 3.1 and the weak lower

semicontinuity of the norm, we have

r = lim sup
n→∞

‖xn − z‖ ≤ lim sup
n→∞

lim inf
m→∞ ‖xn − xm‖ = lim

n�=m
‖xn − xm‖ .

Since lim supn®∞||T
n x-x|| = lim supn®∞||T

n x-z|| = r, for any h >0, we can find an

n0 so large that for n ≥ n0

∥∥Tn x − x
∥∥ < r +

1
2

η,
∥∥Tn x − z

∥∥ ≥ r − η
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and

sup
{
Tn x − Tnu ‖ − ‖x − u‖ : u ∈ C

}
<

1
2

η.

We write xk = Tn(k)x, k ≥ 1. For an arbitrary but fixed n ≥ n0, choose a k0 large

enough so that m(k) ≥ n + n0 for k ≥ k0. Now it follows that for k ≥ k0,∥∥Tnx − xk
∥∥ =

∥∥∥Tnx − Tn(Tm(k)−nx)
∥∥∥

<
1
2

η +
∥∥∥x − Tm(k)−nx

∥∥∥
< r + η.

Since limn≠m ||xn - xm|| = d ≥ r > 0, we suppose without loss of generality that ||xk -

xl|| ≥ d - h for all k ≠ l.

Now we define a sequence {wk} by wk = (Tnx - Tm(k)x)/(r + h). Then we know that ||

wk|| ≤ 1 for k ≥ k0, {wk} converges weakly to (Tnx - z)/(r + h), and sep ({wk}) = sep

({(Tm(k)x)/(r+h)}) ≥ (d - h)/(r+h). Thus we conclude from the definition of ΔX,b(·) that

�X,β

(
d − η

r + η

)
≤ 1 −

∥∥∥∥Tnx − z
r + η

∥∥∥∥ ≤ 1 − r − η

r + η

for all n ≥ n0. Since the last inequality is true for any h >0, we obtain ΔX,b(d/r) = 0,

whence εb(X) ≥ d/r. Now we estimate d as follows:

d = lim
k �=l

‖xk − xl‖ = lim
k �=l

∥∥(xk − z) − (xl − z)
∥∥

≥ WCS (X) lim sup
n→∞

‖xn − z‖

≥ WCS (X) · r.

Hence, εb(X) ≥ WCS(X). This is a contradiction. □
The following Lemma can be found in the proof of Theorem 3.4 in [19].

Lemma 3.5. Let X be a Banach space with nonstrict Opial condition, and let {xn} be

a sequence weakly convergent to a point z. Then

χ ({xn}) = lim sup
x→∞

‖xn − z‖ .

Theorem 3.6. Let C be a nonempty bounded closed convex subset of a reflexive

Banach space X and T: C ® C be a mapping of asymptotically nonexpansive type and

TN be continuous for some N Î N. If X satisfies the nonstrict Opial condition and εc
(X) <1, then T has a fixed point.

Proof. As in the proof of the Theorem 3.4, if X satisfies the nonstrict Opial condition,

by Lemma 3.5, we also have

χ ({ωk}) = χ

({
Tm(k)x
r + η

})
= lim sup

k→∞

∥∥∥∥∥T
m(k) x − z
r + η

∥∥∥∥∥ ≥ r − η

r + η
.

Therefore, the conclusion holds. □
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4. Demiclosedness principle for mappings of asymptotically nonexpansive
type
In this section we prove the demicloseness principle for mappings of asymptotically

nonexpansive type either in a Banach space with locally uniform Opial condition or in

a NUC Banach space with Opial’s condition.

Lemma 4.1. Suppose X is a Banach space satisfying Opial’s conditon and C is a

nonempty weakly compact convex subset of X, and T: C ® C is a continuous mapping

of asymptotically nonexpansive type. Suppose also that {xn} is a sequence in C which

converges weakly to x and for which the sequence {xn - Txn} converges strongly to zero.

Then {Tnx} converges weakly to x.

Proof. For each integer m ≥ 1, set

Am = co
{
Tix : i ≥ m

}
and A =

∞⋂
m=1

Am.

Since C is weakly compact, A is nonempty and it is readily seen that

A = co ωw(x), where ωw(x) is the weak ω-limit set of T at x, i.e., the set{
y ∈ X : y = w − lim

j→∞
Tnj x for some nj ↑ ∞

}
.

Showing the weak convergence of {Tnx} to x is equivalent to showing that A = {x}.

To this end, let the functional f be defined by

f
(
y
)
= lim sup

n→∞

∥∥xn − y
∥∥ , y ∈ X.

