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Abstract

In this article, by using the Meir-Keeler type mappings, we obtain some new fixed
point theorems for the cyclic orbital stronger (weaker) Meir-Keeler contractions and
generalized cyclic stronger (weaker) Meir-Keeler contractions. Our results generalize
or improve many recent fixed point theorems in the literature.
Mathematical Subject Classification: 54H25; 47H10

Keywords: generalized cyclic mapping, cyclic orbital mapping, fixed point theorem,
cyclic Meir-Keeler contraction

1 Introduction and preliminaries
Throughout this article, by ℝ+, we denote the set of all non-negative numbers, while N

is the set of all natural numbers. It is well known and easy to prove that if (X, d) is a

complete metric space, and if f: X ® X is continuous and f satisfies

d(fx, f 2x) ≤ k · d(x, fx), for all x ∈ X and k ∈ (0, 1),

then f has a fixed point in X. Using the above conclusion, Kirk et al. [1] proved the

following fixed point theorem.

Theorem 1 [1]Let A and B be two nonempty closed subsets of a complete metric

space (X, d), and suppose f: A ∪ B ® A ∪ B satisfies

(i) f(A) ⊂ B and f(B) ⊂ A,

(ii) d(fx, fy) ≤ k⋅ d(x, y) for all x Î A, y Î B and k Î (0,1).

Then A ∩ B is nonempty and f has a unique fixed point in A ∩ B.

The following definitions and results will be needed in the sequel. Let A and B be

two nonempty subsets of a metric space (X, d). A mapping f : A ∪ B ® A ∪ B is called

a cyclic map if f(A) ⊆ B and f(B) ⊆ A. In the recent, Karpagam and Agrawal [2] intro-

duced the notion of cyclic orbital contraction, and obtained a unique fixed point theo-

rem for such a map.

Definition 1 [2]Let A and B be nonempty subsets of a metric space (X, d), f : A ∪ B

® A ∪ B be a cyclic map such that for some x Î A, there exists a �x Î (0,1) such that

d(f 2nx, fy) ≤ kx · d(f 2n−1x, y), n ∈ N, y ∈ A. (1)

Then f is called a cyclic orbital contraction.
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Theorem 2 [2]Let A and B be two nonempty closed subsets of a complete metric

space (X, d), and let f : A ∪ B ® A ∪ B be a cyclic orbital contraction. Then f has a

fixed point in A ∩ B.

Furthermore, Kirk et al. [1] introduced the notion of the generalized cyclic mapping

and obtained some fixed point results. Let {Ai}ki=1 be nonempty subsets of a metric

space (X, d), and let f : ∪k
i=1Ai → ∪k

i=1Ai Then f is called a generalized cyclic map if f

(Ai) ⊆ Ai+1 for i = 1, 2,..., k and Ak+1 = A1. Kirk et al. [1] first extended the question of

wherther Edelstein’s [3] classical result for contractive mappings, and they obtained the

following theorem.

Theorem 3 [1]Let {Ai}ki=1be nonempty closed subsets of a complete metric space (X, d),

at least one of which is compact, and suppose f : ∪k
i=1Ai → ∪k

i=1Aisatisfies the following

conditions (where Ak+1 = A1):

(i) f(Ai) ⊆ Ai+1 for i = 1,2,...,k,

(ii) d(fx, fy) <d(x, y) whenever x Î Ai, y Î Ai+1 and x ≠ y, (i = 1, 2,..., k).

Then f has a unique fixed point.

On the other hand, Kirk et al. [1] took up the question of whether condition (ii) of

Theorem 3 can be replaced by contractive conditions which typically arise in exten-

sions of Banachs theorem. The authors began with a condition introduced by Geraghty

[4]. Let S denote the class of those functions a : ℝ+ ® [0,1) that satisfy the simple con-

dition:

α(tn) → 1 ⇒ tn → 0.

Theorem 4 [4]Let (X, d) be a complete metric space, let f : X ® X, and suppose that

there exists a Î S such that

d(fx, fy) ≤ α(d(x, y)) · d(x, y), for all x, y ∈ X.

Then f has a unique fixed point z in X and {fnx} converges to z for each x Î X.

