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Abstract

In this article, for a tυs-G-cone metric space (X, G) and for the family A of subsets of
X, we introduce a new notion of the tυs - H - cone metric H with respect to G, and
we get a fixed result for the stronger Meir-Keeler-G-cone-type function in a complete
tυs-G-cone metric space (A,H) Our result generalizes some recent results due to
Dariusz Wardowski and Radonevic’ et al.
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1 Introduction and preliminaries
Recently, Huang and Zhang [1] introduced the concept of cone metric space by repla-

cing the set of real numbers by an ordered Banach space, and they showed some fixed

point theorems of contractive type mappings on cone metric spaces. The category of

cone metric spaces is larger than metric spaces. Subsequently many authors like Abbas

and Jungck [2] had generalized the results of Huang and Zhang [1] and studied the

existence of common fixed points of a pair of self mappings satisfying a contractive

type condition in the framework of normal cone metric spaces. However, authors like

Jankovic’ et al. [3], Rezapour and Hamlbarani [4] studied the existence of common

fixed points of a pair of self and nonself mappings satisfying a contractive type condi-

tion in the situation in which the cone does not need to be normal. Many authors stu-

died this subject and many results on fixed point theory are proved (see e.g., [4-15]).

Recently, Du [16] introduced the concept of tυs-cone metric and tυs-cone metric

space to improve and extend the concept of cone metric space in the sense of Huang

and Zhang [1]. Later, in the articles [16-19], the authors tried to generalize this

approach by using cones in topological vector spaces tυs instead of Banach spaces.

However, it should be noted that an old result shows that if the underlying cone of an

ordered tυs is solid and normal, then such tυs must be an ordered normed space.

Thus, proper generalizations when passing from norm-valued cone metric spaces to

tυs-valued cone metric spaces can be obtained only in the case of nonnormal cones

(for details, see [19]).

We recall some definitions and results of the tυs-cone metric spaces that introduced

in [19,20], which will be needed in the sequel.
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Let E be a real Hausdorff topological vector space (tυs for short) with the zero vector

θ. A nonempty subset P of E is called a convex cone if P + P ⊆ P and lP ⊆ P for l ≥

0. A convex cone P is said to be pointed (or proper) if P ∩ (-P) = {θ}; P is normal (or

saturated) if E has a base of neighborhoods of zero consisting of order-convex subsets.

For a given cone P ⊆ E, we can define a partial ordering ≼ with respect to P by x ≼ y

if and only if y - x Î P; x ≺ y will stand for x ≼ y and x ≠ y, while x ≪ y will stand for

y - x Î intP, where intP denotes the interior of P. The cone P is said to be solid if it

has a nonempty interior.

In the sequel, E will be a locally convex Hausdorff tυs with its zero vector θ, P a

proper, closed, and convex pointed cone in E with int P ≠ j and ≼ a partial ordering

with respect to P.

Definition 1 [16,18,19]Let X be a nonempty set and (E, P) an ordered tυs. A vector-

valued function d: X × X ® E is said to be a tυs-cone metric, if the following conditions

hold:

(C1) ∀x,yÎX,x≠y θ ≼ d(x, y);

(C2) ∀x,yÎX d(x, y) = θ ⇔ x = y;

(C3) ∀x,yÎX d(x, y) = d(y, x);

(C4) ∀x,y,zÎX d(x, z) ≼ d(x, y) + d(y, z).

Then the pair (X, d) is called a tυs-cone metric space.

Definition 2 [16,18,19]Let (X, d) be a tυs-cone metric space, x Î X and {xn} a

sequence in X.

(1) {xn} tυs-cone converges to x whenever for every c Î E with θ ≪ c, there exists

n0 ∈ Nsuch that d(xn, x) ≪ c for all n ≥ n0. We denote this by cone-limn®∞ xn = x;

(2) {xn} is a tυs-cone Cauchy sequence whenever for every c Î E with θ ≪ c, there

exists n0 ∈ Nsuch that d(xn, xm) ≪ c for all n, m ≥ n0;

(3) (X, d) is tυs-cone complete if every tυs-cone Cauchy sequence in X is tυs-cone con-

vergent in X.

Remark 1 Clearly, a cone metric space in the sense of Huang and Zhang [1]is a spe-

cial case of tυs-cone metric spaces when (X, d) is a tυs-cone metric space with respect to

a normal cone P.

Remark 2 [19-21]Let (X, d) be a tυs-cone metric space with a solid cone P. The fol-

lowing properties are often used, particularly in the case when the underlying cone is

nonnormal.

