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Abstract

In this article, we give some fixed point theorems for mappings satisfying cyclical
generalized contractive conditions in complete partial metric spaces.

1 Introduction
The well known Banach’s fixed point theorem asserts that: If (X, d) is a complete

metric space and f : X ® X is a mapping such that

d(f (x), f (y)) ≤ λd(x, y)

for all x, y Î X and some l Î [0,1), then f has a unique fixed point in X. Kannan [1]

extended Banach’s fixed point theorem to the class of maps f : X ® X satisfying the

following contractive condition:

d(f (x), f (y)) ≤ λ[d(x, f (x)) + d(y, f (y))]

for all x, y Î X and some l Î (0,1/2). Reich [2] generalized both results using the

contractive condition:

d(f (x), f (y)) ≤ αd(x, y) + βd(x, f (x)) + γ d(y, f (y))

for each x, y Î X, where a, b, g are nonnegative real numbers statisfying a + b + g <
1.

Matkowski [3] used the following contractive condition:

d(f (x), f (y)) ≤ ϕ(d(x, y))

for all x, y Î X, where � : ℝ+ ® ℝ+ is a nondecreasing function such that

lim
n→∞ ϕn(t) = 0 for all t > 0.

In 1994, Matthews [4] introduced the notion of a partial metric space and obtained a

generalization of Banach’s fixed point theorem for partial metric spaces. Recently,

Altun et al. [5] (see also Altun and Sadarangani [6]) gave some generalized versions of

the fixed point theorem of Matthews [4]. Di Bari and Vetro [7] obtained some results

concerning cyclic mappings in the framework of partial metric spaces. We recall below

the definition of partial metric space and some of its properties (see [4,5,8,9]).

Definition 1 A partial metric on a nonempty set X is a function p : X × X ® ℝ+

such that for all x, y, z, Î X:
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p1 x = y ⇔ p (x, x) = p (x, y) = p (y, y),

p2 p (x, x) ≤ p(x, y),

p3 p(x, y) = p(y, x),

p4 p(x, y) ≤ p(x, z) + p(z, y) - p(z, z).

A partial metric space is a pair (X, p) where X is a nonempty set and p is a partial

metric on X. The function p (x, y) = max{x, y} for all x, y Î ℝ+ defines a partial metric

on ℝ+. Other interesting examples of partial metric spaces can be found in [4,10,11]. It

is known [8] that each partial metric p on X generates a T0 topology τp on X which

has as a base the family of open p-balls {Bp (x, ε) : x Î X, ε > 0}, where Bp (x, ε) = {y Î
X : p (x, y) <p (x, x) + ε} for all x Î X and ε > 0.

If p is a partial metric on X, then the function ps : X × X ® ℝ+ given by

ps(x, y) = 2p(x, y) − p(x, x) − p(y, y)

defines a metric on X (see [12]).

Let (X, p) be a partial metric space.

A sequence {xn} in a partial metric space (X, p) converges to a point x Î X [4,5,8] if

and only if p(x, x) = lim
n→∞ p(x, xn).

A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence [4,5,8] if

there exists (and is finite) lim
n,m→∞ p(xn, xm).

A partial metric space (X, p) is said to be complete [4,5,8] if every Cauchy sequence

{xn} in X converges, with respect to τp, to a point x Î X such that

p(x, x) = lim
n,m→∞ p(xn, xm).

It is evident that every closed subset of a complete partial metric space is complete.

Lemma 2 [4,5,8]Let (X, p) be a partial metric space.

(1)

{xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric

space (X,ps).

(2)

A partial metric space (X, p) is complete if and only if the metric space (X, ps) is com-

plete. Furthermore, lim
n→∞ ps(xn, x) = 0 if and only if

p(x, x) = lim
n→∞ p(xn, x) = lim

n,m→∞ p(xn, xm).

Definition 3 [13]Let X be a nonempty set, m a positive integer and f : X ® X an

operator. By definition, X =
m⋃
i=1

Xiis a cyclic representation of X with respect to f if

(i) Xi, i = 1,..., m are nonempty sets;

(ii) f (X1) ⊂ X2,..., f (Xm-1) ⊂ Xm, f (Xm) ⊂ X1.

Definition 4 [13]A function � : ℝ+ ® ℝ+ is called a comparison function if it

satisfies:

(i) � is monotone increasing, i.e., t1 ≤ t2 implies � (t1) ≤ �(t2), for any t1,t2 Î ℝ+;

(ii) (�n (t))n Î N converges to 0 as n ® ∞ for all t Î ℝ+.