Applying Theorem 4, Kirk et al. [1] proved the below theorem.

Theorem 5 [1]Let {Ai}ki=1be nonempty closed subsets of a complete metric space (X, d),

let α ∈ S, and suppose f : ∪k
i=1Ai → ∪k

i=1Aisatisfies the following conditions (where Ak+1

= A1):

(i) f(Ai) ⊆ Ai+1 for i = 1,2,...,k,

(ii) d(fx, fy) ≤ a(d(x, y)) ⋅ d(x, y) for all x Î Ai, y Î Ai+1, i=1,2,...,k.

Then f has a unique fixed point.

In 1969, Boyd and Wong [5] introduced the notion of F-contraction. A mapping f :

X ® X on a metric space is called F-contraction if there exists an upper semi-continu-

ous function ψ : [0,∞)® [0,∞) such that

d(fx, fy) ≤ �(d(x, y)) for all x, y ∈ X.

Kirk et al. [1] also proved the below theorem.
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Theorem 6 [1]Let {Ai}ki=1be nonempty closed subsets of a complete metric space (X, d).

Suppose f : ∪k
i=1Ai → ∪k

i=1Aisatisfies the following conditions (where Ak+1 = A1):

(i) f(Ai) ⊆ Ai +1 for i = 1,2,...,k,

(ii) d(fx, fy) ≤ F(d(x, y)) for all x Î Ai, y Î Ai+1, i = 1,2,...,k,

where F : [0, ∞) ® [0, ∞) is upper semi-contionuous from the right and satisfies 0 ≤

ψ(t) <t for t > 0. Then f has a unique fixed point.

In this article, we also recall the notion of the Meir-Keeler type mapping. A function

ψ : ℝ+ ® ℝ+ is said to be a Meir-Keeler type mapping (see [6]), if for each h Î ℝ+,

there exists δ > 0 such that for t Î ℝ+ with h ≤ t <h + δ, we have ψ(t) < h. Subse-
quently, some authors worked on this notion (for example, [7-10]). This article will

deal with two new mappings of the stronger Meir-Keeler type and weaker Meir-Keeler

type in a metric space (X,d). We first introduce the below notion of stronger Meir-

Keeler type mapping in a metric space.

Definition 2 Let (X, d) be a metric space. We call ψ : ℝ+ ® [0,1) a stronger Meir-

Keeler type mapping in X if the mapping ψ satisfies the following condition:

∀η > 0 ∃δ > 0 ∃γη ∈ [0, 1) ∀x, y ∈ X (η ≤ d(x, y) < δ+η ⇒ ψ(d(x, y)) < γη).

Example 1 Let X = ℝ2 and we define d : X × X ® ℝ+ by

d(x, y) =
∣∣x1 − y1

∣∣ + ∣∣x2 − y2
∣∣ for all x = (x1, x2), y = (y1, y2) ∈ X.

If ψ : R+ → [0, 1), ψ(d(x, y)) =
d(x, y)

d(x, y) + 1
, then ψ is a stronger Meir-Keeler type

mapping in X.

The following provides an example of a Meir-Keeler type mapping which is not a

stronger Meir-Keeler type mapping in a metric space (X, d).

Example 2 Let X = ℝ2 and we define d : X × X ® ℝ+ by

d(x, y) =
∣∣x1 − y1

∣∣ + ∣∣x2 − y2
∣∣ for all x = (x1, x2), y = (y1, y2) ∈ X.

If � : ℝ+ ® ℝ+,

ϕ(d(x, y)) =
{
d(x, y) − 1, if d(x, y) > 1;
0, if d(x, y) ≤ 1,

then � is a Meir-Keeler type mapping which is not a stronger Meir-Keeler type map-

ping in X.

We next introduce the below notion of weaker Meir-Keeler type mapping in a metric

space.

Definition 3 Let (X, d) be a metric space, and � : ℝ+ ® ℝ+. Then � is called a

weaker Meir-Keeler type mapping in X, if the mapping � satisfies the following condi-

tion:

∀η > 0 ∃δ > 0 ∀x, y ∈ X (η ≤ d(x, y) < δ + η ⇒ ∃n0 ∈ N ϕn0 (d(x, y)) < η).

