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Abstract

Let X be a metric space and {T1, ..., TN} be a finite family of mappings defined on D ⊂
X. Let r : N ® {1,..., N} be a map that assumes every value infinitely often. The
purpose of this article is to establish the convergence of the sequence (xn) defined
by

x0 ∈ D; and xn+1 = Tr(n)(xn), for all n ≥ 0.

In particular we prove Amemiya and Ando’s theorem in metric trees without
compactness assumption. This is the first attempt done in metric spaces. These type
of methods have been used in areas like computerized tomography and signal
processing.
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1. Introduction
Many problems in mathematics [1] and physical sciences [2-4] uses a techniques

known as search for a common fixed point. Indeed, let X be a metric space and sup-

pose T1,..., TN are pairwise distinct self-mappings of some nonempty and closed subset

D of X. Suppose further that the fixed point set, Fix(Ti) = {x Î D; Ti (x) = x}, of each

mapping Ti is nonempty and that C = Fix(T1) ∩ · · · ∩ Fix(TN) �= ∅. The aim is to find a

common fixed point of these mappings. One frequently employed approach is the

following.

Let r be a random mapping for {1,..., N}, i.e., a surjective mapping from N onto {1,...,

N} that takes each value in {1,...,N} infinitely often. Then generate a random sequence

(xn) by x0 Î D arbitrary, and

xn+1 = Tr(n)(xn), for all n > 0,

and hope that this sequence converges to a point in C. We call it a random or

unrestricted product (resp. iteration). For products generated by using control

sequence, there are many results: for instance, cyclic control arises when r(n) = n + 1

mod N (see, for example, [5]).

In general, this random product fails to have well convergence behavior. The first

positive results were done in the case when D = X is a Hilbert space and each mapping
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Ti, is the projection onto some nonempty, closed and convex subset Ci of X ; hence Fix

(Ti) = Ci, i = 1, ..., N. The problem of finding a common fixed point is then the well-

known convex feasibility problem (see, for example, [5]). Combettes article [6] pro-

posed several interesting applications of this problem. Some of the early known results

in this case are.

(1) Amemiya and Ando [7]: If each set Ci, is a closed subspace, then the random

product converges weakly to the projection onto C.

(2) Bruck [8]: If some set Ci, is compact, then the random product converges in

norm to a point in C. If N = 3 and each set Ci, is symmetric, then the random product

converges weakly to a point in C (see also [[9], Theorem 2]).

(3) Aharoni and Censor [10], Flam and Zowe [11], Tseng [12], Eisner et al. [13]: If X

is finite dimensional, then the random product converges in norm to a point in C.

The authors in [14] were successful in their extension of Amemiya and Ando’s [7]

results from Hilbert spaces to Banach spaces. In this study, we investigate Amemiya

and Ando’s result and [14]’s results in metric spaces. Such extension is the first

attempt so far.

The main difficulty faced in such extensions is the heavy use of the linearity struc-

ture of either the Hilbert space in [7] or Banach spaces in [14]. Indeed when one tries

to extend concepts from linear functional analysis, one has to pay attention to look

deep into the supporting basic ideas and what intrinsic interrelations exist between

them. Most of the main theorems in nonlinear functional analysis were done in the

framework of linear Banach spaces. So it was interesting to investigate the extension of

these fundamental results in nonlinear structures like metric spaces. As an example of

this research is Kirk’s fixed point theorem [15]. Many researchers have tried to do it

but the best approach is the one given by Penot [16]. The impact of this approach

went beyond what it intended to do initially. This research follows the same motiva-

tions. In particular we investigate the concept of weak convergence in metric spaces

which is central, for instance, in [14]. We consider the case of metric trees to illustrate

some of these ideas.

2. Basic definitions and results
Metric trees were first introduced by Tits [17] in 1977. A metric tree is a metric space

(M, d) such that for every x, y in M there is a unique arc between x and y and this arc

is isometric to an interval in ℝ. For example, a connected graph without loop is a

metric tree. One basic property of metric trees is their one dimensionality. Again in

the late seventies, while studying t-RNA molecules of the E. Coli bacterium Eigen

raised several questions which led Dress [18,19] to construct metric trees, (named as

T-theory). Metric trees also arise naturally in the study of group isometries of hyper-

bolic spaces. For metric properties of trees we refer to [20].