(p1) If u ≼ υ and υ ≪ w, then u ≪ w;

(p2) If u ≪ υ and υ ≼ w, then u ≪ w;

(p3) If u ≪ υ and υ ≪ w, then u ≪ w;

(p4) If θ ≼ u ≪ c for each c Î intP, then u = θ;

(p5) If a ≼ b + c for each c Î intP, then a ≼ b;

(p6) If E is tυs with a cone P, and if a ≼ la where a Î P and l Î [0, 1), then a = θ;

(p7) If c Î intP, an Î E and an ® θ in locally convex tυs E, then there exists

n0 ∈ Nsuch that an ≪ c for all n > n0.

Metric spaces are playing an important role in mathematics and the applied sciences.

To overcome fundamental laws in Dhage’s theory of generalized metric spaces [22],

flaws that invalidate most of the results claimed for these spaces, Mustafa and Sims

[23] introduced a more appropriate and robust notion of a generalized metric space as

follows:
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Definition 3 [23]Let X be a nonempty set, and let G : X × X × X ® [0, ∞) be a func-

tion satisfying the following axioms:

(G1) ∀x,y,zÎX G(x, y, z) = 0 ⇔ x = y = z;

(G2) ∀x,yÎX,x≠y G(x, x, y) > 0;

(G3) ∀x,y,zÎX G(x, y, z) ≥ G(x, x, y);

(G4) ∀x,y,zÎX G(x, y, z) = G(x, z, y) = G(z, y, x) = ... (symmetric in all three variables);

(G5) ∀x,y,z,wÎX G(x, y, z) ≤ G(x, w, w) + G(w, y, z).

Then the function G is called a generalized metric, or, more specifically a G-metric on

X, and the pair (X, G)is called a G-metric space.

By using the notions of generalized metrics and tυs-cone metrics, we introduced the

below notion of tυs-generalized-cone metrics.

Definition 4 Let X be a nonempty set and (E, P) an ordered tυs, and let G : X × X ×

X ® E be a function satisfying the following axioms:

(G1) ∀x,y,zÎX G(x, y, z) = θ if and only if x = y = z;

(G2) ∀x,yÎX,x≠y θ ≪ G(x, x, y);

(G3) ∀x,y,zÎX G(x, x, y) ≼ G(x, y, z);

(G4) ∀x,y,zÎX G(x, y, z) = G(x, z, y) = G(z, y, x) = ... (symmetric in all three variables);

(G5) ∀x,y,z,wÎX G(x, y, z) ≼ G(x, w, w) + G(w, y, z).

Then the function G is called a tυs-generalized-cone metric, or, more specifically a

tυs-G-cone metric on X, and the pair (X, G) is called a tυs-G-cone metric space.

Definition 5 Let (X, G) be a tυs-G-cone metric space, x Î X and {xn} a sequence in

X.

(1) {xn} tυs-G-cone converges to x whenever for every c Î E with θ ≪ c, there exists

n0 ∈ Nsuch that G(xn, xm, x) ≪ c for all m, n≥ n0. Here x is called the limit of the

sequence {xn} and is denoted by G-cone-limn®∞xn = x;

(2) {xn} is a tυs-G-cone Cauchy sequence whenever for every c Î E with θ ≪ c, there

exists n0 ∈ Nsuch that G(xn, xm, xl) ≪ c for all n, m, l ≥ n0;

(3) (X, G) is tυs-G-cone complete if every tυs-G-cone Cauchy sequence in X is tυs-G-

cone convergent in X.

Proposition 1 Let (X, G) be a tυs-G-cone metric space, x Î X and {xn} a sequence in

X. The following are equivalent

(i) {xn} tυs-G-cone converges to x;

(ii)G(xn, xn, x) ® θ as n ® ∞;

(iii)G(xn, x, x) ® θ as n ® ∞;

(iv)G(xn, xm, x) ® θ as n, m ® ∞.

We also recall the notion of Meir-Keeler type function (see [24]). A function � : [0,

∞) ® [0, ∞) is said to be a Meir-Keeler type function, if � satisfies the following condi-

tion:

∀η > 0 ∃δ > 0 ∀t ∈ [0,∞) (η ≤ t < δ + η ⇒ ϕ(t) < η).

We now define a new notion of stronger Meir-Keeler type function, as follows:

Definition 6 We call � : [0, ∞) ® [0, 1) a stronger Meir-Keeler type function if the

function � satisfies the following condition:

∀η > 0 ∃δ > 0 ∃γη ∈ [0, 1) ∀t ∈ [0,∞) (η ≤ t < δ + η ⇒ ϕ(t) < γη).
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And, we introduce the below concept of the stronger Meir-Keeler tυs-G-cone-type

function in a tυs-G-cone metric space.

