Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces

Nedal Tahat ${ }^{\text {* }}$, Hassen Aydi ${ }^{2}$, Erdal Karapinar ${ }^{3}$ and Wasfi Shatanawi ${ }^{1}$

* Correspondence: nedal@hu.edu.jo ${ }^{1}$ Department of Mathematics, Hashemite University, Zarqa 13115, Jordan
Full list of author information is available at the end of the article

Abstract

In this article, we establish some common fixed point theorems for a hybrid pair $\{g$, T\} of single valued and multi-valued maps satisfying a generalized contractive condition defined on G-metric spaces. Our results unify, generalize and complement various known comparable results from the current literature. 2000 MSC: 54H25; 47H10; 54E50. Keywords: multi-valued mappings, common fixed point, weakly compatible mappings, generalized contraction

1. Introduction and preliminaries

Nadler [1] initiated the study of fixed points for multi-valued contraction mappings and generalized the well known Banach fixed point theorem. Then after, many authors studied many fixed point results for multi-valued contraction mappings see [2-13].
Mustafa and Sims [14] introduced the G-metric spaces as a generalization of the notion of metric spaces. Mustafa et al. [15-19] obtained some fixed point theorems for mappings satisfying different contractive conditions. Abbas and Rhoades [20] initiated the study of common fixed point in G-metric spaces. While Saadati et al. [21] studied some fixed point theorems in generalized partially ordered G-metric spaces. Gajić and Crvenković [22,23] proved some fixed point results for mappings with contractive iterate at a point in G-metric spaces. For other studies in G-metric spaces, we refer the reader to [24-38]. Consistent with Mustafa and Sims [14], the following definitions and results will be needed in the sequel.
Definition 1.1. (See [14]). Let X be a non-empty set, $G: X \times X \times X \rightarrow \mathbb{R}^{+}$be a function satisfying the following properties
(G1) $G(x, y, z)=0$ if $x=y=z$,
(G2) $0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
(G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,
(G4) $G(x, y, z)=G(x, z, y)=G(y, z, x)=\ldots$ (symmetry in all three variables),
(G5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).
Then the function G is called a generalized metric, or, more specially, a G-metric on X, and the pair (X, G) is called a G-metric space.

[^0]Definition 1.2. (See [14]). Let (X, G) be a G-metric space, and let $\left(x_{n}\right)$ be a sequence of points of X, therefore, we say that $\left(x_{n}\right)$ is G-convergent to $x \in X$ if $\lim _{n, m \rightarrow+\infty} G\left(x, x_{n}, x_{m}\right)=0$, that is, for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $G\left(x, x_{n}, x_{m}\right)$ $<\varepsilon$, for all $n, m \geq N$. We call x the limit of the sequence and write $x_{n} \rightarrow x$ or $\lim _{n \rightarrow+\infty} x_{n}=x$.

Proposition 1.1. (See [14]). Let (X, G) be a G-metric space. The following statements are equivalent:
(1) $\left(x_{n}\right)$ is G-convergent to x,
(2) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$,
(3) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow+\infty$,
(4) $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n, m \rightarrow+\infty$.

Definition 1.3. (See [14]). Let (X, G) be a G-metric space. A sequence $\left(x_{n}\right)$ is called a G-Cauchy sequence if for any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that $G\left(x_{w}, x_{m}, x_{l}\right)<\varepsilon$ for all m, $n, l \geq N$, that is, $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow+\infty$.

Proposition 1.2. (See [14]). Let (X, G) be a G-metric space. Then the following statements are equivalent:
(1) the sequence $\left(x_{n}\right)$ is G-Cauchy,
(2) for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$, for all $m, n \geq N$.

Definition 1.4. (See [14]). A G-metric space (X, G) is called G-complete if every GCauchy sequence is G-convergent in (X, G).

Every G-metric on X defines a metric d_{G} on X given by

$$
\begin{equation*}
d_{G}(x, y)=G(x, y, y)+G(y, x, x), \text { for all } x, y \in X \tag{1}
\end{equation*}
$$

Recently, Kaewcharoen and Kaewkhao [34] introduced the following concepts. Let X be a G-metric space. We shall denote $C B(X)$ the family of all nonempty closed bounded subsets of X. Let $H(., .,$.$) be the Hausdorff G$-distance on $C B(X)$, i.e.,

$$
H_{G}(A, B, C)=\max \left\{\sup _{x \in A} G(x, B, C), \sup _{x \in B} G(x, C, A), \sup _{x \in C} G(x, A, B)\right\},
$$

where

$$
\begin{gathered}
G(x, B, C)=d_{G}(x, B)+d_{G}(B, C)+d_{G}(x, C), \\
d_{G}(x, B)=\inf \left\{d_{G}(x, y), y \in B\right\}, \\
d_{G}(A, B)=\inf \left\{d_{G}(a, b), a \in A, b \in B\right\} .
\end{gathered}
$$

Recall that $G(x, y, C)=\inf \{G(x, y, z), z \in C\}$. A mapping $T: X \rightarrow 2^{X}$ is called a multi-valued mapping. A point $x \in X$ is called a fixed point of T if $x \in T x$.
Definition 1.5. Let X be a given non empty set. Assume that $g: X \rightarrow X$ and $T: X \rightarrow$ 2^{X}.