Example 3 Let X = ℝ2 and we define d : X × X ® ℝ+ by

d(x, y) =
∣∣x1 − y1

∣∣ + ∣∣x2 − y2
∣∣ for all x = (x1, x2), y = (y1, y2) ∈ X.
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If � : ℝ+ ® ℝ+, ϕ(d(x, y)) = 1
2d(x, y), then � is a weaker Meir-Keeler type mapping in

X.

The following provides an example of a weaker Meir-Keeler type mapping which is

not a Meir-Keeler type mapping in a metric space (X, d).

Example 4 Let X = ℝ2 and we define d : X × X ® ℝ+ by

d(x, y) =
∣∣x1 − y1

∣∣ + ∣∣x2 − y2
∣∣ for all x = (x1, x2), y = (y1, y2) ∈ X.

If � : ℝ+ ® ℝ+,

ϕ(d(x, y)) =

⎧⎨
⎩
0, if d(x, y) ≤ 1,
2 · d(x, y), if 1 < d(x, y) < 2;
1, if d(x, y) ≥ 2,

then � is a weaker Meir-Keeler type mapping which is not a Meir-Keeler type map-

ping in X.

2 The fixed point theorems for cyclic orbital Meir-Keeler contractions
Using the notions of the cyclic orbital contraction (see, Definition 1) and stronger

Meir-Keeler type mapping (see, Definition 2), we introduce the below notion of cyclic

orbital stronger Meir-Keeler contraction.

Definition 4 Let A and B be nonempty subsets of a metric space (X, d). Suppose f : A

∪ B ® A ∪ B is a cyclic map such that for some x Î A, there exists a stronger Meir-

Keeler type mapping ψ : ℝ+ ® [0,1) in X such that

d(f 2nx, fy) ≤ ψ(d(f 2n−1x, y)) · d(f 2n−1x, y), n ∈ N, y ∈ A. (2)

Then f is called a cyclic orbital stronger Meir-Keeler ψ-contraction.

Now, we are in a position to state the following theorem.

Theorem 7 Let A and B be two nonempty closed subsets of a complete metric space

(X, d), and let ψ : ℝ+ ® [0,1) be a stronger Meir-Keeler type mapping in X. Suppose f :

A ∪ B ® A ∪ B is a cyclic orbital stronger Meir-Keeler ψ-contraction. Then A ∩ B is

nonempty and f has a unique fixed point in A ∩ B.

Proof. Since f : A ∪ B ® A ∪ B is a cyclic orbital stronger Meir-Keeler ψ-contraction,

there exists x Î A satisfying (2), and we also have that for each n Î N,

d(f 2nx, f 2n+1x) ≤ ψd(f 2n−1x, f 2nx)) · d(f 2n−1x, f 2nx)

≤ d(f 2n−1x, f 2nx),

and

d(f 2n+1x, f 2n+2x) = d(f 2n+2x, f 2n+1x)

≤ ψ(d(f 2n+1x, f 2nx)) · d(f 2n+1x, f 2nx)
≤ d(f 2n+1x, f 2nx) = d(f 2nx, f 2n+1x).

Generally, we have

d(f nx, f n+1x) ≤ d(f n−1x, f nx), n ∈ N.

Thus the sequence {d(fnx, fn+1x)} is non-increasing and hence it is convergent. Let

limn®∞ d(fnx, fn+1x) = h. Then there exists �0 Î N and δ > 0 such that for all n ≥ �0,
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η ≤ d(f nx, f n+1x) < η + δ.

Taking into account the above inequality and the definition of stronger Meir-Keeler

type mapping ψ in X, corresponding to h use, there exists gh Î [0,1) such that

ψ(d(f k0+nx, f k0+n+1x)) < γη for all n ∈ N ∪ {0}.

Therefore, by (2), we also deduce that for each n Î N,

d(f k0+nx, f k0+n+1x) ≤ ψ(d(f k0+n−1x, f k0+nx)) · d(f k0+n−1x, f k0+nx)

< γη · d(f k0+n−1x, f k0+nx),

and it follows that for each nÎN,

d(f k0+nx, f k0+n+1x) < γη · d(f k0+n−1x, f k0+nx)

< · · · · · ·
< γ n

η · d(f k0x, f k0+1x).