Since a metric tree is a space in which there is only one path between two points x

and y, this would imply that if z is a point between x and y, by which we mean if d(x,

z) + d(z, y) = d(x, y) then we know that z is actually on the path between x and y. This

will motivate the next concept of a metric interval.

Definition 2.1. A metric interval or metric segment [x, y] in a metric space M is

defined by
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[x, y] :=
{
z ∈ M : d(x, z) + d(z, y) = d(x, y)

}
.

First let us give the definition of a metric tree.

Definition 2.2. A metric tree is a nonempty metric space M satisfying:

(a) Any two points x and y in M are the endpoints of a metric segment [x, y].

(b) If x,y, z Î M then [x, y]∩[x, z] = [x, w] for some w Î M. (i.e., if we have two

metric segments with a common endpoint, then their intersection is a metric

segment.)

(c) If x, y, z Î M and [x, y] ∩ [y, z] = {y} then [x, y] ∪ [y, z] = [x, z] (i.e., If two

metric segments intersect in a single point, then their union is a metric segment.)

Metric trees are very special. They enjoy properties which are shared by l∞ and Hil-

bert space. In particular, Kirk [21] showed that complete metric trees are hyperconvex.

Since the weak topology has an intimate relationship with convexity, let us define con-

vex subset in this setting.

Definition 2.3. Let M be a metric tree and C ⊂ M. We say that C is convex if for all

x, y Î C we have [x, y] ⊂ C.

Clearly a metric tree M and the empty set ∅ are convex. Also any closed ball B(a, r)

= {z Î M: d(a, z) ≤ r} in a metric tree is also convex. Let C(M) denotes the collection

of all closed and convex subsets of M, we set:

conv(A) = ∩ {
B : B is a convex subset of M such that A ⊆ B

}
.

Note that C(M) is invariant by intersection, i.e. the intersection of any family of con-

vex subsets of M is convex. We need the following result of Baillon [22] in order to

prove our first fact about C(M).

Theorem 2.1. [22]Let M be a bounded metric space and let {Hb}bÎΓ be a decreasing

family of nonempty hyperconvex subsets of M then
⋂
β∈�

Hβ �= ∅and is hyperconvex.

Since convex subsets of a metric tree are metric trees, then they are hyperconvex by

[21]. This combined with Baillon’s result we get the following theorem.

Theorem 2.2. Let M be a bounded complete metric tree and let {Cb}bÎΓ be a family

of nonempty, closed and convex subsets of M such that

⋂
β∈�f

Cβ �= ∅, where Γf is any

finite subset of Γ, then

⋂
β∈�

Cβ �= ∅and is convex.

This is known as compactness of C(M) according to Penot’s formulation [16]. Note

the slight difference between the statements of the two theorems. Indeed the intersec-

tion of two convex sets is convex while the intersection of two hyperconvex sets may

not be hyperconvex.

Next we discuss the nearest point projections in metric trees. Let C be a nonempty,

closed and convex subset of a complete metric tree M. For any x Î M, denote

PC(x) =
{
c ∈ C; d(x, c) = dist(x,C) = inf

y∈C
d(x, y)

}
.
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In a Hilbert space, the metric projections on closed and convex subsets are nonex-

pansive. In uniformly convex spaces, the metric projections are uniformly Lipschitzian.

In fact, they are nonexpansive if and only if the space is Hilbert. In what follows we

will show that the metric projections in metric trees are nonexpansive. This result is

not true in hyperconvex metric spaces.

Lemma 2.1. [23,24]If C is a nonempty, closed and convex subset of a complete metric

tree M, then for any x Î M there exists a unique cx Î C such that dist(x,C) = d(x,cx),

which means that PC is single valued. Moreover if c Î C we have

d(x,PC(x)) + d(PC(x), c) = d(x, c),

and

d(PC(x),PC(y)) = d(x, y) − d(x,PC(x)) − d(y,PC(y))

or PC(x) = PC(y), for any x, y Î M. In particular, PC is nonexpansive.