Definition 7 Let (X, G) be a tυs-G-cone metric space with a solid cone P. We call � :

P ® [0, 1) a stronger Meir-Keeler tυs-G-cone-type function in X if the function � satis-

fies the following condition:

∀η � θ ∃δ � θ ∃γη ∈ [0, 1) ∀x, y, z ∈ X (η � G(x, y, z) 	 δ+η ⇒ ϕ(G(x, y, z)) < γη).

The Nadler’s results [25] concerning set-valued contractive mappings in metric

spaces became the inspiration for many authors in the metric fixed point theory (see

for example [26-28]). Particularly Wardowski [29] established a new cone metric

H : A × A → E for a cone metric space (X, d) and for the family A of subsets of X,

and introduced the concept of set-valued contraction of Nadler type and prove a fixed

point theorem. Later, in [21], the concept of set-valued contraction of Nadler type in

the setting of tυs-cone spaces was introduced and a fixed point theorem in the setting

of tυs-cone spaces with respect to a solid cone was proved.

In this article, for a tυs-G-cone metric space (X, G) and for the family A of subsets of

X, we introduce a new notion of the tυs - H - cone metric H with respect to G, and we

get a fixed result for the stronger Meir-Keeler type function in a complete tυs-general-

ized-cone metric space (A,H). Our result generalizes some recent results due to Rado-

nevic’ et al. [21] and Dariusz Wardowski [29].

2 Main results
Let E be a locally convex Hausdorff tυs with its zero vector θ, P a proper, closed, and

convex pointed cone in E with intP ≠ j and ≼ a partial ordering with respect to P. We

introduce the below notion of the tυs - H - cone metric H with respect to tυs-G-cone

metric G.

Definition 8 Let (X, G) be a tυs-G-cone metric space with a solid cone P and let Abe

a collection of nonempty subsets of X. A map H : A × A × A → E is called a

tυs − H − cone metric with respect to G if for any A1,A2,A3 ∈ Athe following condi-

tions hold:

(H1) H(A1,A2,A3) = θ ⇒ A1 = A2 = A3;

(H2) H(A1,A2,A3) = H(A1,A2,A3) = H(A1,A2,A3) = · · · (symmetry in all variables);

(H3) H(A1,A2,A3) � H(A1,A2,A3);

(H4) ∀ε∈E,θ	ε∀x∈A1,y∈A2∃z∈A3G(x, y, z) � H(A1,A2,A3) + ε;

(H5) one of the following is satisfied:

(i) ∀ε∈E,θ	ε ∃x∈A1 ∀y∈A2,z∈A3 H(A1,A2,A3) � G(x, y, z) + ε;

(ii) ∀ε∈E,θ	ε ∃x∈A2 ∀x∈A1,z∈A3 H(A1,A2,A3) � G(x, y, z) + ε;

(iii) ∀ε∈E,θ	ε ∃z∈A3 ∀y∈A2,z∈A1 H(A1,A2,A3) � G(x, y, z) + ε.

Lemma 1 Let (X, G) be a tυs-G-cone metric space with a solid cone P and let A be a

collection of nonempty subsets of X. A �= φ. If H : A × A × A → Eis a tυs − H − cone
metric with respect to G, then pair (A,H) is a tυs-G-cone metric space.

Proof Let {εn} ⊂ E be a sequence such that θ ≪ εn for all n ∈ N and G-cone-limn®∞

εn = θ. Take any A1,A2,A3 ∈ A and x Î A1, y Î A2. From (H4), for each n ∈ N, there

exists zn Î A3 such that
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G(x, y, zn) � H(A1,A2,A3) + εn.

Therefore, H(A1,A2,A3) + εn ∈ P for each n ∈ N. By the closedness of P, we con-

clude that θ ≼ H(A1,A2,A3).

Assume that A1 = A2 = A3. From H5, we obtain H(A1,A2,A3) � εn for any n ∈ N. So

H(A1,A2,A3) = θ.

Let A1,A2,A3,A4 ∈ A. Assume that A1, A2, A3 satisfy the condition (H5)(i). Then for

each n ∈ N, there exists xn Î A1 such that H(A1,A2,A3) � G(xn, y, z) + εn for all y Î
A2 and z Î A3. From (H4), there exists a sequence {wn} ⊂ A4 satisfying

G(xn,wn,wn) � H(A1,A4,A4) + εn for every n ∈ N. Obviously for any y Î A2 and any z

Î A3 and n ∈ N, we have

H(A1,A2,A3) � G(xn,y, z) + εn

� G(xn,wn,wn) + G(wn,y, z) + εn.