If there exists y0 Î A such that y0 ≠ x, then by Opial’s condition, f(y0) > f(x). Let h: =
f(y0) - f (x) >0. Noticing that T is a mapping of asymptotically nonexpansive type, we

denote

cm = max

{
0, sup

x,y∈C

(∥∥Tm x − Tm y
∥∥ − ∥∥x − y

∥∥)}
.

Then limm®∞ cm = 0. Thus there exists m0 Î N such that cm < h/2 for all m ≥ m0.

Since y0 ∈ Am0+1 , there exist an integer p ≥ 1 and nonnegative numbers t1, ..., tp with∑p

i=1
ti =1 such that

∥∥∥∥∥∥y0 −
p∑
j=1

tiT
m0+jx

∥∥∥∥∥∥ <
η

2
.

Deng et al. Fixed Point Theory and Applications 2012, 2012:37
http://www.fixedpointtheoryandapplications.com/content/2012/1/37

Page 7 of 11



It follows that

f (y0) = lim sup
n→∞

∥∥xn − y0
∥∥

≤ lim sup
x→∞

∥∥∥∥∥∥y0 −
p∑
j=1

tjT
m0+jx

∥∥∥∥∥∥ + lim sup
n→∞

∥∥∥∥∥∥xn −
p∑
j=1

tjT
m0+jx

∥∥∥∥∥∥
<

η

2
+

p∑
j=1

tj lim sup
n→∞

∥∥xn − Tm0+jx
∥∥

=
η

2
+ lim sup

n→∞

∥∥Tm0+j xn − Tm0+jx
∥∥

≤ η

2
+ cm0+j + lim sup

n→∞
‖xn − x‖

< η + f (x) = f (y0).

This contradiction shows that we must have A = {x}. □
Theorem 4.2. Suppose X is a Banach space satisfying the locally uniform Opial con-

dition, C is a nonempty weakly compact convex subset of X, and T: C ® C is a map-

ping of asymptotically nonexpansive type and TN is continuous for some N Î N. Then I

- T is demiclosed at zero, i.e., if {xn} is a sequence in C which converges weakly to x

and if the sequence {xn - Txn} converges strongly to zero, then x - Tx = 0.

Proof. Let F = TN, then F is a continuous mapping of asymptotically nonexpansive

type. Suppose that {xn}is a sequence in C such that

xn
w−→ x and xn − Txn → 0, then xn − Fxn → 0. By Lemma 4.1, we have Fnx

w−→ x.

Since F is a mapping of asymptotically nonexpansive type, it follows that

lim sup
m→∞

(
lim sup
n→∞

∥∥Fn x − Fmx
∥∥)

= lim sup
m→∞

(
lim sup
n→∞

{(||Fm x − Fm
(
Fn−m x

) ‖ −‖ x − Fn−m x ||) +
∥∥Fn−m x − x

∥∥})

≤ lim sup
m→∞

(
sup
u∈C

{∥∥Fm x − Fm u
∥∥ − ‖x − u‖}) + lim sup

m→∞

∥∥Fn x − x
∥∥

= lim sup
m→∞

∥∥Fn x − x
∥∥ .

Observing that X satisfies the locally uniform Opial condition, by Proposition 2.3, we

have Fnx ® x and, hence, Fx = x by continuity of F. Thus we have shown that x is a

fixed point of TN.

Next, we will prove that x is also a fixed point of T. Let K be the minimal subset of

C with respect to being nonempty, closed, convex and satisfying the property (ω).

From the proof of Lemma 4.1, we have x Î K. Let D = {x, Tx, ..., TN-1x}. It is clear

that D is contained in K. If diam(D) >0, as compact convex sets have normal structure,

there exists u ∈ co D ⊂ K such that

r := sup
y∈D

∥∥u − y
∥∥ < diam (D) . (4:1)

Let

E =

{
z ∈ K : sup

y∈D

∥∥z − y
∥∥ ≤ d

}
.
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Then E is nonempty (u Î E), closed and convex subset of K. Also E is a proper sub-

set of K because of (4.1). Now we claim that E has property (ω). Indeed, if we take any

x Î E and v Î ωw(x), i.e., there exists a subsequence {ni} such that Tni x
w−→ v as ni ®

∞, we note that T(D) = D. Therefore, it is easily to see that Tn(D) = D for all n ≥ 1.