Definition 5 [13]A function � : ℝ+ ® ℝ+ is called a (c)-comparison function if it

satisfies:

(i) � is monotone increasing;
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(ii) there exist k0 Î N, a Î (0,1) and a convergent series of nonnegative terms
∑∞

k=1
vk such that

ϕk+1(t) ≤ αϕk(t) + vk,

for k ≥ k0 and any t Î ℝ+.

Lemma 6 [13]If � : ℝ+ ® ℝ+ is a (c)-comparison function, then the following hold:

(i) � is a comparison function;

(ii) �(t) < t, for any t Î ℝ+;

(iii) � is continuous at 0;

(iv) the series
∑∞

k=0 ϕk(t) converges for any t Î ℝ+.

In [13], Păcurar and Rus discussed fixed point theorey for cyclic �- contractions in

metric spaces and in [14], Karapinar obtained a fixed point theorem for cyclic weak

�-contraction mappings still in metric spaces.

In this article, we prove some fixed point theorems for generalized contractions

defined on cyclic representation in the setting of partial metric spaces.

2 Main results
Definition 7 Let (X,p) be a partial metric space. A mapping f : X ® X is called a

�-contraction if there exists a comparison function � : ℝ+ ® ℝ+ such that

p(f (x), f (y)) ≤ ϕ(p(x, y))

for all x, y Î X.

Definition 8 Let (X, p) be a partial metric space, m a positive integer, A1,..., Am

nonempty closed subsets of X and Y =
m⋃
i=1

Ai. An operator f : Y ® Y is called a cyclic

�-contraction if

(i)
m⋃
i=1

Ai is a cyclic representation of Y w.r.t f;

(ii) There exists a (c)-comparison function � : ℝ+ ® ℝ+ such that

p(f (x), f (y)) ≤ ϕ(p(x, y)) (2:1)

for any x Î Ai, y Î Ai+1, where Am+1 = A1.

Theorem 9 Let (X, p) be a complete partial metric space, m a positive integer, A1,...,

Am closed nonempty subsets of X,Y =
m⋃
i=1

Ai,ϕ : R+ → R+a (c)-comparison function and f

:Y ® Y an operator. Assume that

(i)
m⋃
i=1

Ai is a cyclic representation of Y w.r.t f ;

(ii) f is a cyclic �-contraction.

Then f has a unique fixed point x∗ ∈
m⋂
i=1

Ai and the Picard iteration {xn} converges to

x* for any initial point x0 Î Y.

Proof. Let x0 ∈ Y =
m⋃
i=1

Ai, and set

xn = f (xn−1), n ≥ 1.
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For any n ≥ 0 there is in Î {i, ..., m} such that xn ∈ Ain and xn+1 ∈ Ain+1. Then by (2.1)

we have

p(xn, xn+1) = p(f (xn−1), f (xn)) ≤ ϕ(p(xn−1, xn)).

Since � is monotone increasing, we get by induction that

p(xn, xn+1) ≤ ϕn(p(x0, x1)). (2:2)

By definition of �, thus letting n ® ∞ in (2.2), we obtain that

lim
n→∞ p(xn, xn+1) = 0.

On the other hand, since

p(xn, xn) ≤ p(xn, xn+1) and p(xn+1, xn+1) ≤ p(xn, xn+1),

then from (2.2) we have

p(xn, xn) ≤ ϕn(p(x0, x1)) and p(xn+1, xn+1) ≤ ϕn(p(x0, x1)). (2:3)

Thus, we have

ps(xn, xn+1) ≤ 4ϕn(p(x0, x1)).

Since � is a (c)-comparison function, from Lemma 6, it follows that

lim
n→∞ ps(xn, xn+1) = 0.

So for k ≥ 1, we have

ps(xn, xn+k) ≤ ps(xn, xn+1) + · · · + ps(xn+k−1, xn+k)

≤ 4
n+k−1∑

m=n

ϕm(p(x0, x1)).

Again since � is a (c)-comparison function, by Lemma 6, it follows that

∞∑

m=0

ϕm(p(x0, x1)) < ∞.

This implies that {xn} is a Cauchy sequence in the metric subspace (Y, ps). Since Y is

closed, the subspace (Y, p) is complete. Then from Lemma 2, we have that (Y, ps) is

complete. Let

lim
n→∞ ps(xn, y) = 0.