Now for each n ∈ N, there exists yn Î A2, zn Î A3 such that

G(wn, yn, zn) � H(A4,A2,A3) + εn. Consequently, we obtain that for each n ∈ N

H(A1,A2,A3) � H(A1,A4,A4,) +H(A4,A2,A3,) + 3εn.

Therefore,

H(A1,A2,A3) � H(A1,A4,A4,) +H(A4,A2,A3,).

In the case when (H5)(ii) or (H 5)(iii) hold, we use the analog method. □
Our main result is the following.

Theorem 1 Let (X, G) be a tυs-G-cone complete metric space with a solid cone P and

let Abe a collection of nonempty closed subsets of X, A �= φ, and let

H : A × A × A → Ebe a tυs − H − conemetric with respect to G. If the mapping

T : X → Asatisfies the condition that exists a stronger Meir-Keeler tυs-G-cone-type func-

tion � : P ® [0, 1) such that for all x, y, z Î X holds

H(Tx,Ty,Tz) � ϕ(G(x, y, z)) · G(x, y, z), (1)

then T has a fixed point in X.

Proof. Let us choose x0 Î X arbitrarily and x1 Î Tx0. If G(x0, x0, x1) = θ, then x0 = x1
Î T(x0), and we are done. Assume that G(x0, x0, x1) ≪ θ. Put G(x0, x0, x1) = h0, h0 ≫
θ. By the definition of the stronger Meir-Keeler tυs-G-cone-type function � : P ® [0,

1), corresponding to h0 use, there exist δ0 ≫ θ and γη0 ∈ (0, 1) with h0 ≼ G(x0, x0, x1)

≺ h0 + δ0 such that ϕ(G(x0, x0, x1)) < γη0. Let ε Î intP and ε1 Î E such that θ ≪ ε1
and ε1 � γη0 · ε. Taking into account (1) and (H4), there exists x2 Î Tx1 such that

G (x1, x1, x2) � H (Tx0,Tx0,Tx1) + ε1

� ϕ (G (x0, x0, x1)) · G (x0, x0, x1) + ε1

� γη0 · G (x0, x0, x1) + ε1.

(2)

Now, put G(x1, x1, x2) = h1, h1 ≫ θ. By the definition of the stronger Meir-Keeler

tυs-G-cone-type function � : P - [0, 1), corresponding to h1 use, there exist δ 1 ≫ θ

and γη1 ∈ (0, 1) with h 1 ≼ G(x1, x1, x2) ≺ h 1 + δ 1 such that ϕ(G(x1, x1, x2)) < γη1. Put
α0 = γη0 and α1 = max{γη0 , γη1}. Then a0, a 1 Î (0, 1) and

ϕ (G (x0, x0, x1)) < γη0 ≤ α < 1 andϕ (G (x1, x1, x2)) < γη1 ≤ α1 < 1.
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Let ε2 Î E such that θ ≪ ε2 and ε2 � γ 2
η1

· ε. Then

ε1 � α1 · ε and ε2 � α2
1 · ε.

Taking into account (1), (2), and (H4), there exists x3 Î Tx2 such that

G(x2, x2, x3) � H (Tx1,Tx1,Tx2) + ε2

� ϕ (G (x1, x1, x2)) · G (x1, x1, x2) + ε2

� α1 · G(x1, x1, x2) + ε2

� α1(α1 · G(x0, x0, x1) + ε1) + ε2

� α2
1 · G (x0, x0, x1) + α1 · ε1 + ε2

� α2
1 · G (x0, x0, x1) + 2α2

1 · ε.

(3)

We continue in this manner. In general, for xn, n ∈ N, xn+1 is chosen such that xn+1
Î Txn. Put G(xn, xn, xn+1) = hn, hn ≫ θ. By the definition of the stronger Meir-Keeler

tυs-G-cone-type function � : P ® [0, 1), corresponding to hn use, there exist δn ≫ θ

and γηn ∈ (0, 1) with hn ≼ G(xn, xn, xn+1) ≺ hn + δn such that ϕ (G (xn, xn, xn+1)) < γηn.