Hence, for any y Î D and n ≥ 1, there exists yn Î D such that Tn yn = y. Clearly, it fol-

lows that Tni x − Tni yni = Tni x − y
w−→ v − y as ni → ∞. By the weak lower semi-

continuity of the norm, we have∥∥v − y
∥∥ ≤ lim inf

i→∞
∥∥Tni x − Tni yni

∥∥ ≤ lim sup
n→∞

∥∥Tn x − Tn yn
∥∥

≤ lim sup
n→∞

(∥∥Tn x − Tn yn
∥∥ − ∥∥x − yn

∥∥)
+ lim sup

n→∞

∥∥x − yn
∥∥

≤ lim sup
n→∞

(
sup
u∈C

{∥∥Tn x − Tn u
∥∥ − ‖x − u‖})

+ sup
y∈D

∥∥x − y
∥∥

≤ d,

which means that v Î E and hence ωw(x) ⊂ E. Therefore, E has property (ω). This

then contradicts the minimality of K. According to this contradiction, we conclude

that diam(D) = 0. Thus x is a fixed point of T. □
Theorem 4.3. Suppose X is a Banach space satisfying the locally uniform Opial con-

dition, C is a nonempty weakly compact convex subset of X, and T: C ® C is a map-

ping of asymptotically nonexpansive type and TN is continuous for some N Î N. If T is

asymptotically regular at some x Î C, i.e., limn®∞||T
n x-Tn+1x|| = 0 then {Tn x} con-

verges weakly to a fixed point of T.

Proof. By Theorem 4.2, the asymptotic regularity of T at x implies that ωw(x) ⊂ Fix

(T), the fixed point set of T. So we only need to show that ωw(x) is a singleton.

Assume that p = w − limi→∞ Tnix, q = w − limj→∞ Tmj x and p �= q. Since by a rou-

tine argument, the limit limn®∞||T
n x-y|| exists for every y Î Fix(T), by Opial’s condi-

tion, we have

lim
n→∞

∥∥Tnx − p
∥∥ = lim

i→∞
∥∥Tnix − p

∥∥
< lim

i→∞
∥∥Tnix − q

∥∥ = lim
j→∞

∥∥Tmjx − q
∥∥

< lim
j→∞

∥∥Tmjx − p
∥∥ = lim

n→∞
∥∥Tnx − p

∥∥ .
This is a contradiction. □
In [11], the authors proved that a k-UR Banach space with Opial’s condition satisfies

the locally uniform Opial condition. In the sequel, we extend this result to NUC

Banach spaces.

Lemma 4.4. Suppose X is a NUC Banach space, C is a nonempty closed convex sub-

set of X, {xn} is a bounded sequence in X, and f is the functional on X defined by

f
(
y
)
= lim sup

n→∞

∥∥xn − y
∥∥ , y ∈ X. (4:2)

Then every sequence in C which minimizes f over C admits a norm-convergent

subsequence.

Proof. Let I = inf{f(y): yÎ C} and {yn} be a sequence in C which minimizes f over C, i.

e., limm®∞(ym) = I. We may assume that I >0 because otherwise, it is easily seen that
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the whole sequence {ym} is norm-convergent. Now suppose on the contrary that {ym}

does not contain any norm-convergent subsequence. Then there exist r >0 and a sub-

sequence {zm} such that

sep ({zm}) = inf {‖zn − zm‖ : n �= m} = ρ > 0.

Since X is reflexive, we may assume that {zm} converges weakly to some z in C. Noti-

cing that X is NUC, we can choose ε small enough such that

(I + ε)
(
1 − �X,β

( ρ

I + ε

))
< I.

Since limm®∞(ym) = I, we can find m0 Î N such that

f
(
ym

)
< I + ε, ∀m ≥ m0.

For any k ≥ 1, choosing
{
zmk

}
such that mk > m0, then there exists an integer n0 so

large that∥∥xn − zmk

∥∥ < I + ε

for all n ≥ n0 and k ≥ 1. Define a sequence {wk} by wk = (xn − zmk)/(I + ε). Then we

know that ||wk|| ≤ 1 for k ≥ 1, {wk} converges weakly to (xn - z)/(I + ε), and sep({wk})

= sep ({zmk /(I + ε)}) ≥ r/(I + ε). Thus we conclude that from the definition of ΔX, b(·)

that

‖xn − z‖ ≤ (I + ε)
(
1 − �X,β

( ρ

I + ε

))
< I

for all n ≥ n0. Hence we have f (z) < I. This contradiction shows that the lemma is

true. □
By Lemma 4.4 and Theorem 3.5 in [11], we have the following theorem.

Theorem 4.5. If X is NUC and satisfies Opial’s condition, then it satisfies the locally

uniform Opial condition.

By Theorems 4.2 and 4.5, we obtain the following corollary.

Corollary 4.6. Suppose X is a NUC Banach space with Opial’s condition, C is a

nonempty weakly compact convex subset of X, and T: C ® C is a mapping of asympto-

tically nonexpansive type and TN is continuous for some N ≥ 1. Then I - T is demi-

closed at zero.
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