If $w=g x \in T x$ for some $x \in X$, then x is called a coincidence point of g and T and w is a point of coincidence of g and T.

Mappings g and T are called weakly compatible if $g x \in T x$ for some $x \in X$ implies $g T$ $(x) \subseteq \operatorname{Tg}(x)$.

Proposition 1.3. (see [34]). Let X be a given non empty set. Assume that $g: X \rightarrow X$ and $T: X \rightarrow 2^{X}$ are weakly compatible mappings. If g and T have a unique point of coincidence $w=g x \in T x$, then w is the unique common fixed point of g and T.

In this article, we establish some common fixed point theorems for a hybrid pair $\{g$, T \} of single valued and multi-valued maps satisfying a generalized contractive condition defined on G-metric spaces. Also, an example is presented.

2. Main results

We start this section with the following lemma, which is the variant of the one given in Nadler [1] or Assad and Kirk [4]. Its proof is a simple consequence of the definition of the Hausdorff G-distance $H_{G}(A, B, B)$.
Lemma 2.1. If $A, B \in C B(X)$ and $a \in A$, then for each $\varepsilon>0$, there exists $b \in B$ such that $G(a, b, b) \leq H_{G}(A, B, B)+\varepsilon$.

The main result of the article is the following.
Theorem 2.1. Let (X, G) be a G-metric space. Set $g: X \rightarrow X$ and $T: X \rightarrow C B(X)$. Assume that there exists a function $\alpha:[0,+\infty) \rightarrow[0,1)$ satisfying $\limsup _{r \rightarrow t^{+}} \alpha(r)<1_{\text {for }}$ every $t \geq 0$ such that

$$
\begin{equation*}
H_{G}(T x, T y, T z) \leq \alpha(G(g x, g y, g z)) G(g x, g y, g z) \tag{2}
\end{equation*}
$$

for all $x, y, z \in X$. If for any $x \in X, T x \subseteq g(X)$ and $g(X)$ is a G-complete subspace of X, then g and T have a point of coincidence in X. Furthermore, if we assume that $g p \in$ $T p$ and $g q \in T q$ implies $G(g q, g p, g p) \leq H_{G}(T q, T p, T p)$, then
(i) g and T have a unique point of coincidence.
(ii) If in addition g and T are weakly compatible, then g and T have a unique common fixed point.
Proof. Let x_{0} be arbitrary in X. Since $T x_{0} \subseteq g(X)$, choose $x_{1} \in X$ such that $g x_{1} \in T x_{0}$. If $g x_{1}=g x_{0}$, we finished. Assume that $g x_{0} \neq g x_{1}$, so $G\left(g x_{0}, g x_{1}, g x_{1}\right)>0$. We can choose a positive integer n_{1} such that

$$
\alpha^{n_{1}}\left(G\left(g x_{0}, g x_{1}, g x_{1}\right)\right) \leq\left[1-\alpha\left(G\left(g x_{0}, g x_{1}, g x_{1}\right)\right)\right] G\left(g x_{0}, g x_{1}, g x_{1}\right) .
$$

By Lemma 2.1 and the fact that $T x_{1} \subseteq g(X)$, there exists $g x_{2} \in T x_{1}$ such that

$$
G\left(g x_{1}, g x_{2}, g x_{2}\right) \leq H_{G}\left(T x_{0}, T x_{1}, T x_{1}\right)+\alpha^{n_{1}}\left(G\left(g x_{0}, g x_{1}, g x_{1}\right)\right) .
$$

Using the two above inequalities and (2), it follows that

$$
\begin{aligned}
G\left(g x_{1}, g x_{2}, g x_{2}\right) & \leq H_{G}\left(T x_{0}, T x_{1}, T x_{1}\right)+\alpha^{n_{1}}\left(G\left(g x_{0}, g x_{1}, g x_{1}\right)\right) \\
& \leq \alpha\left(G\left(g x_{0}, g x_{1}, g x_{1}\right)\right) G\left(g x_{0}, g x_{1}, g x_{1}\right)+\left[1-\alpha\left(G\left(g x_{0}, g x_{1}, g x_{1}\right)\right)\right] G\left(g x_{0}, g x_{1}, g x_{1}\right) \\
& =G\left(g x_{0}, g x_{1}, g x_{1}\right) .
\end{aligned}
$$