So

lim
n→∞ d(f k0+nx, f k0+n+1x) = 0, since γη ∈ [0, 1).

We now claim that limn→∞d(f k0+nx, f k0+mx) = 0 for m > n. For m, n Î N with m >

n, we have

d(f k0+nx, f k0+mx) ≤
m−1∑
i=n

d(f k0+ix, f k0+i+1x) <
γm−1

η

1 − γη

d(f k0x, f k0+1x),

and hence d(fnx, fmx) ® 0, since 0 < gh < 1. So {fnx} is a Cauchy sequence. Since (X,

d) is a complete metric space, there exists ν Î A ∪ B such that limn®∞ fnx = ν. Now

{f2nx} is a sequence in A and {f2n-1 x} is a sequence in B, and also both converge to ν.

Since A and B are closed, ν Î A ∩ B, and so A ∩ B is nonempty. Since

d(ν, fν) = lim
n→∞ d(f 2nx, fν)

≤ lim
n→∞[ψ(d(f 2n−1x, ν)) · d(f 2n−1x, ν)]

≤ lim
n→∞[γη · d(f 2n−1x, ν)] = 0,

hence ν is a fixed point of f.

Finally, to prove the uniqueness of the fixed point, let μ be another fixed point of f.

By the cyclic character of f, we have ν,μ Î A ∩ B. Since f is a cyclic orbital stronger

Meir-Keeler ψ-contraction, we have

d(ν,μ) = d(ν, fμ) = lim
n→∞ d(f 2nx, fμ)

≤ lim
n→∞[ψ(d(f 2n−1x,μ)) · d(f 2n−1x,μ)]

≤ lim
n→∞[γη · d(f 2n−1x,μ)]

≤ γη · d(ν,μ) < d(ν,μ),

a contradiction. Therefore μ = ν, and so ν is a unique fixed point of f.
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Example 5 Let A = B = X = ℝ+ and we define d: X × X ® ℝ+ by

d(x, y) =
∣∣x − y

∣∣ , for x, y ∈ X.

Define f : X ® X by

f (x) =
{
0, if 0 ≤ x < 1;
1
4 , if x ≥ 1.

and define ψ : ℝ+ ® [0,1) by

ψ(t) =
{ 1

3 , if 0 ≤ t ≤ 1;
t

t+1 , if t > 1.

Then f is a cyclic orbital stronger Meir-Keeler ψ-contraction and 0 is the unique fixed

point.

Using the notions of the cyclic orbital contraction (see, Definition 1) and weaker

Meir-Keeler type mapping (see, Definition 3), we next introduce the notion of cyclic

orbital weaker Meir-Keeler contraction. We first define the below notion of

�-mapping.

Definition 5 Let (X, d) be a metric space. We call � : ℝ+ ® ℝ+ a �-mapping in X if

the function � satisfies the following conditions:

(�1) � >is a weaker Meir-Keeler type mapping in X with �(0) = 0;

(�2) (a) if limn®∞ tn = g > 0, then limn®∞ �(tn) < g, and

(b) if limn®∞tn = 0, then limn®∞ �(tn) = 0;

(�3) {�
n(t)}nÎN is decreasing.

Definition 6 Let A and B be nonempty subsets of a metric space (X, d). Suppose f : A

∪ B ® A ∪ B is a cyclic map such that for some x Î A, there exists a �-mapping � : ℝ
+ ® ℝ+ in X such that

d(f 2nx, fy) ≤ ϕ(d(f 2n−1x, y)), n ∈ N, y ∈ A. (3)

Then f is called a cyclic orbital weaker Meir-Keeler �-contraction.

Now, we are in a position to state the following theorem.

Theorem 8 Let A and B be two nonempty closed subsets of a complete metric space

(X, d), and let � : ℝ+ ® ℝ+ be a �-mapping in X. Suppose f : A ∪ B ® A ∪ B is a cyclic

orbital weaker Meir-Keeler �-contraction. Then A ∩ B is nonempty and f has a unique

fixed point in A ∩ B.