Next we prove another property of the mapping PC.

Proposition 2.1. If C is a nonempty, closed and convex subset of a complete metric

tree M, then for any x Î M we have

PC([x,PC(x)]) = {PC(x)}.

In other words, PC is a sunny nonexpansive mapping [25,26].

Proof. Let x Î M and y Î [x,PC(x)]. Since M is a metric tree, there exists w Î M

such that [y, PC(x)] ∩ [y, PC(y)] = [y, w]. We have w Î [PC(x), PC(y)]. Since C is convex,

we get that w Î C. Also the definition of w implies

d(y,w) + d(w,PC(y)) = d(y,PC(y)).

The properties of PC will force PC(y) = w which will imply PC(y) Î [y, PC(x)]. Since y

Î [x, PC(x)] we get

d(x,PC(x)) = d(x, y) + d(y,PC(x)) = d(x, y) + d(y,PC(y)) + d(PC(y),PC(x))

In particular we get d(x, PC(y)) ≤ d(x, PC(x)) which implies PC(y) = PC(x).

3. Amemiya and Ando’s theorem in metric trees
In 1965 Amemiya and Ando [7] proved the astonishing result.

Theorem 3.1. [7]Let H be a Hilbert space and {P1,..., PN} be a finite family of ortho-

gonal linear projections defined on H. Let r : N ® {1,..., N} be a map that assumes

every value infinitely often. The sequence (xn) defined by

x0 ∈ H, and xn+1 = Pr(n)(xn), for all n ≥ 0.

converges weakly in H.

Today, 46 years later, it is still not known whether (xn) converges strongly, even for

N = 3. There is doubt expressed in the literature as to whether this sequence does con-

verge strongly (cf. [[27], Example 4]) for an interesting example of possible relevance.

In general, strong convergence may be obtained when some kind of compactness is

assumed. Next, we show that in the case of metric trees, we have strong convergence

without any compactness assumption. The Amemiya and Ando’s theorem was pre-

ceded by von Neumann [28] for alternating products of two projections (with strong

convergence as the conclusion).
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Theorem 3.2. Let C1, ..., CN be a finite family of nonempty, closed and convex subsets

of a complete metric tree M such that C =
⋂

1≤i≤N

Ci �= ∅. Let r : N ® {1, ..., N} be a map

that assumes every value infinitely often. The sequence (xn) defined by

x0 ∈ X, and xn+1 = PCr(n+1)(xn), for all n ≥ 0.

converges strongly in M. Moreover we have

lim
n→∞ xn = lim

n→∞ PCr(n+1) ◦ · · · ◦ PCr(1)(x0) = PC(x0).

Fix

Proof. c Î C. Using Lemma 2.1 we have

d(xn, xn+1) = d(xn, c) − d(xn+1, c),

for any n ≥ 0. In particular we have

k=n+h∑
k=n

d(xk, xk+1) = d(xn, c) − d(xn+h, c),

for any n ≥ 0 and h ≥ 0. Since PCr(n)(c) = c, we get d(xn+1,c) ≤ d(xn, c), for any n ≥ 0.

In other words, the sequence (d(xn,c)) is decreasing. Hence lim
n→∞ d(xn, c) exists. There-

fore the sequence (xn) is Cauchy. Since M is complete, there exists c Î M such that

lim
n→∞ xn = c. For any i Î {1,..., N}, there exists a subsequence of (xn) which belongs to

Ci. Since Ci is closed, we conclude that c Î Ci, for any i Î {1,..., N}. Hence c Î C.

Next we show that c = PC(x0). For any n ≥ 0, we get

d(x0, xn) ≤
k=n∑
k=0

d(xk, xk+1) = d(x0, c0) − d(xn, c0).

If we let n ® ∞, we get

d(x0, c) ≤ d(x0, c0) − d(c, c0).