If $g x_{1}=g x_{2}$, we finished. Assume that $g x_{1} \neq g x_{2}$. Now we choose a positive integer $n_{2}>n_{1}$ such that

$$
\alpha^{n_{2}}\left(G\left(g x_{1}, g x_{2}, g x_{2}\right)\right) \leq\left[1-\alpha\left(G\left(g x_{1}, g x_{2}, g x_{2}\right)\right)\right] G\left(g x_{2}, g x_{2}, g x_{2}\right) .
$$

Since $T x_{2} \in C B(X)$ and the fact that $T x_{2} \subseteq g(X)$, we may select $g x_{3} \in T x_{2}$ such that from Lemma 2.1

$$
G\left(g x_{2}, g x_{3}, g x_{3}\right) \leq H_{G}\left(T x_{1}, T x_{2}, T x_{2}\right)+\alpha^{n_{2}}\left(G\left(g x_{1}, g x_{2}, g x_{2}\right)\right)
$$

and then, similarly to the previous case, we have

$$
\begin{aligned}
G\left(g x_{2}, g x_{3}, g x_{3}\right) & \leq H_{G}\left(T x_{1}, T x_{2}, T x_{2}\right)+\alpha^{n_{2}}\left(G\left(g x_{1}, g x_{2}, g x_{2}\right)\right) \\
& \leq \alpha\left(G\left(g x_{1}, g x_{2}, g x_{2}\right)\right) G\left(g x_{1}, g x_{2}, g x_{2}\right)+\left[1-\alpha\left(G\left(g x_{1}, g x_{2}, g x_{2}\right)\right)\right] G\left(g x_{1}, g x_{2}, g x_{2}\right) \\
& =G\left(g x_{1}, g x_{2}, g x_{2}\right) .
\end{aligned}
$$

By repeating this process, for each $k \in \mathbb{N}^{*}$, we may choose a positive integer n_{k} such that

$$
\alpha^{n_{k}}\left(G\left(g x_{k-1}, g x_{k}, g x_{k}\right)\right) \leq\left[1-\alpha\left(G\left(g x_{k-1}, g x_{k}, g x_{k}\right)\right)\right] G\left(g x_{k-1}, g x_{k}, g x_{k}\right) .
$$

Again, we may select $g x_{k+1} \in T x_{k}$ such that

$$
\begin{equation*}
G\left(g x_{k}, g x_{k+1}, g x_{k+1}\right) \leq H_{G}\left(T x_{k-1}, T x_{k}, T x_{k}\right)+\alpha^{n_{k}}\left(G\left(g x_{k-1}, g x_{k}, g x_{k}\right)\right) \tag{3}
\end{equation*}
$$

The last two inequalities together imply that

$$
G\left(g x_{k}, g x_{k+1}, g x_{k+1}\right) \leq G\left(g x_{k-1}, g x_{k}, g x_{k}\right)
$$

which shows that the sequence of nonnegative numbers $\left\{d_{k}\right\}$, given by $d_{k}=G\left(g x_{k-1}\right.$, $\left.g x_{k} g x_{k}\right), k=1,2, \ldots$, is non-increasing. This means that there exists $d \geq 0$ such that

$$
\lim _{k \rightarrow+\infty} d_{k}=d
$$

Let now prove that the $\left\{g x_{k}\right\}$ is a G-Cauchy sequence.
Using the fact that, by hypothesis for $t=d, \limsup _{r \rightarrow d^{+}} \alpha(t)<1$, it results that there exists a rank k_{0} such that for $k \geq k_{0}$, we have $\alpha\left(d_{k}\right)<h$, where

$$
\limsup _{t \rightarrow d^{+}} \alpha(t)<h<1
$$

Now, by (3) we deduce that the sequence $\left\{d_{k}\right\}$ satisfies the following recurrence inequality

$$
\begin{equation*}
d_{k+1} \leq H_{G}\left(T x_{k-1}, T x_{k}, T x_{k}\right)+\alpha^{n_{k}}\left(d_{k}\right) \leq \alpha\left(d_{k}\right) d_{k}+\alpha^{n_{k}}\left(d_{k}\right), \quad k \geq 1 \tag{4}
\end{equation*}
$$