Proof. Since f : A ∪ B ® A ∪ B is a cyclic orbital weaker Meir-Keeler �-contraction,

there exists x Î A satisfying (3), and we also have that for each n Î N,

d(f 2nx, f 2n+1x) ≤ ϕ(d(f 2n−1x, f 2nx)),

and

d(f 2n+1x, f 2n+2x) = d(f 2n+2x, f 2n+1x)

≤ ϕ(d(f 2n+1x, f 2nx)).
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Generally, we have

d(f nx, f n+1x) ≤ ϕ(d(f n−1x, f nx)), n ∈ N.

So we conclude that for each n Î N

d(f nx, f n+1x) ≤ ϕ(d(f n−1x, f nx))

≤ ϕ2(d(f n−2x, f n−1x))

≤ · · · · · ·
≤ ϕn(d(x, fx)).

Since {�n(d(x, fx))}nÎN is decreasing, it must converge to some h ≥ 0. We claim that

h = 0. On the contrary, assume that h > 0. Then by the definition of weaker Meir-Kee-

ler type mapping � in X, there exists δ > 0 such that for x, y Î X with h ≤ d(x, y) <δ +

h, there exists n0 Î N such that ϕn0 (d(x, y)) < η. Since limn®∞ �n(d(x, fx)) = h, there
exists m0 Î N such that h ≤ �m(d(x, fx)) <δ + h, for all m > m0. Thus, we conclude

that ϕm0+n0 (d(x0, x1)) < η, and we get a contradiction. So limn®∞ �n(d(x, fx)) = 0, that

is, limn®∞d(f
nx, fn+1x) = 0.

Next, we let cm = d(fmx, fm+1x), and we claim that the following result holds:

for each ε > 0, there is n0(ε) Î N such that for all m, n ≥ n0(ε),

d(f mx, f m+1x) < ε. (∗)

We shall prove (*) by contradiction. Suppose that (*) is false. Then there exists some

ε > 0 such that for all p Î N, there are mp, np Î N with mp > np ≥ p satisfying:

(i) mp is even and np is odd,

(ii) d(f mpx, f npx) ≥ ε, and

(iii) mp is the smallest even number such that the conditions (i), (ii) hold.

Since cm ↘ 0, by (ii), we have limk→∞d(f mpx, f npx) = ε, and

ε ≤ d(f mpx, f npx)

≤ d(f mpx, f mp+1x) + d(f mp+1x, f np+1x) + d(f np+1x, f npx)

≤ d(f mpx, f mp+1x) + ϕ(d(f mpx, f npx)) + d(f np+1x, f npx).

Letting p ® ∞. Then by the condition (�2)-(a) of �-mapping, we have

ε ≤ 0 + lim
p→∞ ϕ(d(f mpx, f npx)) + 0 < ε,

a contradiction. So {fnx} is a Cauchy sequence. Since (X, d) is a complete metric

space, there exists ν Î A ∪ B such that limn®∞ fnx = ν. Now {f2nx} is a sequence in A

and {f2n-1 x} is a sequence in B, and also both converge to ν. Since A and B are closed,

ν Î A ∩ B, and so A ∩ B is nonempty. By the condition (�2)-(b) of �-mapping, we have

d(ν, fν) = lim
n→∞ d(f 2nx, fν)

≤ lim
n→∞ ϕ(d(f 2n−1x, ν)) = 0,

hence ν is a fixed point of f. Let μ be another fixed point of f. Since f is a cyclic orbi-

tal weaker Meir-Keeler �-contraction, we have
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d(ν,μ) = d(ν, fμ) = lim
n→∞ d(f 2nx, fμ)

≤ lim
n→∞ ϕ(d(f 2n−1x,μ))

< d(ν,μ),

a contradiction. Therefore, μ = ν. Thus ν is a unique fixed point of f.

Example 6 Let A = B = X = ℝ+ and we define d : X × X ® ℝ+ by

d(x, y) =
∣∣x − y

∣∣ , for x, y ∈ X.