Now Lemma 2 further implies that

p(y, y) = lim
n→∞ p(xn, y) = lim

n,m→∞ p(xn, xm). (2:4)

Therefore, since {xn} is a Cauchy sequence in the metric space (Y, ps), it implies that

lim
n,m→∞ ps(xn, xm) = 0. Also from (2.3) we have lim

n→∞ p(xn, xn) = 0, and using the defini-

tion of ps we obtain lim
n,m→∞ p(xn, xm) = 0. Consequently, from (2.4) we have

p(y, y) = lim
n→∞ p(xn, y) = lim

n,m→∞ p(xn, xm) = 0.
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As a result, {xn} is a Cauchy sequence in the complete partial metric subspace (Y, p),

and it is convergent to a point y Î Y.

On the other hand, the sequence {xn} has an infinite number of terms in each Ai, i =

1,...,m. Since (Y, p) is complete, in each Ai, i = 1,..., m, we can construct a subsequence

of {xn} which converges to y. Since Ai, i = 1,..., m are closed, we see that

y ∈
m⋂

i=1

Ai; i.e.,

m⋂
i=1

Ai �= ∅. Now we can consider the restriction

f | m⋂
i=1

Ai

:
m⋂

i=1

Ai →
m⋂

i=1

Ai,

which satisfies the conditions of Theorem 1 in [5,6], since
m⋂
i=1

Ai is also closed and

complete. Thus f | m⋂
i=1

Ai has a unique fixed point, say x∗ ∈
m⋂
i=1

Ai. We claim that for any

initial value x Î Y, we get the same limit point x∗ ∈
m⋂
i=1

Ai. Indeed, for x ∈ Y =
m⋃
i=1

Ai, by

repeating the above process, the corresponding iterative sequence yields that f | m⋂
i=1

Ai has

a unique fixed point, say z ∈
m⋂
i=1

Ai. Regarding that x∗, z ∈
m⋂

i=1

Ai, we have x* z Î Ai for

all i, hence p (x*, z) and p (f (x*), f (z)) are well defined. Due to (2.1), we have

p(x∗, z) = p(f (x∗), f (z)) ≤ ϕ(p(x∗, z)),

which is a contradiction. Thus, x* is a unique fixed point of f for any initial value x Î
Y.

To prove that the Picard iteration converges to x* for any initial point x Î Y. Let

x ∈ Y =
m⋃
i=1

Ai. There exists i0 Î {1,..., m} such that x ∈ Ai0. As x∗ ∈
m⋂
i=1

Ai it follows that

x∗ ∈ Ai0+1 as well. Then we obtain:

p(f (x), f (x∗)) ≤ ϕ(p(x, x∗)).

By induction, it follows that:

p(f n(x), x∗) ≤ ϕn(p(x, x∗)), n ≥ 0.

Since

p(x∗, x∗) ≤ p(f n(x), x∗),

we have

p(x∗, x∗) ≤ ϕn(p(x, x∗)).

Now letting n ® ∞, and supposing x ≠ x*, we have

p(x∗, x∗) = lim
n→∞ p(f n(x), x∗) = 0,
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i.e., the Picard iteration converges to the unique fixed point of f for any initial point

x Î Y.

Theorem 10 Let f :Y ® Y as in Theorem 9. Then

∞∑

n=0

p(f n(x), f n+1(x)) < ∞,

for any x Î Y, i.e., f is a good Picard operator.

Proof. Let x = x0 Î Y. Then

p(f n(x0), f n+1(x0)) = p(xn, xn+1) ≤ ϕn(p(x0, x1)).

for all n Î N Thus, by Lemma 6, we have

∞∑

n=0

p(f n(x0), f n+1(x0)) ≤
∞∑

n=0

ϕn(p(x0, x1)) < ∞,

since p(x0, x1) > 0. So, f is a good Picard operator.

Theorem 11 Let f :Y ® Y as in Theorem 9. Then

∞∑

n=0

p(f n(x), x∗) < ∞,

for any x Î Y, i.e., f is a special Picard operator.

Proof. Since

p(f n(x), x∗) ≤ ϕn(p(x, x∗)), n ≥ 0

holds for any x Î Y, by Lemma 6, we have

∞∑

n=0

p(f n(x), x∗) ≤
∞∑

n=0

ϕn(p(x, x∗)) < ∞.

This shows that f is a special Picard operator.

Theorem 12 (Reich type). Let (X, p) be a complete partial metric space, m a positive

integer, A1,...,Am closed nonempty subsets of X,Y =
m⋃
i=1

Ai, and f : Y ® Y an operator.