By induction, from (4), we get

$$
d_{k+1} \leq \prod_{i=1}^{k} \alpha\left(d_{i}\right) d_{1}+\sum_{m=1}^{k-1} \prod_{i=m+1}^{k} \alpha\left(d_{i}\right) \alpha^{n_{m}}\left(d_{m}\right)+\alpha^{n_{k}}\left(d_{k}\right), \quad k \geq 1
$$

which, by using the fact that $\alpha<1$, can be simplified to

$$
d_{k+1} \leq \prod_{i=1}^{k} \alpha\left(d_{i}\right) d_{1}+\sum_{m=1}^{k-1} \prod_{i=\max \left\{k_{0}, m+1\right\}}^{k} \alpha\left(d_{i}\right) \alpha^{n_{m}}\left(d_{m}\right)+\alpha^{n_{k}}\left(d_{k}\right), \quad k \geq 1,
$$

Referring to the proof of Theorem 2.1 in [11] or Lemma 3.2 in [12], we may obtain

$$
\prod_{i=1}^{k} \alpha\left(d_{i}\right) d_{1}+\sum_{m=1}^{k-1} \prod_{i=\max \left\{k_{0}, m+1\right\}}^{k} \alpha\left(d_{i}\right) \alpha^{n_{m}}\left(d_{m}\right)+\alpha^{n_{k}}\left(d_{k}\right) \leq c h^{k}
$$

where c is a positive constant. We deduce that

$$
d_{k+1}=G\left(g x_{k}, g x_{k+1}, g x_{k+1}\right) \leq c h^{k}
$$

Now for $k \geq k_{0}$ and m is a positive arbitrary integer, we have using the property (G4)

$$
\begin{aligned}
G\left(g x_{k}, g x_{k+m}, g x_{k+m}\right) \leq & G\left(g x_{k}, g x_{k+1}, g x_{k+1}\right)+G\left(g x_{k+1}, g x_{k+2}, g x_{k+2}\right) \\
& +\cdots+G\left(g x_{k+m-2}, g x_{k+m-1}, g x_{k+m-1}\right)+G\left(g x_{k+m-1}, g x_{k+m}, g x_{k+m}\right) \\
\leq & c\left[h^{k}+h^{k+1}+\cdots+h^{k+m-1}\right] \\
\leq & c \frac{h^{k}}{1-h} \rightarrow 0 \text { as } k \rightarrow+\infty,
\end{aligned}
$$

since $0<h<1$. This shows that the sequence $\left\{g x_{n}\right\}$ is G-Cauchy in the complete subspace $g(X)$. Thus, there exists $q \in g(X)$ such that, from Proposition 1.1

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} G\left(g x_{n}, g x_{n}, q\right)=\lim _{n \rightarrow+\infty} G\left(g x_{n}, q, q\right)=0 \tag{5}
\end{equation*}
$$

Since $q \in g(X)$, then there exists $p \in X$ such that $q=g p$. From (5), we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} G\left(g x_{n}, g x_{n}, g p\right)=\lim _{n \rightarrow+\infty} G\left(g x_{n}, g p, g p\right)=0 \tag{6}
\end{equation*}
$$

We claim that $g p \in T p$. Indeed, from (2), we have

$$
\begin{align*}
G\left(g x_{n+1}, T p, T p\right) & \leq H_{G}\left(T x_{n}, T p, T p\right) \\
& \leq \alpha\left(G\left(g x_{n}, g p, g p\right)\right) G\left(g x_{n}, g p, g p\right) \tag{7}
\end{align*}
$$

Letting $n \rightarrow+\infty$ in (7) and using (6), we get

$$
G(g p, T p, T p)=\lim _{n \rightarrow+\infty} G\left(g x_{n+1}, T p, T p\right)=0
$$

that is, $g p \in T p$. That is T and g have a point of coincidence. Now, assume that if $g p$ $\in T p$ and $g q \in T q$, then $G(g q, g p, g p) \leq H_{G}(T q, T p, T p)$. We will prove the uniqueness of a point of coincidence of g and T. Suppose that $g p \in T p$ and $g q \in T q$. By (2) and this assumption, we have

$$
\begin{align*}
G(g q, g p, g p) & \leq H_{G}(T q, T p, T p) \tag{8}\\
& \leq \alpha(G(g q, g p, g p)) G(g q, g p, g p)
\end{align*}
$$

and since $\alpha(G(g q, g p, g p))<G(g q, g p, g p)$, so necessarily from (8), we have $G(g q, g p$, $g p)=0$, i.e., $g p=g q$. In view of

$$
H_{G}(T q, T p, T p) \leq \alpha(G(g q, g p, g p)) G(g q, g p, g p)=0
$$

we get $T q=T p$. Thus, T and g have a unique point of coincidence. Suppose that g and T are weakly compatible. By applying Proposition 1.3 , we obtain that g and T have a unique common fixed point.