Define f : X ® X by

f (x) =
{
0, if 0 ≤ x < 1;
1
4 , if x ≥ 1.

and define � : ℝ+ ® ℝ+ by

ϕ(t) =
1
3
t for t ∈ R+.

Then f is a cyclic orbital weaker Meir-Keeler �-contraction and 0 is the unique fixed

point.

3 The fixed point theorems for generalized cyclic Meir-Keeler contractions
Using the notions of the generalized cyclic contraction [1] and stronger Meir-Keeler

type mapping, we introduce the below notion of generalized cyclic stronger Meir-Kee-

ler contraction.

Definition 7 Let {Ai}ki=1be nonempty subsets of a metric space (X, d), let ψ : ℝ+ ®

[0,1) be a stronger Meir-Keeler type mapping in X, and suppose

f : ∪k
i=1Ai → ∪k

i=1Aisatisfies the following conditions (where Ak+1 = A1):

(i) f(Ai) ⊆ Ai+1 for i = 1,2,...,k;

(ii) d(fx, fy) ≤ ψ(d(x, y)) ⋅ d(x, y) for all x Î Ai, y Î Ai+1, i=1,2,...,k.

Then we call f a generalized cyclic stronger Meir-Keeler ψ-contraction.

We state the main fixed point theorem for the generalized cyclic stronger Meir-Kee-

ler ψ-contraction, as follows:

Theorem 9 Let {Ai}ki=1be nonempty closed subsets of a complete metric space (X, d),

let ψ : ℝ+ ® [0,1) be a stronger Meir-Keeler type mapping in X, and let

f : ∪k
i=1Ai → ∪k

i=1Aibe a generalized cyclic stronger Meir-Keeler ψ-contraction. Then f

has a unique fixed point in ∩k
i=1Ai.

Proof. Given x0 Î X and let xn = fnx0, n Î N. Since f is a generalized cyclic stronger

Meir-Keeler ψ-contraction, we have that for each n Î N

d(xn, xn+1) = d(f nx0, f n+1x0)

≤ ψ(d(f n−1x0, f nx0)) · d(f n−1x0, f nx0)

≤ d(f n−1x0, f nx0) = d(xn−1, xn).

Thus the sequence {d(xn, xn+1)} is non-increasing and hence it is convergent. Let

limn®∞ d(xn, xn+1) = h ≥ 0. Then there exists �0 Î N and δ > 0 such that for all n ≥ �0
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η ≤ d(xn, xn+1) < η + δ.

Taking into account the above inequality and the definition of stronger Meir-Keeler

type mapping ψ in X, corresponding to h use, there exists gn Î [0,1) such that

ψ(d(xk0+n, xk0+n+1)) < γη,

for all n Î N ∪ {0}. Thus, we can deduce that for each n Î N

d(xk0+n, xk0+n+1) = d(f k0+nx0, f k0+n+1x0)

≤ ψ(d(f k0+n−1x0, f k0+nx0)) · d(f k0+n−1x0, f k0+nx0)

< γηd(f k0+n−1x0, f k0+nx0),

and it follows that for each n Î N

d(xk0+n, xk0+n+1) < γηd(f k0+n−1x0, f k0+nx0)

< · · ·
< γ n

η d(f
k0+1x0, f k0+2x0).

So

lim
n→∞ d(xk0+n, xk0+n+1) = 0, since γη < 1.

We now claim that limn→∞d(xk0+n, xk0+m) = 0 for m > n. For m, n Î N with m > n,

we have

d(xk0+n, xk0+m) = d(f k0+nx0, f k0+mx0)

≤
m−1∑
i=n

d(f k0+ix0, f k0+i+1x0)

<
γm−1

η

1 − γη

d(f k0x0, f k0+1x0)),

and hence d(fnx0, f
mx0) ® 0, since 0 < gh < 1. So {fnx0} is a Cauchy sequence. Since X

is complete, there exists ν ∈ ∪k
i=1Ai such that limn®∞ fnx0 = ν. Now for all i = 0,1, 2,...,

k - 1, {fkn-ix} is a sequence in Ai and also all converge to ν. Since Ai is clsoed for all i =

1, 2,..., k, we conclude ν ∈ ∩k
i=1Ai, and also we conclude that ∩k

i=1Ai = φ Since

d(ν, fν) = lim
n→∞ d(f knx, fν)

≤ lim
n→∞[ψ(d(f kn−1x, ν)) · d(f kn−1x, ν)]

≤ lim
n→∞[γη · d(f kn−1x, ν)] = 0,

hence ν is a fixed point of f.