Put an = max
{
γη0 , γη1 , . . . , γηn

}
, n ∈ N. Then an Î (0, 1) and

ϕ (G (xi, xi, xi+1)) < γηi ≤ αn < 1, for all i ∈ {0, 1, 2, . . . ,n} . (4)

On the other hand, for each n ∈ N, corresponding to γηn use, we choose εn+1 Î E

such that θ ≪ εn+1 and εn+1 � γ n+1
ηn

· ε. Then

εn+1 � αn+1
n · ε. (5)

From above argument, we can construct a sequence {xn} in X, a non-decreasing

sequence {an} and a sequence {εn} recursively as follow:

xn+1 ∈ Txn,

αn = max
{
γη0 , γη1 , . . . , γηn

}
< 1,

εn+1 � γ n+1
ηn

· ε � αn+1
n · ε,

for all n ∈ N ∪ {0}.
And, we have that for each n ∈ N ∪ {0}

G (xn+1, xn+1, xn+2) � H (Txn,Txn,Txn+1) + εn+1.

Taking into account (4), (5), and (H4), there exists xn+2 Î Txn+1 such that

G
(
xn+1,xn+1, xn+2

)
� H (Txn,Txn,Txn+1) + εn+1

� ϕ (G (xn, xn, xn+1)) · G (xn, xn, xn+1) + εn+1

� αn · G (xn, xn, xn+1) + αn+1
n · ε

� αn
[H (Txn−1,Txn−1,Txn) + εn

]
+ αn+1

n · ε

� αn
[
ϕ (G (xn−1, xn−1, xn)) · G (xn, xn, xn+1) + εn

]
+ αn+1

n · ε

� αn [αn · G (xn, xn, xn+1) + εn] + αn+1
n · ε

� α2
n · G (xn, xn, xn+1) + αn · εn + αn+1

n · ε

� α2
n · G (xn, xn, xn+1) + 2αn+1

n · ε

� · · · · · ·
� αn+1

n · G (x0, x0, x1) + (n + 1) αn+1
n · ε.

(6)
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Let m, n ∈ N be such that m > n. From (6) we conclude that

G(xn,xn,xm) �
m−1∑

j=n

G(xj, xj, xj+1)

�
m−1∑

j=n

[αj
j−1 · G(x0, x0, x1) + jαj

j−1 · ε].
(7)

From above argument and the inequality (7), we put a = max{an-1, an, an+1, ..., am-

2}. Then, we get a = am-2 <1 and

G(xn, xn, xm) �
m−1∑

j=n

[αj · G(x0, x0, x1) + jαj · ε]

� αn

1 − α
G(x0, x0, x1) +

m−1∑

j=n

jαj · ε

� αn

1 − α
G(x0, x0, x1) + αn n + α

(1 − α)2
· ε.

Since lim
n→∞

αn

1 − α
= 0 and lim

n→∞αn n + α

(1 − α)2
= 0 we obtain that

α

1 − α
G(x0,x0,x1) + αn n + α

(1 − α)2
· ε → θ

in locally convex space E as ® ∞.

Apply Remark 2, we conclude that for every τ Î E with θ ≪ τ there exists n0 ∈ N

such that G(xn, xn, xm) ≪ τ for all m, n ≥ n0. So {xn} is a tυs-G-cone Cauchy sequence.

Since (X, G) is a tυs-G-cone complete metric space, {xn} is tυs-G-cone convergent in X

and G-cone-limn®∞ xn = x. Thus, for every τ Î intP and sufficiently large n, we have

H(Txn,Txn,Tx) � α · G(xn,xn,x) · α τ

3α
=

τ

3
.

Since for n ∈ N ∪ {0}, xn+1 Î Txn, by (H4), we obtain that for all n ∈ N there exist yn
Î Tx such that

G(xn+1,xn+1,yn+1) � H(Txn,Txn,Tx) + εn+1 � α · G(xn,xn,x) + αn+1ε.

Then for sufficiently large n, we obtain that

G(yn+1,x, x) � G(yn+1,xn+1,xn+1) + G(xn+1,x, x) 	 2τ

3
+

τ

3
= τ ,

which implies G-cone-limn®∞ yn = x. Since Tx is closed, we obtain that x Î Tx. □
Follows Theorem 1, we immediate get the following corollary.

Corollary 1 Let (X, G) be a tυs-G-cone complete metric space with a solid cone P and

let Abe a collection of nonempty closed subsets of X, A �= φ, and let

H : A × A × A → Ebe a tυs − H − conemetric with respect to G. If the mapping

T : X → Asatisfies the condition that exists a Î (0, 1) such that for all x, y, z Î X holds
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H(Tx,Ty,Tz) � α · G(x, y, z)

then T has a fixed point in X.
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