Corollary 2.1. Let (X, G) be a complete G-metric space. Assume that $T: X \rightarrow C B(X)$ satisfies the following condition

$$
\begin{equation*}
H_{G}(T x, T y, T z) \leq \alpha(G(x, y, z)) G(x, y, z) \tag{9}
\end{equation*}
$$

for all $x, y, z \in X$, where $\alpha:[0,+\infty) \rightarrow[0,1)$ satisfies $\limsup _{r \rightarrow t^{+}} \alpha(r)<1_{\text {for }}$ every $t \geq 0$. Then T has a fixed point in X. Furthermore, if we assume that $p \in T p$ and $q \in T q$ implies $G(q, p, p) \leq H_{G}(T q, T p, T p)$, then T has a unique fixed point.

Proof. It follows by taking g the identity on X in Theorem 2.1.
Corollary 2.2. Let (X, G) be a G-metric space. Assume that $g: X \rightarrow X$ and $T: X \rightarrow$ $C B(X)$ satisfy the following condition

$$
\begin{equation*}
H_{G}(T x, T y, T z) \leq k G(g x, g y, g z) \tag{10}
\end{equation*}
$$

for all $x, y, z \in X$, where $k \in[0,1)$. If for any $x \in X, T x \subseteq g(X)$ and $g(X)$ is a G-complete subspace of X, then g and T have a point of coincidence in X. Furthermore, if we assume that $g p \in T p$ and $g q \in T q$ implies $G(g q, g p, g p) \leq H_{G}(T q, T p, T p)$, then
(i) g and T have a unique point of coincidence.
(ii) If in addition g and T are weakly compatible, then g and T have a unique common fixed point.

Proof. It follows by taking $\alpha(t)=k, k \in[0,1)$, in Theorem 2.1.
In the case of single-valued mappings, that is, if $T: X \rightarrow X$, (i.e., $T x=\{T x\}$ for any x $\in X$), it is obviously that

$$
H_{G}(T x, T y, T z)=G(T x, T y, T z), \quad \forall x, y, z \in X
$$

Furthermore, if $g p \in T p$ (i.e., $g p=T p$) and $g q \in T q$ (i.e., $g q=T q$), then clearly,

$$
G(g q, g p, g p)=G(T q, T p, T p)=H_{G}(T q, T p, T p),
$$

that is, the assumption given in Theorem 2.1 is verified.
Also, the single-valued mappings $T, g: X \rightarrow X$ are said weakly compatible if $T g x=$ $g T x$ whenever $T x=g x$ for some $x \in X$.

Now, we may state the following corollaries from Theorem 2.1 and the precedent corollaries:

Corollary 2.3. Let (X, G) be a complete G-metric space. Assume that $T: X \rightarrow X$ satisfies the following condition

$$
\begin{equation*}
G(T x, T y, T z) \leq \alpha(G(x, y, z)) G(x, y, z) \tag{11}
\end{equation*}
$$

for all $x, y, z \in X$, where $\alpha:[0,+\infty) \rightarrow[0,1)$ satisfies $\limsup _{r \rightarrow t^{+}} \alpha(r)<1_{\text {for }}$ every $t \geq 0$. Then, T has a unique fixed point.
Corollary 2.4. Let (X, G) be a G-metric space. Assume that $g: X \rightarrow X$ and $T: X \rightarrow$ X satisfy the following condition

$$
\begin{equation*}
G(T x, T y, T z) \leq \alpha(G(g x, g y, g z)) G(g x, g y, g z) \tag{12}
\end{equation*}
$$

for all $x, y, z \in X$, where $\alpha:[0,+\infty) \rightarrow[0,1)$ satisfies $\limsup _{r \rightarrow t^{+}} \alpha(r)<1_{\text {for }}$ every $t \geq 0$. If $T(X) \subseteq g(X)$ and $g(X)$ is a G-complete subspace of X, then
(i) g and T have a unique point of coincidence.
(ii) Furthermore, if g and T are weakly compatible, then g and T have a unique common fixed point.
Now, we introduce an example to support the useability of our results.
Example 2.1. Let $X=[0,1]$. Define $T: X \rightarrow C B(X)$ by $T x=\left[0, \frac{1}{16} x\right]$ and define $g: X$ $\rightarrow X$ by $g x=\sqrt{x}$. Define a G-metric on X by $G(x, y, z)=\max \{|x-y|,|x-z|,|y-z|\}$. Also, define $\alpha:[0,+\infty) \rightarrow[0,1)$ by $\alpha(t)=\frac{1}{2}$ Then:
(1) $T x \subseteq g(X)$ for all $x \in X$.
(2) $g(X)$ is a G-complete subspace of X.
(3) g and T are weakly compatible.
(4) $H_{G}(T x, T y, T z) \leq \alpha(G(g x, g y, g z)) G(g x, g y, g z)$ for all $x, y, z \in X$.