Finally, to prove the uniqueness of the fixed point, let μ be another fixed point of f.

By the cyclic character of f, we have μ ∈ ∩k
i=1Ai. Since f is a generalized cyclic stronger

Meir-Keeler ψ-contraction, we have
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d(ν,μ) = d(ν, fμ) = lim
n→∞ d(f knx, fμ)

≤ lim
n→∞[ψ(d(f kn−1x,μ)) · d(f kn−1x,μ)]

≤ lim
n→∞[γη · d(f kn−1x,μ)]

≤ γη · d(ν,μ) < d(ν,μ),

a contradiction. Therefore, μ = ν. Thus ν is a unique fixed point of f.

Example 7 Let X = ℝ3 and we define d : X × X ® ℝ+by

d(x, y) =
∣∣x1 − y1

∣∣ + ∣∣x2 − y2
∣∣ + ∣∣x3 − y3

∣∣ , for x = (x1, x2, x3), y = (y1, y2, y3) ∈ X,

and let A = {(x, 0,0): x Îℝ}, B = {(0,y,0): y Î ℝ}, C = {(0,0, z): z Î ℝ} be three subsets

of X. Define f: A ∪ B ∪ C ® A ∪ B ∪ C by

f ((x, 0, 0)) = (0, x, 0); for all x ∈ R;

f ((0, y, 0)) = (0, 0, y); for all y ∈ R;

f ((0, 0, z)) = (z, 0, 0); for all z ∈ R.

and define ψ : ℝ+ ® [0,1) by

ψ(t) =
t

t + 1
; for t ∈ R+.

Then f is a generalized cyclic stronger Meir-Keeler ψ-contraction and (0,0,0) is the

unique fixed point.

Using the notions of the generalized cyclic contraction and weaker Meir-Keeler type

mapping, we introduce the below notion of generalized cyclic weaker Meir-Keeler

contraction.

Definition 8 Let {Ai}ki=1be nonempty subsets of a metric space (X, d), let � : ℝ+ ® ℝ+

be a �-mapping in X, and suppose f : ∪k
i=1Ai → ∪k

i=1Aisatisfies the following conditions

(where Ak+1 = A1):

(i) f(Ai) ⊆ Ai+1 for i = 1,2,...,k;

(ii) d(fx, fy) ≤ � (d(x, y)) for all x Î Ai, y Î Ai+1, i = 1,2,...,k.

Then we call f a generalized cyclic weaker Meir-Keeler �-contraction.

Now, we are in a position to state the following theorem.

Theorem 10 Let {Ai}ki=1be nonempty closed subsets of a complete metric space (X, d),

let � : ℝ+ ® ℝ+ be a �-mapping in X, and let f : cupki=1Ai → ∪k
i=1Aibe a generalized

cyclic weaker Meir-Keeler �-contraction. Then f has a unique fixed point in ∩k
i=1Ai.

Proof. Given x0 Î X and let xn = fnx0, n Î N. Since f is a generalized cyclic weaker

Meir-Keeler �-contraction, we have that for each n Î N

d(xn, xn+1) = d(f nx0, f n+1x0)

≤ ϕ(d(f n−1x0, f nx0)) = ϕ(d(xn−1, xn))

≤ · · · · · ·
≤ ϕn(d(x0, x1)).
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Since {�n(d(x0,x1))}nÎN is decreasing, it must converge to some h ≥ 0. We claim that

h = 0. On the contrary, assume that h > 0. Then by the definition of weaker Meir-Kee-

ler type mapping � in X, there exists δ > 0 such that for x, y Î X with h ≤ d(x, y) <δ +

h, there exists n0 Î N such that ϕn0 (d(x, y)) < η <h. Since limn®∞ �n (d(x0,x1)) = h,
there exists m0 Î N such that h <�m(d(x0,x1)) <δ + h, for all m >m0. Thus, we con-

clude that ϕm0+n0 (d(x0, x1)) < η, a contradiction. So limn®∞ �n(d(x0,x1)) = 0, that is,

limn®∞d(xn, xn+1) = 0.