The definition of c0 implies

d(x0, c) ≤ d(x0, c0) − d(c, c0) ≤ d(x0, c) − d(c, c0)

which implies d(c, c0) = 0, or c = c0.

Remark 3.1. In [14]the authors made heavy use of the property that in smooth reflex-

ive Banach spaces X, if E is a closed subspace of X, then there is at most one nonexpan-

sive retraction of X onto E [26]. In the case of metric trees, we have a similar result.

Indeed, let C be a nonempty, closed and convex subset of a metric tree M. Then PC is a

sunny nonexpansive retract of M onto C. Let Q : M ® C be another sunny mapping.

Let x Î M. There exists w Î M such that [x, PC(x)] ∩ [x, Q(x)] = [x, w]. Since C is con-

vex, then w Î C. Also since d(x,w) + d(w, PC(x)) = d(x, PC(x)), the definition of PC(x)

will force PC(x) = w. Hence PC(x) Î [x, Q(x)]. Since Q is sunny, we must have Q(PC(x))

= Q(x), which implies PC(x) = Q(x). In other words, PC is the only sunny retract from M

onto C.

In the next section we investigate the behavior of the random product of mappings

other than the nearest point projections.
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4. Random product of mappings in metric trees
As the authors did in [14], one inspires itself from the Amemiya and Ando’s work in

Hilbert spaces to extend it to other underlying spaces. In particular the authors in [14]

introduced the concepts of (W) and (S) properties. Since the (W) property is strongly

linked to the weak-topology, we are not able to extend such property to metric trees.

Definition 4.1. Let M be a metric space. Let T : M ® M be a nonexpansive map

with a nonempty fixed point set Fix(T). We will say that T satisfies the property (S) if

and only if for any c Î Fix(T) and any sequence (vn) such that

lim
n→∞

[
d(vn, c) − d(T(vn), c)

]
= 0, we have lim

n→∞ d(vn,T(vn)) = 0.

Remark 4.1. Note that if T1,...,TN are nonexpansive mappings with a common fixed

point and satisfy the property (S), then we have

Fix(T1 ◦ · · · ◦ TN) =
⋂

1≤i≤N

Fix(Ti).

Indeed let c0 Î M be a common fixed point of T1, ...,TN. Let us only prove that

Fix(T1 ◦ · · · ◦ TN) ⊂ ⋂
1≤i≤N

Fix(Ti). Let c Î Fix(T1 ○ ... ○ TN). Then we have T1 ○ ... ○

TN(c) = c.

Since each mapping is nonexpansive, we get

d(c0, c) = d(c0,T1 ◦ · · · ◦ TN(c)) ≤ d(c0,TN(c)) ≤ d(c0, c).

Since TN satisfies the property (S), we get TN(c) = c. Similarly one will show that Ti

(c) = c, for i = 1,...,N.

Another property discovered by Caristi [29] (see also [30]) and extensively used to

obtain some beautiful results extending Banach contraction principle is the following

definition.

Definition 4.2. Let M be a metric space. Let T : M ® M be a mapping. We will say

that T satisfies the property (C)-l if and only if there exists a map l : M ® [0, ∞) such

that

d(x,T(x)) ≤ λ(x) − λ(T(x)),

for any x Î M.

It is easy to check that if T satisfies the (C)-l property, then any orbit (Tn(x)) is a

Cauchy sequence for any x Î M. In particular if M is complete and T is continuous,

then P(x) = lim
n→∞ Tn(x) is a retraction from M into Fix(T) which is nonempty.

Example 4.1. Let M = [0,2] is a metric tree being an interval of the metric tree ℝ.

Define the mapping T : [0,2] ® [0,1] by

T(x) =
{

x if 0 ≤ x ≤ 1
2 − x if 1 ≤ x ≤ 2.