Proof. The proofs of (1), (2), and (3) are clear. By (1), we have

$$
d_{G}(x, y)=G(x, y, y)+G(y, x, x)=2|x-y| \text { for all } x, y \in X .
$$

To prove (4), let $x, y, z \in X$. If $x=y=z=0$, then

$$
H_{G}(T x, T y, T z)=0 \leq \alpha(G(g x, g y, g z)) G(g x, g y, g z) .
$$

Thus, we may assume that x, y, and z are not all zero. With out loss of generality, we assume that $x \leq y \leq z$. Then

$$
\begin{aligned}
& H_{G}(T x, T y, T z)=H_{G}\left(\left[0, \frac{1}{16} x\right],\left[0, \frac{1}{16} y\right],\left[0, \frac{1}{16} z\right]\right) \\
= & \max \left\{\begin{array}{l}
\sup _{0 \leq a \leq \frac{1}{16} x} G\left(a,\left[0, \frac{1}{16} y\right],\left[0, \frac{1}{16} z\right]\right), \sup _{0 \leq b \leq \frac{1}{16} y} G\left(b,\left[0, \frac{1}{16} z\right],\left[0, \frac{1}{16} x\right]\right), \\
\\
\\
\\
\\
0 \leq c \leq \frac{1}{16} z
\end{array}, \quad G\left(c,\left[0, \frac{1}{16} x\right],\left[0, \frac{1}{16} y\right]\right)\right\} .
\end{aligned}
$$

Since $x \leq y \leq z$, so $\left[0, \frac{1}{16} x\right] \subseteq\left[0, \frac{1}{16} y\right] \subseteq\left[0, \frac{1}{16} z\right]$ This implies that

$$
d_{G}\left(\left[0, \frac{1}{16} x\right],\left[0, \frac{1}{16} y\right]\right)=d_{G}\left(\left[0, \frac{1}{16} y\right],\left[0, \frac{1}{16} z\right]\right)=d_{G}\left(\left[0, \frac{1}{16} x\right],\left[0, \frac{1}{16} z\right]\right)=0 .
$$

For each $0 \leq a \leq \frac{1}{16} x$, we have

$$
G\left(a,\left[0, \frac{1}{16} y\right],\left[0, \frac{1}{16} z\right]\right)=d_{G}\left(a,\left[0, \frac{1}{16} y\right]\right)+d_{G}\left(\left[0, \frac{1}{16} y\right],\left[0, \frac{1}{16} z\right]\right)+d_{G}\left(a,\left[0, \frac{1}{16} z\right]\right)=0 .
$$

Also, for each $0 \leq b \leq \frac{1}{16} y$, we have

$$
\begin{aligned}
G\left(b,\left[0, \frac{1}{16} z\right],\left[0, \frac{1}{16} x\right]\right) & =d_{G}\left(b,\left[0, \frac{1}{16} z\right]\right)+d_{G}\left(\left[0, \frac{1}{16} z\right],\left[0, \frac{1}{16} x\right]\right)+d_{G}\left(b,\left[0, \frac{1}{16} x\right]\right) \\
& =\left\{\begin{array}{l}
0 \text { if } b \leq \frac{x}{16} \\
2 b-\frac{x}{8} \text { if } b \geq \frac{x}{16}
\end{array}\right.
\end{aligned}
$$

This yields that

$$
\sup _{0 \leq b \leq \frac{1}{16}}{ }^{y} G\left(b,\left[0, \frac{1}{16} z\right],\left[0, \frac{1}{16} x\right]\right)=\frac{y}{8}-\frac{x}{8} .
$$

Moreover, for each $0 \leq c \leq \frac{1}{16} z$, we have

$$
\begin{aligned}
G\left(c,\left[0, \frac{1}{16} x\right],\left[0, \frac{1}{16} y\right]\right) & =d_{G}\left(c,\left[0, \frac{1}{16} x\right]\right)+d_{G}\left(\left[0, \frac{1}{16} x\right],\left[0, \frac{1}{16} y\right]\right)+d_{G}\left(c,\left[0, \frac{1}{16} y\right]\right) \\
= & \left\{\begin{array}{l}
0 \text { if } c \leq \frac{x}{16} x \\
2 c-\frac{x}{8} \text { if } \frac{x}{16} \leq c \leq \frac{y}{16} \\
4 c-\frac{x}{8}-\frac{y}{8} \text { if } c \geq \frac{y}{16} .
\end{array}\right.
\end{aligned}
$$