Assume that

(i)
m⋃
i=1

Ai is a cyclic representation of Y w.r.t f ;

(ii) for any x Î Ai, y Î Ai+1, where Am+1 = A1, we have

p(f (x), f (y)) ≤ αp(x, y) + βp(x, f (x)) + γ p(y, f (y)), (2:5)

where a, b, g ≥ 0 with a + b + g < 1.

Then f has a unique fixed point x∗ ∈
m⋂
i=1

Ai and the Picard iteration {xn} converges to

x* for any initial point x0 Î Y if a + 2b + 2g < 1.
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Proof. Let x0 ∈ Y =
m⋃
i=1

Ai, and set

xn = f (xn−1), n ≥ 1.

For any n ≥ 0 there is in Î {i,..., m} such that xn ∈ Ain and xn+1 ∈ Ain+1. Then by (2.5)

we have

p(xn, xn+1) = p(f (xn−1), f (xn))

≤ αp(xn−1, xn) + βp(xn−1, f (xn−1)) + γ p(xn, f (xn))

= αp(xn−1, xn) + βp(xn−1, xn) + γ p(xn, xn+1)

= (α + β)p(xn−1, xn) + γ p(xn, xn+1),

which implies

p(xn, xn+1) ≤ α + β

1 − γ
p(xn−1, xn).

Therefore,

p(xn, xn+1) ≤ λnp(x0, x1), (2:6)

where

λ =
α + β

1 − γ
.

It is clear that l Î [0,1), thus letting n ® ∞ in (2.6), we obtain that

lim
n→∞ p(xn, xn+1) = 0.

On the other hand, since

p(xn, xn) ≤ p(xn, xn+1) and p(xn+1, xn+1) ≤ p(xn, xn+1),

from (2.6) we have

p(xn, xn) ≤ λnp(x0, x1) and p(xn+1, xn+1) ≤ λnp(x0, x1). (2:7)

Hence,

ps(xn, xn+1) ≤ 4λnp(x0, x1).

This implies that

lim
n→∞ ps(xn, xn+1) = 0.

Now, for k ≥ 1, we have

ps(xn, xn+k) ≤ ps(xn, xn+1) + · · · + ps(xn+k−1, xn+k)

≤ 4λnp(x0, x1) + · · · + 4λn+k−1p(x0, x1)

≤ 4
λn

1 − λ
p(x0, x1).

Thus {xn} is a Cauchy sequence in the metric subspace (Y, ps). Since Y is closed, the

subspace (Y, p) is complete and so from Lemma 2, we have that (Y, ps) is complete. So

the sequence {xn} is convergent in the metric subspace (Y, ps). Let
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lim
n→∞ ps(xn, y) = 0.

Again from Lemma 2, we get

p(y, y) = lim
n→∞ p(xn, y) = lim

n,m→∞ p(xn, xm). (2:8)

As in the proof of Theorem 9, from (2.8) we have

p(y, y) = lim
n→∞ p(xn, y) = lim

n,m→∞ p(xn, xm) = 0.

This shows that {xn} is a Cauchy sequence in the complete partial metric subspace

(Y, p), and it is convergent to a point y Î Y.

On the other hand, the sequence {xn} has an infinite number of terms in each Ai, i =

1,...,m. Since (Y, p) is complete, in each Ai, i = 1,..., m, we can construct a subsequence

of {xn} which converges to y. Since each Ai, i = 1,..., m is closed, it follows that

y ∈
m⋂

i=1

Ai; i.e.,

m⋂
i=1

Ai �= ∅. Now we can consider the restriction

f | m⋂
i=1

Ai

:
m⋂

i=1

Ai →
m⋂

i=1

Ai,

which satisfies the conditions of Corollary 4 in [5], as
m⋂
i=1

Ai is also closed and com-

plete. Thus, f | m⋂
i=1

Ai has a unique fixed point, say x∗ ∈
m⋂
i=1

Ai. We claim that for any initial

value x Î Y, we get the same limit point x∗ ∈
m⋂
i=1

Ai. In fact, for x ∈ Y =
m⋃
i=1

Ai, by repeat-

ing the above process, the corresponding iterative sequence yields that f | m⋂
i=1

Ai has a

unique fixed point, say z ∈
m⋂
i=1

Ai. Since x∗, z ∈
m⋂

i=1

Ai, we have x*, z Î Ai for all i, hence

p(x*,z), and p (f (x*), f (z)) are well defined. Due to (2.5),

p(x∗, z) = p(f (x∗), f (z))
≤ αp(x∗, z) + βp(x∗, f (x∗)) + γ p(z, f (z))

≤ αp(x∗, z) + βp(x∗, z) + γ p(x∗, z),

which is a contradiction. Thus, x* is the unique fixed point of f for any initial value x

Î Y.