Note that T is a nonexpansive retraction and Fix(T) = [0,1]. In particular (Tn(x)) is

convergent and its limit is T(x). But the nearest point projection on [0,1] is the map

P(x) =
{
x if 0 ≤ x ≤ 1
1 if 1 ≤ x ≤ 2
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which is different from T. Moreover one can easily show that

d(x,T(x)) ≤ λ(x) − λ(T(x))

for any x Î [0,2], where l(t) = t. Therefore T satisfies the (C)-l property.

In the next result, we show how Theorem 3.2 extends to the family of mappings

satisfying the (C)-l property.

Theorem 4.1. Let M be a complete metric space. Let T1,...,TN be a finite family of

pairwise distinct self-mappings of some nonempty and closed subset D of M. Suppose

further that each map Ti, i = 1,..., N, is continuous and satisfies the (C)-l property,

with the same function l. Let r be a random mapping for {1,...,N}, i.e., a surjective map-

ping from N onto {1,...,N} that takes each value in{1,...,N} infinitely often. Then the ran-

dom sequence (xn) defined by x0 Î D arbitrary, and

xn+1 = Tr(n)(xn), for all n > 0,

is convergent. Its limit is a common fixed point of the mappings T1,...,TN.

Proof. Let x Î D. Our assumptions on the mappings Ti imply

d(xn, xn+1) ≤ λ(xn) − λ(xn+1),

for any n ≥ 0. In particular we have

k=n+h∑
k=n

d(xk, xk+1) ≤ λ(xn) − λ(xn+h),

for any n ≥ 0 and h ≥ 0. On the other hand, we have l(xn+1) ≤ l(xn), for any n ≥ 0.

Therefore the positive sequence (l(xn)) is convergent. Clearly this will imply that the

sequence (xn) is Cauchy. Since M is complete, there exists c Î M such that

lim
n→∞ xn = c ∈ D since D is closed. For any i Î {1,..., N}, there exists a subsequence of

(xj(n)) such that xj(n)+1 = Ti(xj(n)). Hence Ti (c) = c, for any i = 1,..., N.

Note that the limit defines a retraction on the common fixed point set of the map-

pings T1,...,TN. But this retraction may not be equal to the nearest point projection

even in the case of a metric tree as the Example 4.1 shows.

The next result investigates the extension of some of the results discovered in [14].

Before we do this, we need to discuss the weak-topology in the nonlinear setting of

metric spaces. Indeed, let (xn) be a bounded sequence in the metric tree M. Define the

real-valued function

ϕU (x) = lim
n,U

d(xn, x)

where U is a nontrivial ultrafilter [31]. We have the following theorem which will

play a central role in our work.

Theorem 4.2. Let M be a complete metric tree. Let (xn) be a bounded sequence in M.

Then for any nontrivial ultrafilter U, there exists a unique zU ∈ Msuch that

ϕU (x) = ϕU (zU) + d(x, zU ),

for any x Î M.

Proof. Let

r = inf{ϕU (x); x ∈ M}.
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For any ε > 0, consider the set

Cε = {x ∈ M; ϕU (x) ≤ r + ε}.

Using the properties of metric trees, we know that Cε is a nonempty, bounded and

convex subset of M. Since ϕU is continuous, then it is also closed. Using the compact-

ness of C(M), then
⋂
ε>0

Cε = {x ∈ M;ϕU (x) = r} �= ∅.

Now, we will show that this intersection is reduced to one point. Indeed, let us Fix

zU ∈ M such that ϕU (zU ) = r. Let x be any point in M. Using the properties of metric

trees, for any n ≥ 1, there exists wn ∈ [x, zU ] such that [xn, x] ∩ [xn, zU ] = [xn,wn]. Since

[x, zU ] is compact, then there exists w ∈ [x, zU ] such that lim
U

d(wn,w) = 0. Since

d(xn,wn) + d(wn, zU ) = d(xn, zU ) for any n ≥ 1 then we have

lim
U

d(xn,wn) + lim
U

d(wn, zU ) = lim
U

d(xn, zU ) = ϕU (zU).