This yields that

$$
\sup _{0 \leq c \leq \frac{1}{16} z} G\left(c,\left[\frac{1}{16} c\right],\left[0, \frac{1}{16} y\right]\right)=\frac{z}{4}-\frac{x}{8}-\frac{y}{8}
$$

We deduce that

$$
\begin{aligned}
H_{G}(T x, T y, T z) & =\frac{z}{4}-\frac{x}{8}-\frac{y}{8} \\
& \leq \frac{1}{4}(z-x) \\
& =\frac{1}{2}\left(\frac{1}{2}(z-x)\right) \\
& \leq \frac{1}{2}\left(\frac{z-x}{\sqrt{x}+\sqrt{z}}\right) \\
& =\frac{1}{2}(\sqrt{z}-\sqrt{x})
\end{aligned}
$$

On the other hand, it is obvious that all other hypotheses of Theorem 2.1 are satisfied and so g and T have a unique common fixed point, which is $u=0$.

Remark 1. Theorem 2.1 improves Kaewcharoen and Kaewkhao [[34], Theorem 3.3] (in case $b=c=d=0$).

- Corollary 2.3 generalizes Mustafa [[15], Theorem 5.1.7] and Shatanawi [[35], Corollary 3.4].

Acknowledgements

The authors thank the editor and the referees for their useful comments and suggestions.

Author details

²Department of Mathematics, Hashemite University, Zarqa 13115, Jordan ${ }^{2}$ Université de Sousse, Institut Supérieur d'Informatique et des Technologies de Communication De Hammam Sousse, Route GP1-4011, Hammam Sousse, Tunisie ${ }^{3}$ Department of Mathematics, Atilim University 06836, İncek, Ankara, Turkey

Authors' contributions

The authors have contributed in obtaining the new results presented in this article. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Received: 18 October 2011 Accepted: 26 March 2012 Published: 26 March 2012