To prove that the Picard iteration converges to x* for any initial point x Î Y. Let

x ∈ Y =
m⋃
i=1

Ai. There exists i0 Î {1,..., m} such that x ∈ Ai0. As x∗ ∈
m⋂
i=1

Ai it follows that

x∗ ∈ Ai0+1 as well. Then we obtain:

p(f (x), f (x∗)) ≤ αp(x, x∗) + βp(x, f (x)) + γ p(x∗, f (x∗))
≤ αp(x, x∗) + β[p(x, x∗) + p(x∗, f (x)) − p(x∗, x∗)]
+ γ [p(x∗, f (x)) + p(f (x), f (x∗)) − p(f (x), f (x))]

≤ αp(x, x∗) + β[p(x, x∗) + p(x∗, f (x))]
+ γ [p(x∗, f (x)) + p(f (x), f (x∗))],
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which implies

p(f (x), f (x∗)) ≤ α + β

1 − β − 2γ
p(x, x∗).

Let

λ1 =
α + β

1 − β − 2γ
,

and suppose that a + 2b + 2g < 1. Then, by induction, it follows that:

p(f n(x), x∗) ≤ λn
1p(x, x

∗).

Since

p(x∗, x∗) ≤ p(f n(x), x∗),

we have

p(x∗, x∗) ≤ λn
1p(x, x

∗).

Now letting n ® ∞, and supposing x ≠ x*, we have

p(x∗, x∗) = lim
n→∞ p(f n(x), x∗) = 0

i.e., the Picard iteration converges to the unique fixed point of f for any initial point

x Î Y provided a + 2b + 2g < 1.

Corollary 13 (Banach type). Let (X, p) be a complete partial metric space, m a posi-

tive integer, A1,..., Am closed nonempty subsets of X,Y =
m⋃
i=1

Ai, and f :Y ® Y an opera-

tor. Assume that

(i)
m⋃
i=1

Ai is a cyclic representation of Y w.r.t f ;

(ii) for any x Î Ai, y Î Ai+1, where Am+1 = A1, we have

p(f (x), f (y)) ≤ αp(x, y), 0 ≤ α < 1.

Then f has a unique fixed point x∗ ∈
m⋂
i=1

Ai.

Corollary 14 (Kannan type). Let (X, p) be a complete partial metric space, m a posi-

tive integer, A1,..., Am closed nonempty subsets of X,Y =
m⋃
i=1

Ai, and f : Y ® Y an opera-

tor. Assume that

(i)
m⋃
i=1

Ai is a cyclic representation of Y w.r.t f ;

(ii) for any x Î Ai, y Î Ai+1, where Am+1 = A1, we have

p(f (x), f (y)) ≤ βp(x, f (x)) + γ p(y, f (y)),

where b, g ≥ 0 with β + γ <
1
2
.

Then f has a unique fixed point x∗ ∈
m⋂
i=1

Ai.

Agarwal et al. Fixed Point Theory and Applications 2012, 2012:40
http://www.fixedpointtheoryandapplications.com/content/2012/1/40

Page 9 of 11



Theorem 15 Let f : Y ® Y as in Theorem 12. Then

∞∑

n=0

p(f n(x), f n+1(x)) < ∞,

for any x Î Y, i.e., f is a good Picard operator.

Proof. Let x = x0 Î Y. Then, as in the proof of Theorem 12,

p(f n(x0), f n+1(x0)) = p(xn, xn+1) ≤ λnp(x0, x1)

for all n Î N. So, we have

∞∑

n=0

p(f n(x0), f n+1(x0)) ≤
∞∑

n=0

λnp(x0, x1) < ∞,

since l Î [0,1). Thus, f is a good Picard operator.

Theorem 16 Let f : Y ® Y as in Theorem 12. If a + 2b + 2g < 1, then

∞∑

n=0

p(f n(x), x∗) < ∞,

for any x Î Y, i.e., f is a special Picard operator.

Proof. As in the proof of Theorem 12, we have

p(f n(x), x∗) ≤ λn
1p(x, x

∗)

holds for any x Î Y, where λ1 =
α + β

1 − β − 2γ
. Hence, if a + 2b + 2g < 1, we have

∞∑

n=0

p(f n(x), x∗) ≤
∞∑

n=0

λn
1p(x, x

∗) < ∞.

This shows that f is a special Picard operator.
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