Hence

lim
U

d(xn,w) + d(w, zU ) = ϕU (zU),

that is, ϕU (w) + d(w, zU ) = ϕU (zU). Obviously this will imply d(w, zU ) = 0 or

lim
U

d(wn, zU ) = 0. Also since d(xn, wn) + d(wn,x) = d(xn,x) for any n ≥ 1, then we have

lim
U

d(xn,wn) + lim
U

d(wn, x) = lim
U

d(xn, zU ) = ϕU (x).

Hence

lim
U

d(xn, zU ) + d(zU , x) = ϕU (x),

that is, ϕU (zU ) + d(zU , x) = ϕU (x). This latest identity, also known as Uniform Opial

condition, will easily show that zU is unique.

Definition 4.3. Let M be a metric tree and (xn) be a bounded sequence in M. For any

nontrivial ultrafilter U, the unique point zUfound in Theorem 4.2 is called the weak-

limit of (xn) along U . We will say that (xn) is weakly convergent if and only if zU = zV,
for any nontrivial ultrafilters Uand V.
It is because of the absence of a dual space that we used Opial behavior to try to

catch the weak-limit of a bounded sequence. In the next result we show some close

similarities between the classical weak-limit point in Banach spaces and the one intro-

duced above.

Proposition 4.1. Let M be a complete metric tree and (xn) be a bounded sequence in

M. For any nontrivial ultrafilter U , then
zU ∈ �(xn) =

⋂
n≥1

conv{xn, xn+1, . . .}.

Fix

Proof. i ≥ 1. Set Pn the nearest point projection on conv(xi)i≥n. Since U is nontrivial

then
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{i; d(xi,Pn(zU)) ≤ d(xi, zU )} ∈ U

where we used the nonexpansiveness of Pn. This obviously implies

lim
i,U

d(xi,Pn(zU )) ≤ lim
i,U

d(xi, zU )

which implies Pn(zU ) = zU or zU ∈ con(xi)i≥n for any n ≥ 1. So zU ∈ �(xn).

Next we discuss the behavior of mapping which satisfies the property (S).

Theorem 4.3. Let M be a complete metric tree. Let T : C ® C be a nonexpansive

mapping which satisfies the property (S), where C is a nonempty, bounded, closed, and

convex subset of M. Then the sequence (Tn(x)) converges weakly to a fixed point of T.

Proof. Let U and V be any nontrivial ultrafilters. Let zU and zV be the minimum

point of ϕU (z) = lim
U

d(Tn(x), z) and ϕV(z) = lim
V

d(Tn(x), z), respectively. Proposition

4.1 implies that zU and zV are in Ω(Tn(x)) ⊂ C. Next we will prove that zU and zV are

fixed point of T. It is enough to prove that T(zU ) = zU. Since C is hyperconvex and

bounded, we know that T has a nonempty fixed point set (see [32,33]). Let c Î Fix(T).

The sequence (d(Tn(x),c)) is a decreasing sequence of positive numbers. Since T satis-

fies the property (S), we deduce that lim
n→∞ d(Tn(x),Tn+1(x)) = 0. Hence

ϕU (z) = lim
U

d(Tn(x), z) = lim
U

d(Tn+1(x), z),

which implies ϕU (T(z)) ≤ ϕU (z), for any z Î C. The properties of zU will force the

identity T(zU ) = zU, i.e., zU ∈ Fix(T). Note that the sequence (d(Tn(x), zU )) is decreas-
ing which implies

ϕU (zU ) = lim
U

d(Tn(x), zU ) = lim
n→∞ d(Tn(x), zU ) = inf

n≥1
d(Tn(x), zU ).

Hence

ϕU (zV) = lim
U

d(Tn(x), zV) = lim
n→∞ d(Tn(x), zV) = lim

V
d(Tn(x), zV),

because zV Î Fix(T). Since

ϕV(zV) = lim
V

d(Tn(x), zV) ≤ ϕV (zU) = lim
V

d(Tn(x), zU ) = lim
n→∞ d(Tn(x), zU ),

which implies ϕU (zV) ≤ ϕU (zU ). The properties of zU imply zV = zU. This completes

the proof of Theorem 4.3.
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