Next, we claim that {xn} is a Cauchy sequence. We claim that the following result

holds:

for each ε > 0, there is n0(ε) Î N such that for all m, n ≥ n0(ε),

d(xm, xn) < ε, (∗∗)

We shall prove (**) by contradiction. Suppose that (**) is false. Then there exists

some ε > 0 such that for all p Î N, there are mp, np Î N with mp > np ≥ p satisfying:

(i) d(xmp , xnp) ≥ ε, and

(ii) mp is the smallest number greater than np such that the condition (i) holds.

Since

ε ≤ d(xmp , xnp)

≤ d(xmp , xmp−1 ) + d(xmp−1 , xnp)

≤ d(xmp , xmp−1 ) + ε,

hence we conclude limp→∞d(xmp , xnp) = ε. Since

d(xmp , xnp) − d(xmp , xmp+1 ) ≤ d(xmp+1, xnp) ≤ d(xmp , xmp+1) + d(xmp , xnp),

we also conclude limp→∞d(xmp+1, xnp) = ε. Thus, there exists i, 0 ≤ i ≤ k - 1 such that

mp-np + i = 1 mod k for infinitely many p. If i = 0, then we have that for such p,

ε ≤ d(xmp , xnp)

≤ d(xmp , xmp+1) + d(xmp+1, xnp+1) + d(xnp+1, xnp)

≤ d(xmp , xmp+1) + ϕ(d(xmp , xnp)) + d(xnp+1, xnp).

Letting p ® ∞. Then by the condition (�2)-(a) of �-mapping, we have

ε ≤ 0 + lim
p→∞ ϕ(d(xmp , xnp)) + 0 < ε,

a contradiction. The case i ≠ 0 similar. Thus, {xn} is a Cauchy sequence. Since X is

complete, there exists ν ∈ ∪k
i=1Ai such that limn®∞ xn = ν. Now for all i = 0, 1, 2, ..., k

- 1, {fkn-ix} is a sequence in Ai and also all converge to ν. Since Ai is closed for all i =

1, 2,..., k, we conclude ν ∈ ∪k
i=1Ai, and also we conclude that ∩k

i=1Ai = φ. By the condi-

tion (�2)-(b) of �-mapping, we have

d(ν, fν) = lim
n→∞ d(f knx, fν)

≤ lim
n→∞ ϕ(d(f kn−1x, ν)) = 0,
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hence ν is a fixed point of f. Let μ be another fixed point of f. Since f is a generalized

cyclic weaker Meir-Keeler �-contraction, we have

d(ν,μ) = d(ν, fμ) = lim
n→∞ d(f knx, fμ)

≤ lim
n→∞ ϕ(d(f kn−1x,μ))

< d(ν,μ),

a contradiction. Therefore, μ = ν. Thus ν is a unique fixed point of f.

Example 8 Let X = ℝ3 and we define d : X × X ® ℝ+ by

d(x, y) =
∣∣x1 − y1

∣∣ + ∣∣x2 − y2
∣∣ + ∣∣x3 − y3

∣∣ , for x = (x1, x2, x3), y = (y1, y2, y3) ∈ X,

and let A = {(x,0,0): x Î ℝ}, B = {(0,y,0): y Î ℝ}, C = {(0,0, z): z Î ℝ} be three subsets

of X. Define f : A ∪ B ∪ C ® A ∪ B ∪ C by

f ((x, 0, 0)) =
(
0,

1
4
x, 0

)
; for all x ∈ R;

f ((0, y, 0)) = (0, 0,
1
4
y); for all y ∈ R;

f ((0, 0, z)) = (
1
4
z, 0, 0); for all z ∈ R.

and define � : ℝ+ ® ℝ+ by

ϕ(t) =
1
3
t ; for t ∈ R+.

Then f is a generalized cyclic weaker Meir-Keeler �-contraction and (0, 0, 0) is the

unique fixed point.
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