References

1. Nadler, SB: Multi-valued contraction mappings. Pacific J Math. 30, 475-478 (1969)
2. Gorniewicz, L: Topological fixed point theory of multivalued mappings. Kluwer Academic Publishers, Dordrecht (1999)
3. Klim, D, Wardowski, D: Fixed point theorems for set-valued contractions in complete metric spaces. J Math Anal Appl. 334, 132-139 (2007). doi:10.1016/j.jmaa.2006.12.012
4. Assad, NA, Kirk, WA: Fixed point theorems for setvalued mappings of contractive type. Pacific J Math. 43, 553-562 (1972)
5. Hong, SH: Fixed points of multivalued operators in ordered metric spaces with applications. Nonlinear Anal. 72, 3929-3942 (2010). doi:10.1016/j.na.2010.01.013
6. Hong, SH: Fixed points for mixed monotone multivalued operators in Banach Spaces with applications. J Math Anal Appl. 337, 333-342 (2008). doi:10.1016/j.jmaa.2007.03.091
7. Hong, SH, Guan, D, Wang, L: Hybrid fixed points of multivalued operators in metric spaces with applications. Nonlinear Anal. 70, 4106-4117 (2009). doi:10.1016/j.na.2008.08.020
8. Hong, SH: Fixed points of discontinuous multivalued increasing operators in Banach spaces with applications. J Math Anal Appl. 282, 151-162 (2003). doi:10.1016/S0022-247X(03)00111-2
9. Shatanawi, W: Some fixed point results for a generalized ψ-weak contraction mappings in orbitally metric spaces. Chaos Solitons Fract. 45, 520-526 (2012). doi:10.1016/j.chaos.2012.01.015
10. Mizoguchi, N, Takahashi, W: Fixed point theorems for multi-valued mappings on complete metric spaces. J Math Anal Appl. 141, 177-188 (1989). doi:10.1016/0022-247X(89)90214-X
11. Berinde, M, Berinde, V: On a general class of multi-valued weakly Picard mappings. J Math Anal Appl. 326, 772-782 (2007). doi:10.1016/j.jmaa.2006.03.016
12. Kamran, T: Multivalued f-weakly Picard mappings. Nonlinear Anal. 67, 2289-2296 (2007). doi:10.1016/j.na.2006.09.010
13. Al-Thagafi, MA, Shahzad, N : Coincidence points, generalized $/$-nonexpansive multimaps and applications. Nonlinear Anal. 67, 2180-2188 (2007). doi:10.1016/j.na.2006.08.042
14. Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J Nonlinear Convex Anal. 7, 289-297 (2006)
15. Mustafa, Z: A new structure for generalized metric spaces with applications to fixed point theory. University of Newcastle, Newcastle, UK (2005). Ph.D. thesis
16. Mustafa, Z, Obiedat, H, Awawdeh, F: Some fixed point theorem for mapping on complete G-metric spaces. Fixed Point Theory Appl 2008, 12 (2008). ID 189870
17. Mustafa, Z, Sims, B: Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl 2009, 10 (2009). ID 917175
18. Mustafa, Z, Khandaqji, M, Shatanawi, W: Fixed point results on complete G-metric spaces. Studia Scientiarum Mathematicarum Hungarica. 48, 304-319 (2011). doi:10.1556/SScMath.48.2011.3.1170
19. Mustafa, Z, Shatanawi, W, Bataineh, M: Existence of fixed point results in G-metric spaces. Int J Math Math Sci 2009, 10 (2009). ID 283028
20. Abbas, M, Rhoades, $B E$: Common fixed point results for non-commuting mappings without continuity in generalized metric spaces. Appl Math Comput. 215, 262-269 (2009). doi:10.1016/j.amc.2009.04.085
21. Saadati, R, Vaezpour, SM, Vetro, P, Rhoades, BE: Fixed point theorems in generalized partially ordered G-metric spaces. Math Comput Model. 52, 797-801 (2010). doi:10.1016/j.mcm.2010.05.009
22. Gajić, L, Crvenković, ZL: On mappings with contractive iterate at a point in generalized metric spaces. Fixed Point Theory Appl 2010 (2010). (ID 458086), 16 (2010). doi:10.1155/2010/458086
23. Gají, L, Crvenković, ZL: A fixed point result for mappings with contractive iterate at a point in G-metric spaces. Filomat 25, 53-58 (2011). doi:10.2298/FIL1102053G
24. Abbas, M, Khan, SH, Nazir, T: Common fixed points of R-weakly commuting maps in generalized metric space. Fixed Point Theory Appl. 2011, 41 (2011). doi:10.1186/1687-1812-2011-41
25. Abbas, M, Khan, AK, Nazir, T: Coupled common fixed point results in two generalized metric spaces. Appl Math Comput (2011). doi:10.1016/j.amc.2011.01.006
26. Abbas, M, Nazir, T, Vetro, P: Common fixed point results for three maps in G- metric spaces. Filomat. 25, 1-17 (2011)
27. Aydi, H, Damjanović, B, Samet, B, Shatanawi, W: Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces. Math Comput Model. 54, 2443-2450 (2011). doi:10.1016/j.mcm.2011.05.059
28. Aydi, H, Shatanawi, W, Vetro, C: On generalized weakly G-contraction mapping in G-metric spaces. Comput Math Appl. 62, 4222-4229 (2011). doi:10.1016/j.camwa.2011.10.007
29. Aydi, H, Shatanawi, W, Postolache, M: Coupled fixed point results for (Ψ, φ)-weakly contractive mappings in ordered G metric spaces. Comput Math Appl. 63, 298-309 (2012). doi:10.1016/j.camwa.2011.11.022
30. Cho, YJ, Rhoades, BE, Saadati, R, Samet, B, Shatanawi, W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory and Appl. 2012, 8 (2012). doi:10.1186/1687-1812-2012-8
31. Choudhury, BS, Maity, P: Coupled fixed point results in generalized metric spaces. Math Comput Model. 54, 73-79 (2011). doi:10.1016/j.mcm.2011.01.036
32. Chugh, R, Kadian, T, Rani, A, Rhoades, BE: Property P in G-metric spaces. Fixed Point Theory Appl 2010, 12 (2010). (ID 401684)
33. Gholizadeh, L, Saadati, R, Shatanawi, W, Vaezpour, SM: Contractive Mapping in Generalized, Ordered Metric Spaces with Application in Integral Equations. Math Probl Eng 2011, 14 (2011). (ID 380784)
34. Kaewcharoen, A, Kaewkhao, A: Common fixed points for single-valued and multi-valued mappings in G-metric spaces. Int J Math Anal. 5, 1775-1790 (2011)
35. Shatanawi, W: Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces. Fixed Point Theory Appl 2010, 9 (2010). (ID 181650)
36. Shatanawi, W: Some fixed point theorems in ordered G-metric spaces and applications. Abst Appl Anal 2011, 11 (2011). (ID 126205)
37. Shatanawi, W: Coupled fixed point theorems in generalized metric spaces. Hacettepe J Math Stat. 40, 441-447 (2011)
38. Shatanawi, W, Abbas, M, Nazir, T: Common coupled coincidence and coupled fixed point results in two generalized metric spaces. Fixed point Theory Appl. 2011, 80 (2011). doi:10.1186/1687-1812-2011-80
[^1]
[^0]: © 2012 Tahat et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1687-1812-2012-48
 Cite this article as: Tahat et al.: Common fixed points for single-valued and multi-valued maps satisfying a
 generalized contraction in G-metric spaces. Fixed Point Theory and Applications 2012 2012:48.

